FINAL DRAINAGE REPORT

VISTA WEST SUBDIVISION

LOCATED IN THE SOUTHWEST QUARTER OF SECTION 26,
TOWNSHIP 2 NORTH, RANGE 64 WEST OF THE 6TH P.M.
TOWN OF KEENESBURG
COUNTY OF WELD
STATE OF COLORADO

Prepared By:

Baseline Engineering Corporation

112 N Rubey Drive, Suite 210 Golden, Colorado 80403 Michael L. Lujan

June 30, 2021

Vista West Subdivision 5/20/2021

CERTIFICATION

This report for the final design of the Vista West Subdivision was prepared by me or under my direct supervision in accordance with the provisions of the Town of Keenesburg and Weld County criteria. I understand that the Town of Keenesburg and its designated city authority do not and will not assume liability for drainage facilities designed by others.

Signature	
Colorado P.E. License No.	
Seal and Date	

Table of Contents

Introduction	4
Site Location	4
Site Description	4
Proposed Project Description	4
Historic Drainage System	5
Major Basin	5
Sub-Basin and Site Drainage	5
Proposed (Developed) Drainage System	5
Criteria	5
Hydrology Criteria	5
Hydraulic Criteria	6
Variance from Criteria	7
Runoff	7
Detention	8
Streets	10
Storm Sewer System	10
Conclusions	10
Compliance with Applicable Code	10
Flood Hazard	10
Impact of the Improvements	10
Maintenance of Improvements	11
References	11
APPENDIX	12

Introduction

Site Location

- The property is located in the southwest quarter of Section 26, Township 2 North, Range 64 West of the 6th Principal Meridian, Town of Keenesburg, County Weld, State of Colorado.
- 2. The property is bounded to the north by residential lots, to the east Cedar Street which is lined with residential houses, to the south by undeveloped land, and to the southwest by a parcel of undeveloped land and by County Road 16 to the northwest.
- 3. The proposed site is currently zoned as R-1 for single family residential development. A PUD overlay is being requested for the property.

Site Description

- 1. For the purposes of this report, the developed property shall be referred to as "Basin P", which has been broken into 13 smaller basins; P1-P13. Historical drainage basins for the property shall be referred to as "Basin H1". Onsite drainage basins that drain off the property shall be referred to as "Basin PO", which has been broken into 3 smaller basins; PO1 to PO3. There is one offsite drainage basin that will drain onto the property referred to as basin OS1. Right-of-way drainage basins on the west half of Cedar Street shall be referred to as "Basin ROW", which has been broken up into 3 smaller basins; ROW1-ROW3. Basin ROW2 will drain onto the site and be detained within the detention pond. The total area for the property is 31.55 acres.
- 2. Historical ground cover for the on-site basin consists of native grasses which generally slope from the northwest corner of the site to the southeast corner. On-site hydraulic soil grouping is primarily a type 'C' (Weld loam) and a type 'B' (Colby loam). The type 'C' hydraulic soil grouping was used for drainage calculations as a conservative approach. A soil map for the entire drainage basin developed using the online NRCS Web Soil Survey mapping tool can be found in **Appendix A**.
- 3. The site slopes gradually towards the southeast with slopes ranging from 1.8% to 10%. There is an existing irrigation pond at the center of the site and an existing wetland area to the south of the site.

Proposed Project Description

- 1. The proposed improvements consist of single-family residential homes with lot sizes varying from 5,500 SF to 8,400 SF. Additional improvements include the associated roadways, trail system, community park, open space, and a proposed detention pond.
- 2. Flood Hazard and Drainage Studies Relevant to the Site

A. The site is not within a flood hazard area according to FEMA FIRM Map No. 08123C2157E revised January 20, 2016 (see *Appendix A*).

Historic Drainage System

Major Basin

- 1. The existing site is within a larger drainage basin that ultimately reaches Lost Creek via surface flow.
- 2. The site is not located within a FEMA delineated flood zone.
- 3. See the Drainage Plans (*Appendix C*) for existing and proposed contours. Runoff drainage patterns for the on-site basins and the off-site basins were defined based on ground topography surveyed using GPS and conventional survey methods.

Sub-Basin and Site Drainage

1. Historically the site generally drains from its northwest corner towards the southeast corner. In historic conditions, all the flows are transmitted overland via sheet flow across the property. The hydrologic analysis and hydraulic design for the site is based on the criteria established in the Urban Storm Drainage Criteria Manual (Mile High Flood District, 2017/2018) as well as the Town of Keenesburg. The Rational Method was used to calculate peak runoff flows for the sub-basins (refer to forms SF-2 and SF-3 in *Appendix B*). Runoff flows were analyzed for the 5-yr and 100-yr storms.

Proposed (Developed) Drainage System

Criteria

 The regulations, guidelines and drainage design criteria used for this report are those contained within the Urban Storm Drainage Criteria Manual, Volumes 1, 2 and 3 (Reference 1&2).

Hydrology Criteria

1. In accordance with MHFD criteria, the design storms analyzed for this site were the 5-year storm (minor storm) and the 100-year storm (major storm). One-hour rainfalls of 1.14 and 2.65 inches have been used for the 5-Year and 100-Year runoff calculations respectively using the NOAA Atlas 14 Point Precipitation Frequency Estimates (Reference 6) for the Vista West Subdivision site. Refer to Appendix A for supporting information.

2. The peak discharge for sizing the onsite storm sewer and for the street capacity calculations was calculated using the following Rational Method formula:

Q = CIA

Where:

Q = peak discharge (cfs)
C = runoff coefficient
I = rainfall intensity (inches/hour)
A = drainage area (acres)

See Appendix B for Rational Method flow calculations.

These flows were routed through the site using the UDFCD SF-3 form to determine the total flow at respective design points. See *Appendix B* for routing spreadsheets.

Hydraulic Criteria

- 1. The MHFD Full-Spectrum Detention method was used to determine the required detention volume for this project.
- 2. Stormwater quality and detention for the on-site detention pond will be provided using the MHFD methods for full spectrum detention in accordance with the Mile High Flood District Detention Basin Design Workbook (MHFD-Detention, Version 4.04). In coordination with the Town of Keenesburg the maximum allowable 100-year release rate for a full spectrum detention facility shall be no greater than the predevelopment 100-year storm water discharge of the upstream watershed. The predevelopment 100-year unit discharge for specific soil types per acre of tributary catchment varies based on the watershed slope and watershed shape. The peak unit flow rate is based on one-hour precipitation depth from NOAA Atlas 14, watershed flow path slope, watershed flow path length, the tributary area, and coefficients dependent on event frequency tables for a soil with a hydraulic soil grouping of 'C'. Please refer to the EURV and 100-year detention volume calculations in *Appendix B* of this report.
- 3. The 100-yr release rate for the proposed detention pond was calculated as 46.5 cfs. However, the proposed detention pond does not capture all onsite flows. Proposed basins PO flow offsite and cannot vertically drain to the proposed pond. The total off-site flows from the basins that are not captured by the detention pond are 20.17 cfs for the 100-yr storm. There are offsite flows from basin OS1 and ROW2 that will drain to and be detained within the proposed detention pond totaling 4.94 cfs. To counteract the total flow not routed through the pond from the site, the pond outlet structure has been restricted which has been detailed in the detention portion of this report.

- 4. The proposed detention pond will be installed with the initial phase of construction. The detention pond has been designed based on the Town Criteria specified below and will act as a permanent stormwater facility that will remain in place.
- 5. Storm sewers will be installed for the proposed site and for the proposed detention pond outfall. The proposed storm sewer is discussed in more detail in the applicable section.

Variance from Criteria

1. This project has no requests for variances from criteria.

Runoff

- The developed site will consist of 16 basins consisting of single-family residences with piped roof drainage and associated private driveways, proposed roadways and right-ofway improvements, and the open space & trail network. The site will consist of public streets with curb & gutter, infrastructure, and open space tracts. The Rational Method was used for this analysis, and design storm frequencies of 5-yr and 100-yr storms were (see *Appendix B*).
- 2. The majority of stormwater runoff from the project site will be directed to the proposed detention pond which will be located along the south property line of the site. Stormwater will be conveyed to the pond by surface flow or a proposed storm sewer network. The pond will provide full-spectrum detention and will outfall directly to the existing surface to the south of the site and overland flow in its historical fashion to the existing wetland areas south of the site. A 4-foot-wide concrete trickle channel and outlet structure will be designed for the pond. A Restrictor plate for the outlet structure was designed to release the runoff from the 100-year storm at a controlled rate in accordance with Urban Storm Drainage Criteria Manual Volume 2, Storage Chapter (Reference 1). This design can be found in **Appendix B**. The pond has an emergency spillway which has been designed to spill to the south of the proposed site. The pond has been sized for compensatory storage for the runoff that is not detained on site. The 100-year release rate of the detention pond has been restricted by reducing the release rate by 15.23 cfs in order to account for the 20.17 cfs that will not be detained by the pond and will flow offsite, and the 4.94 cfs off offsite flow that will be detained within the detention pond. The pond has been sized for entirety of the development.
- 3. The pond is sized based on the contributing impervious area which determined the water quality capture volume (Excess Urban Runoff Volume EURV) plus the 100 year detention volumes.
- 4. Developed runoff onsite follows the typical pattern in which roof drainage will be collected in gutters and piped into downspouts. Flows will then sheet flow across landscaped areas and be conveyed into the curb and gutter system in the proposed

roadways. Flows will then enter into the proposed storm sewer network and ultimately be conveyed to the detention pond at the south of the site for all basins except for Basins PO.

Flows from Basin P will flow to the proposed local streets curb and gutter and continue into the proposed storm sewer system. Flows will then outfall into the proposed detention pond at design point 13. These flows will be detained and released following the criteria stated in the Detention section of this report. These flows will ultimately outfall on the south end of the site, and flow to the existing floodplain located south of the property.

Flows from Basin PO will flow onto Cedar Street and be conveyed offsite. The proposed detention pond release rate has been restricted to account for offsite flows from basin PO. Flows from basin PO1 will outfall at the northeast corner of the site onto Cedar Street. Flows from basin PO2 & PO3 will outfall at the southeast corner of the site onto Cedar Street.

Flows from Basin OS will flow onto the site at the northwest corner of the property and be captured in a Type 'C' inlet, where it will be captured by the proposed storm sewer system for the site. Flows will then outfall into the proposed detention pond at design point 13. These flows will be detained and released following the criteria stated in the Detention section of this report. These flows will ultimately outfall on the south end of the site, and flow to the existing floodplain located south of the property.

Flow from Basin ROW will flow into the proposed curb and gutter system on the west half of Cedar Street and follow historical drainage patterns. Except for basin ROW2, which will flow onto the site, and be captured within the proposed storm sewer system. Flows will then outfall into the proposed detention pond at design point 13. These flows will be detained and released following the criteria stated in the Detention section of this report. These flows will ultimately outfall on the south end of the site, and flow to the existing floodplain located south of the property.

Curb & gutter, storm sewer pipe, and inlet design calculations can be found in **Appendix B**.

5. Offsite flows from the vacant land to the west of the site has been accounted for as Basin OS1 within the SF2&3. Flows from this basin are anticipated to flow onto the site and have been accounted for in the calculations for Basin OS1 in **Appendix B**. These flows have been accounted for within the detention pond.

Detention

1. The structural BMP to be utilized for water quality will be a Full Spectrum Detention Basin.

- 2. The required and provided volumes for the Excess Urban Runoff (EURV) and 100-yr stages are as follows:
 - A. Required WQCV = 0.572 acre-ft
 - B. Required EURV volume = 1.122 acre-ft.
 - C. Required 100-yr volume = 1.512 acre-ft.

These calculations include the mandatory one-foot of freeboard. One foot of freeboard is provided above the emergency overflow water surface elevation (WSEL).

- 3. The WQCV water surface elevation will be 4943.18, the EURV water surface elevation will be 4945.91, and the 100-year water surface elevation will be 4948.49.
- 4. The release rates for the 100-yr (31.27 CFS) is based the maximum allowable 100-year release rate, equal the predevelopment discharge for the upstream watershed. The 100-year release has been restricted from 46.5 cfs down to 31.27 cfs to account for the offsite flows from basins PO1-3 that cannot be conveyed to the proposed pond and offsite flows being detained within the proposed pond from basins OS1 and ROW2.
- 5. The release rate for the 100 year storm will be controlled with an orifice plate inside the outlet structure.
- 6. A 4 ft. wide concrete trickle channel with a 0.5% longitudinal slope has been incorporated into the pond design to promote drainage of the pond.
- 7. The pond will be graded with a minimum pond bottom slope of 2% toward the trickle channel.
- 8. Excess stormwater will pass through the pond, overtop the berm and spill to the south of the site and maintain historic drainage patterns from there.
- 9. The emergency overflow for the pond has been designed to be 90-feet in length at elevation 4948.5 and will be protected with Type 'VL' riprap for the entire length.
- 10. The outlet structure and 100-yr restrictor plate will is designed to provide appropriate release rates (see MHFD spreadsheet in *Appendix C*). The outlet structure will consist of an orifice plate containing a vertical column of small, equally spaced orifices. The proposed orifice plate will consist of four rows of 1-3/4" inch diameter orifices spaced 12.1 inches apart. The ground at the outfall of the pipe from the detention pond will be protected from erosion with the installation of a riprap pad. The riprap is type VL which is sized to handle the flows that will be released from the detention pond (see calculation for sizing of riprap pad in *Appendix C*).

Streets

1. Street capacity for the minor storm was based on flows not overtopping the curb and gutter for all private streets on-site. Flows in local streets can spread to the crown of the street in major storm events. The spread criteria control the flow depth for the Residential Collector Street that runs through the site. Refer to *Appendix B* for calculations.

Storm Sewer System

- 1. The MHFD drainage criteria requires that the minor storm be conveyed into the storm system with no curb overtopping, and flow may spread to the crown of the street, while the major storm shall be conveyed into the system with a depth less than or equal to 12" above the gutter flowline. Depth of ponding at the storm inlets has been limited to the curb height, except at storm inlets A06 & A07 where ponding depth was permitted to the crown of the street. The major storm criterion has been met and the adjacent buildings have been sufficiently graded so that a 100-yr storm will not have any negative impacts.
- 2. The MHFD drainage criteria requires that the minor storm be conveyed within the storm sewer pipe, while the major storm shall be conveyed in the roadway with a depth less than or equal to 12" above the gutter flowline. This criterion has been met, refer to Appendix B for calculations.
- 3. All proposed storm sewer located within the Town of Keenesburg's Right Of Way has been sized to meet a minimum standard of 18" RCP.

Conclusions

Compliance with Applicable Code

The drainage conveyance and detention volume has been designed in compliance with The Town of Keenseburg design standards, and the MHFD manual.

Flood Hazard

No floodplains shall be impacted by this project.

Impact of the Improvements

- i. This proposed development will provide sedimentation and filtration of runoff through a proposed Full Spectrum Detention pond and controlled release rates for the WQCV and 100-yr events meeting UDFCD release rates for the soil type to mimic predeveloped release rates. The proposed street improvements along Cedar Street will provide curb and gutter for major and minor storm flows.
- ii. The 100-yr release rate for the proposed detention pond was calculated as 46.5 cfs. However, the detention pond does not capture all offsite flows. Proposed basins PO1-P03 have offsite flows not directed to the pond. The pond release has been restricted

to account for the offsite flows and should have no negative affect downstream of the development.

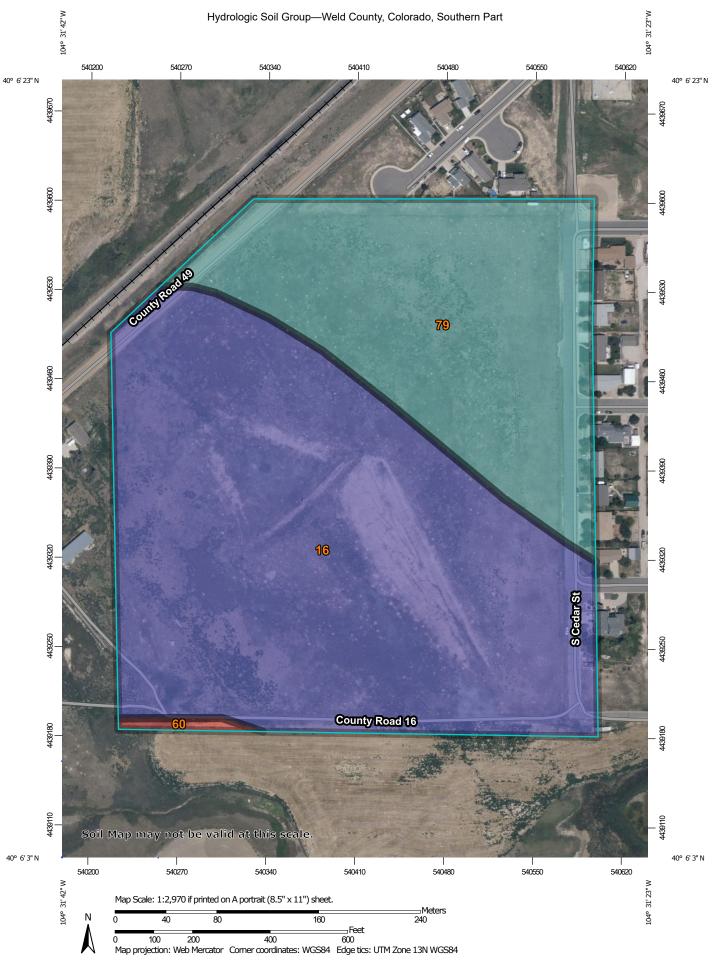
Maintenance of Improvements

- i. The proposed improvements shall be maintained in order to ensure runoff is appropriately routed. The property owners shall be responsible for the maintenance of all drainage infrastructure on their property up to the edge of the sidewalk or roadway. The Town of Keenesburg has the right to enter an owner's property in order to maintain the drainage infrastructure when deemed fit.
- ii. The proposed detention pond shall be maintained by the Homeowners Association. The maintenance responsibility will eventually be transferred to a metropolitan district once one is established.

References

- 1. *Urban Storm Drainage Criteria Manual, Volumes 1 & 2*; Urban Drainage and Flood Control District, Denver, CO. Updated March 2017, with updates on September 2017.
- 2. *Urban Storm Drainage Criteria Manual, Volumes 3*; Urban Drainage and Flood Control District, Denver, CO. November 2010, with updates on April 2018.
- 3. Weld County Engineering and Construction Guidelines; Weld County, CO. April 2012, with updates on July 2017.
- 4. Natural Resources Conservation Center Web Soil Survey, United States Department of Agriculture, site visited May 2021.
- 5. Federal Emergency Management Agency Flood Insurance Rate Map, Community-Panel Number 08123C2157E revised January 20, 2016.
- 6. NOAA's National Weather Service, Hydrometeorological Design Studies Center, Precipitation Frequency Data Server (PFDS), site visited November 2020.

APPENDIX


Appendix A:

Vicinity Map
Hydrologic Soils Group
FIRM Map
NOAA Atlas Rainfall Data

VICINITY MAP

SCALE: 1" = 1000'

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Weld County, Colorado, Southern Part Survey Area Data: Version 19, Jun 5, 2020 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Jul 19, 2018—Aug 10. 2018 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI		
16	Colby loam, 3 to 5 percent slopes	В	24.8	65.3%		
60	Shingle-Renohill complex, 3 to 9 percent slopes	D	0.2	0.6%		
79	Weld loam, 1 to 3 percent slopes	С	12.9	34.1%		
Totals for Area of Inter	est	37.9	100.0%			

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and another **Boodways** have been determined users are noncumpted to consult the Flood Floridise and Floodway Data andore Summary of Silhaker Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIFM. User should be aware that BFEs shown on the FIRM represent rounded whole-flood elevations. These BFEs are interded for flood insurance rating purposes only and should not be used as the sols source of flood elevation information. Accordingly flood elevation state presented in the FIS Report should be cligical in conjunction with

Coastal Base Flood Elevations shown on this map apply only landered of 0.0' North American Vertical Datum of 1959 (MAVD 89). Users of this FRINI should be Elevations table in the Flood Instrumed Study Report for the spiridation. Event Elevations table in the Flood Instrumed Study Report for the spiridation. Event shown in the Summary of Stiffwater Elevations table should be used for construction ander floodplain management purposes when they are higher than the elevations ander floodplain management purposes when they are higher than the elevations ander floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations and floodplain management purposes when they are higher than the elevations are the flood of the flo

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal transverse Mercator (LIM) zone 13. The horizontal datum was NAD 83, GRS 1980 spherioti. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent prisidictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRMs.

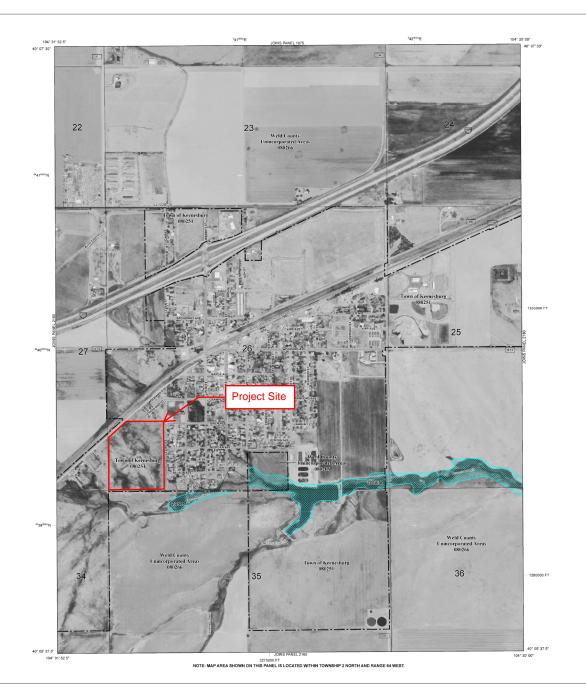
Flood advantages on this map are reservences to the North American Ventos Lataria of 1988. These flood develoriers must be compared to facultural and ground elevations and standard elevations between the National Geodetic Vertical Datum of 1920 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at https://www.nas.nasa.gov or contact the National Geodetic Survey website at https://www.nas.nasa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #921 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench mark shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242, or visit its website at https://www.ngs.noaa.gov.

Base map information shown on this FIRM was derived from NAIP Orthophotography produced with a one meter ground resolution from photography dated 2013.

The profile baselines depicted on this map represent the hydrautic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel contention or some creditive the SCEMA.


This map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The foodspars and floodways that were transferred from the previous FIRM replies to configurations. As a result, the floodways but show the previous FIRM replies to configurations. As a result, the flood Profiles and Floodways Data bables for mulpite stemsm in the Flood Insurance Study Report (which contains authorizative hydraulic data) may reflect stems channel disastence shall deficience shall define from their shown on this stems.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate intel localisms.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood insurance Program dates for each community as well as a listing of the panels on which each community

or information on available products associated with this FIRM visit the Map hervice Center (MSC) website at http://msc.fema.gov. Available products may noticular previously issued Letters of Map Change, a Flood invariance Study Report, under digital versions of this map. Many of these products can be ordered or the contraction of the MSC of the contraction of the contraction

If you have questions about this map, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information exchange (FMX) at 1.877-EMM-MAP (1-877-338-2627) or visit the FEMA website at http://www.fema.gov/business/ntip.

NOAA Atlas 14, Volume 8, Version 2 Location name: Keenesburg, Colorado, USA* Latitude: 40.1002°, Longitude: -104.5274° Elevation: 4950.78 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

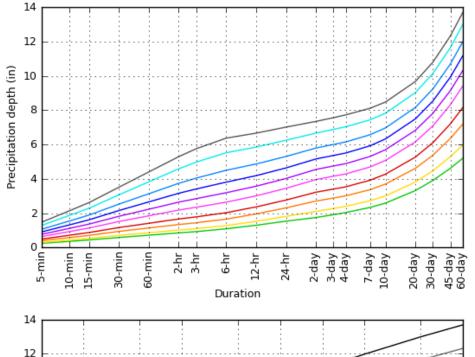
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

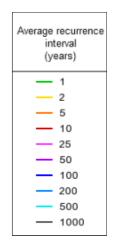
NOAA, National Weather Service, Silver Spring, Maryland

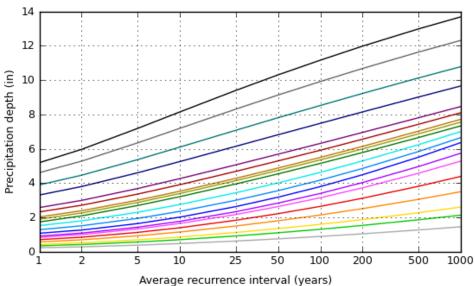
PF tabular | PF graphical | Maps & aerials

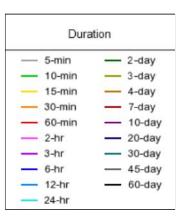
PF tabular

					recurrence						
Duration	1	2	5	10	25	50	100	200	500	1000	
	0.242			0.486	0.633	0.760	0.900	1.05	1.28		
5-min		1	0.393 (0.312-0.497)		1		1 1	I .	1	1.46 (0.937-2.13)	
10-min	0.355	0.431	0.575	0.712	0.927	1.11	1.32	1.54	1.87	2.14	
			(0.457-0.728)						(1.24-2.73)	(1.37-3.13	
15-min	0.433	0.526	0.702 (0.557-0.887)	0.869 (0.686-1.10)	1.13 (0.876-1.52)	1.36 (1.02-1.84)	1.61 (1.16-2.23)	1.88 (1.30-2.68)	2.28 (1.51-3.32)	2.61 (1.67-3.81	
	0.581	0.704	0.936	1.16	1.51	1.81	2.15	2.52	3.06	3.51	
30-min		(0.561-0.888)	(0.743-1.18)	(0.914-1.47)	(1.17-2.04)	(1.36-2.46)	(1.56-2.98)	(1.74-3.59)	(2.03-4.46)	(2.25-5.12	
60	0.714	0.857	1.14	1.41	1.84	2.23	2.65	3.13	3.82	4.40	
60-min	(0.570-0.900)	(0.684-1.08)	(0.902-1.44)	(1.11-1.79)	(1.43-2.50)	(1.68-3.03)	(1.92-3.69)	(2.17-4.46)	(2.54-5.58)	(2.82-6.42	
2-hr	0.847	1.01	1.34	1.66	2.18	2.64	3.16	3.73	4.58	5.29	
	(0.681-1.06)	(0.812-1.26)	(1.07-1.67)	(1.32-2.09)	(1.71-2.93)	(2.01-3.56)	(2.31-4.35)	(2.61-5.27)	(3.07-6.63)	(3.42-7.65)	
3-hr	0.923 (0.746-1.15)	1.09 (0.883-1.36)	1.44 (1.16-1.79)	1.78 (1.42-2.23)	2.34 (1.85-3.14)	2.84 (2.17-3.82)	3.41 (2.51-4.68)	4.04 (2.84-5.68)	4.97 (3.35-7.15)	5.75 (3.74-8.26	
	1.09	1.27	1.65	2.02	2.64	3.19	3.80	4.50	5.52	6.37	
6-hr	(0.885-1.34)	(1.04-1.57)	(1.34-2.04)	(1.63-2.51)	(2.10-3.50)	(2.45-4.24)	(2.82-5.17)	(3.19-6.25)	(3.76-7.85)	(4.18-9.06	
12-hr	1.29	1.52	1.95	2.36	3.01	3.57	4.18	4.86	5.85	6.66	
12-111	(1.06-1.58)	(1.25-1.86)	(1.59-2.39)	(1.92-2.90)	(2.40-3.91)	(2.76-4.67)	(3.12-5.59)	(3.47-6.66)	(4.01-8.20)	(4.42-9.37	
24-hr	1.53 (1.27-1.85)	1.81 (1.49-2.19)	2.31	2.31 2.76 (1.90-2.80) (2.26-3.36)		4.02 (3.12-5.17)	4.63 (3.48-6.10)	5.30 (3.81-7.15)	6.24 (4.31-8.63)	7.01 (4.69-9.76	
					(2.75-4.39)					<u> </u>	
2-day	1.74 (1.45-2.09)	2.10 (1.75-2.52)	2.70 (2.24-3.25)	3.22 (2.65-3.88)	3.96 (3.16-4.95)	4.55 (3.55-5.75)	5.15 (3.88-6.67)	5.79 (4.18-7.68)	6.66 (4.63-9.06)	7.34 (4.96-10.1	
	1.91	2.27	2.88	3.40	4.15	4.75	5.36	6.00	6.88	7.56	
3-day	(1.60-2.27)	(1.90-2.71)	(2.40-3.44)	(2.82-4.09)	(3.33-5.16)	(3.72-5.97)	(4.06-6.89)	(4.36-7.91)	(4.81-9.30)	(5.14-10.3	
4-day	2.04	2.40	3.01	3.53	4.28	4.88	5.50	6.15	7.03	7.72	
4-uay	(1.71-2.42)	(2.01-2.85)	(2.52-3.58)	(2.94-4.23)	(3.45-5.30)	(3.84-6.11)	(4.18-7.04)	(4.49-8.07)	(4.93-9.46)	(5.28-10.5	
7-day	2.33	2.72	3.37	3.92	4.69	5.30	5.92	6.57	7.43	8.11	
	(1.97-2.75)	(2.30-3.21)	(2.83-3.98)	(3.28-4.65)	(3.80-5.74)	(4.20-6.57)	(4.53-7.50)	(4.82-8.53)	(5.25-9.90)	(5.58-10.9	
10-day	2.58 (2.19-3.03)	3.00 (2.55-3.52)	3.69 (3.12-4.34)	4.27 (3.59-5.04)	5.07 (4.12-6.16)	5.69 (4.52-7.00)	6.32 (4.86-7.95)	6.96 (5.13-8.98)	7.82 (5.55-10.3)	8.47 (5.86-11.4	
20 4	3.31	3.81	4.61	5.26	6.15	6.82	7.49	8.15	9.02	9.66	
20-day	(2.84-3.85)	(3.26-4.43)	(3.93-5.37)	(4.46-6.16)	(5.03-7.37)	(5.46-8.29)	(5.80-9.30)	(6.06-10.4)	(6.46-11.8)	(6.76-12.8	
30-day	3.90	4.47	5.37	6.10	7.08	7.82	8.53	9.23	10.1	10.8	
	(3.36-4.51)	(3.84-5.17)	(4.60-6.23)	(5.20-7.10)	(5.82-8.42)	(6.29-9.42)	(6.64-10.5)	(6.90-11.7)	(7.29-13.1)	(7.59-14.2	
45-day	4.61 (3.99-5.30)	5.29 (4.57-6.08)	6.35 (5.47-7.32)	7.20 (6.16-8.33)	8.31 (6.86-9.81)	9.14 (7.38-10.9)	9.92 (7.76-12.1)	10.7 (8.02-13.4)	11.6 (8.42-14.9)	12.3 (8.72-16.4	
										<u> </u>	
60-day	5.20 (4.51-5.95)	5.97 (5.18-6.84)	7.19 (6.21-8.25)	8.15 (7.00-9.39)	9.40 (7.77-11.0)	10.3 (8.35-12.3)	11.2 (8.76-13.6)	12.0 (9.03-14.9)	13.0 (9.43-16.6)	13.7 (9.73-17.8	

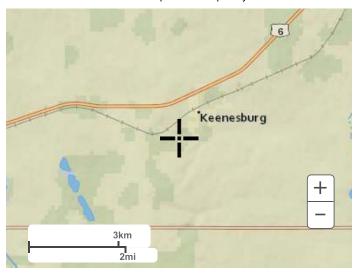

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

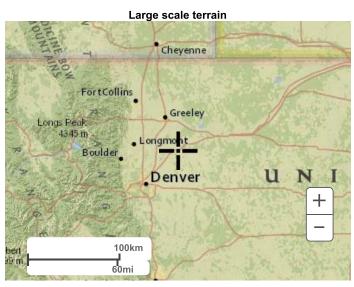

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

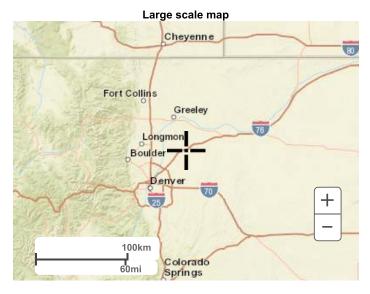

Back to Top


PF graphical

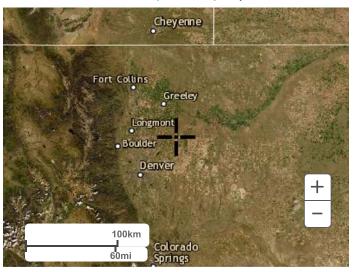
PDS-based depth-duration-frequency (DDF) curves Latitude: 40.1002°, Longitude: -104.5274°


NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Mon Nov 2 20:32:47 2020


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

Appendix B:

Hydrologic and Hydraulic Computations

Detention Pond Calculations

JOB NO.: 3490 CALC. BY: SPC DATE: 6/23/2021

= FORMULA CELLS
= USER INPUT CELLS

Project Location	
User Input	\blacksquare

IDF Rainfall Data

	P ₁ : 1-hour Rainfall Depths (inches)										
	Minor Storm	Major Storm									
T_d	5-Year	\blacksquare	100-Year ▼								
Minutes	1.14		2.65								
5	3.87		8.99								
10	3.08		7.17								
20	2.24		5.21								
30	1.79		4.16								
40	1.50		3.49								
50	1.30		3.02								
60	1.15		2.68								
120	0.71		1.65								

Equation 5-1 $I=(28.5*P_1)/(10+T_d)^{0.786}$

I = rainfall intensity (inches per hour)

P₁ = 1-hour point rainfall depth (inches)

T_d = storm duration (minutes)

Reference:

- 1) Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 1, 2017
- 2) NOAA Atlas 14, Volume 8, Version 2

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html?bkmrk=co

JOB NO.: 3490 CALC. BY: SPC DATE: 6/26/2021

Project Location	
User Input	\blacksquare

IDF Rainfall Data

	P ₁ : 1-hour Rainfall Depths (inches)										
	Minor Storm	Major Storm									
T_d	5-Year	\blacksquare	100-Year ▼								
Minutes	1.14		2.65								
5	3.87		8.99								
10	3.08		7.17								
20	2.24		5.21								
30	1.79		4.16								
40	1.50		3.49								
50	1.30		3.02								
60	1.15		2.68								
120	0.71		1.65								

Equation 5-1 $I=(28.5*P_1)/(10+T_d)^{0.786}$

I = rainfall intensity (inches per hour)

P₁ = 1-hour point rainfall depth (inches)

T_d = storm duration (minutes)

Reference:

- 1) Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual Volume 1, 2017
- 2) NOAA Atlas 14, Volume 8, Version 2

http://hdsc.nws.noaa.gov/hdsc/pfds/pfds map cont.html?bkmrk=co

JOB NO.: 3490 CALC. BY: SPC

DATE: 6/26/2021

Impervious Percentages - from Urban Drainage Table 6-3

	<u> </u>
Historic flow analysis	2%
Paved	100%
Drive and walks	90%
Roofs	90%

16 p-2	
Lawns, clayey soil	2%
50' X 110' Lots	56%
60' X 110' Lots	57%
80' X 120' Lots	60%

SOIL TYPE: C or D (use equation from Table 6-4)

= FORMULA CELLS = USER INPUT CELLS

PROPOSED COMPOSITE IMPERVIOUSNESS

		Weighted Impervious and C Values						Areas (ac)						
Basin	Area (ac)	Imp.	C ₂	C ₅	C ₁₀	C ₁₀₀	Historic flow analysis	Paved	Drive and walks	Roofs	Lawns, clayey soil	50' X 110' Lots	60' X 110' Lots	80' X 120' Lots
50' X 110' LOT	0.13	56%	0.44	0.50	0.55	0.72			0.01	0.07	0.05			
60' X 110' LOT	0.15	57%	0.44	0.51	0.56	0.72			0.01	0.09	0.06			
80' X 120' LOT	0.22	60%	0.47	0.53	0.58	0.73			0.01	0.14	0.07			
Н	31.55	2%	0.01	0.05	0.15	0.49	31.55							
Р	28.02	54%	0.41	0.48	0.53	0.70	0.00	4.92	1.18	0.00	6.12	8.60	6.24	0.96
P1	4.64	63%	0.50	0.56	0.60	0.74		1.18	0.22		0.47	2.26	0.51	
P2	0.85	50%	0.38	0.44	0.50	0.69		0.30	0.03		0.36	0.15		
P3	1.12	65%	0.51	0.56	0.61	0.75		0.27	0.07		0.09	0.70		
P4	2.89	57%	0.44	0.50	0.55	0.72		0.23	0.09		0.20	2.37		
P5	0.87	66%	0.52	0.57	0.62	0.75		0.23	0.06		0.07		0.52	
P6	1.44	63%	0.49	0.55	0.60	0.74		0.54	0.04		0.28	0.59		
P7	1.48	50%	0.38	0.45	0.50	0.69		0.25	0.07		0.41	0.75		
P8	3.71	63%	0.50	0.55	0.60	0.74		0.73	0.18		0.22	1.79	0.79	

JOB NO.: 3490 CALC. BY: SPC

DATE: 6/26/2021

Impervious Percentages - from Urban Drainage Table 6-3

Historic flow analysis	2%
Paved	100%
Drive and walks	90%
Roofs	90%

10 0 0	
Lawns, clayey soil	2%
50' X 110' Lots	56%
60' X 110' Lots	57%
80' X 120' Lots	60%

SOIL TYPE: C or D (use equation from Table 6-4)

= FORMULA CELLS = USER INPUT CELLS

PROPOSED COMPOSITE IMPERVIOUSNESS

		Weigh	nted Imp	ervious	and C \	/alues				Areas	(ac)			
Basin	Area (ac)	Imp.	C ₂	C ₅	C ₁₀	C ₁₀₀	Historic flow analysis	Paved	Drive and walks	Roofs	Lawns, clayey soil	50' X 110' Lots	60' X 110' Lots	80' X 120' Lots
P9	2.47	60%	0.46	0.52	0.57	0.73		0.55	0.14		0.40		1.37	
P10	0.96	60%	0.47	0.53	0.58	0.73								0.96
P11	1.28	61%	0.47	0.53	0.58	0.73		0.28	0.07		0.18		0.75	
P12	1.06	63%	0.49	0.55	0.60	0.74		0.17	0.05		0.06		0.79	
P13	5.24	24%	0.17	0.23	0.31	0.58		0.17	0.16		3.39		1.52	
PO1-3	3.53	57%	0.44	0.50	0.55	0.72	0.00	0.59	0.13	0.00	0.65	0.00	0.46	1.70
PO1	0.48	39%	0.29	0.36	0.42	0.64		0.14	0.03		0.28			0.03
PO2	1.13	59%	0.46	0.52	0.57	0.72		0.05	0.02		0.07			0.99
PO3	1.91	60%	0.47	0.53	0.58	0.73		0.40	0.08		0.29		0.46	0.67
OS1	1.14	2%	0.01	0.05	0.15	0.49	1.14							
TOTAL SITE (BASIN P & OS)	31.55	54%	0.42	0.48	0.53	0.71	0.00	5.51	1.31	0.00	6.77	8.60	6.70	2.66

JOB NO.: 3490 CALC. BY: SPC

DATE: 6/26/2021

Impervious Percentages - from Urban Drainage Table 6-3

po. 11000 1 0.	comagee	
Historic flow analysis	2%	
Paved	100%	
Drive and walks	90%	
Roofs	90%	

IE 0-3	
Lawns, clayey soil	2%
50' X 110' Lots	56%
60' X 110' Lots	57%
80' X 120' Lots	60%

SOIL TYPE: C or D ▼

(use equation from Table 6-4)

= FORMULA CELLS = USER INPUT CELLS

PROPOSED COMPOSITE IMPERVIOUSNESS

		Weigh	nted Imp	ervious	and C \	/alues				Areas	(ac)			
Basin	Area (ac)	Imp.	C ₂	C ₅	C ₁₀	C ₁₀₀	Historic flow analysis	Paved	Drive and walks	Roofs	Lawns, clayey soil	50' X 110' Lots	60' X 110' Lots	80' X 120' Lots
ROW	0.89	80%	0.65	0.69	0.73	0.81	0.00	0.60	0.13	0.00	0.17	0.00	0.00	0.00
ROW1	0.07	74%	0.59	0.64	0.68	0.79		0.05	0.00		0.02			
ROW2	0.28	80%	0.65	0.69	0.73	0.81		0.19	0.04		0.05			
ROW3	0.54	81%	0.66	0.70	0.73	0.82		0.36	0.08		0.10			
DET POND (BASIN P & ROW2,3,4)	28.84	54%	0.42	0.48	0.54	0.71	0.00	5.47	1.30	0.00	6.27	8.60	6.24	0.96

STANDARD FORM SF-2

TIME OF CONCENTRATION SUMMARY

Calculated By: SPC
Date: 6/26/2021

Project: Vista West - Keenesburg

Job No.: 3490
Checked By: xxxxxxxxx

Ş	SUB-BAS				AL/OVERL TIME (t _i)	AND		TR	AVEL TIN	ИΕ			t _c CHE			FINAL t _c	REMARKS
Basin	i	C ₅	AREA			t _i	LENGTH		SLOPE	VEL.	t _t	COMP.	TOT. LENGTH		tc (Equation		
			Ac	Ft	%	Min	Ft	Cv	%	FPS	Min	t _c	Ft	%	Min	Min	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	
Н	0.02	0.05	31.55	300	3.70	21.29	1,238	5	1.7	0.65	31.65	52.9	1,538	2.09	44.8	44.76	
P1	0.63	0.56	4.64	18	2.0	3.32	1,043	20	1.5	2.5	7.0	10.3	1,061	1.54	23.2	10.3	
P2	0.50	0.44	0.85	18	2.0	4.00	381	20	0.9	1.9	3.3	7.3	399	0.95	21.8	7.3	
P3	0.65	0.56	1.12	67	5.0	4.66	349	20	0.8	1.8	3.2	7.8	416	1.51	18.2	7.8	
P4	0.57	0.50	2.89	177	5.0	8.46	255	20	1.4	2.3	1.8	10.3	432	2.84	18.9	10.3	
P5	0.66	0.57	0.87	67	5.0	4.56	283	20	1.5	2.5	1.9	6.5	350	2.20	17.0	6.5	
P6	0.63	0.55	1.44	18	2.0	3.35	508	20	3.5	3.7	2.3	5.6	526	3.40	18.0	5.6	
P7	0.50	0.45	1.48	122	5.0	7.66	492	20	1.8	2.7	3.1	10.7	614	2.43	21.6	10.7	
P8	0.63	0.55	3.71	67	5.0	4.74	935	20	1.8	2.7	5.8	10.5	1,002	2.04	21.8	10.5	
P9	0.60	0.52	2.47	18	2.0	3.51	574	20	1.6	2.5	3.8	7.4	592	1.56	20.4	7.4	
P10	0.60	0.53	0.96	120	5.0	6.66							120	5.00	16.3	6.7	
P11	0.61	0.53	1.28	122	5.0	6.65	278	20	0.7	1.6	2.9	9.5	400	1.98	18.4	9.5	
P12	0.63	0.55	1.06	120	5.0	6.42	281	2	0.7	0.2	28.8	35.2	401	1.96	18.0	18.0	

Calculated By: SPC
Date: 6/26/2021

Job No.: <u>3490</u> Checked By: xxxxxxxxxx

,	SUB-BA				AL/OVERL TIME (t _i)	AND		TR	AVEL TIN	ME			t₀ CHE (URBANIZED			FINAL t _c	REMARKS
Basin	i	C ₅	AREA	LENGTH	SLOPE	t _i	LENGTH		SLOPE	VEL.	t _t	COMP.	TOT. LENGTH	S _o	tc (Equatio	n 6-5)	
			Ac	Ft	%	Min	Ft	Cv	%	FPS	Min	t _c	Ft	%	Min	Min	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	
P13	0.24	0.23	5.24	300	2.3	20.74	443	15	1.9	2.1	3.6	24.3	743	2.05	29.0	24.3	
P01	0.39	0.36	0.48	18	2.0	4.54	177	20	2.8	3.3	0.9	5.4	195	2.68	20.7	5.4	
PO2	0.59	0.52	1.13	120	2.0	9.18		20					120	2.00	16.8	9.2	
PO3	0.60	0.53	1.91	24	2.0	4.03	507	20	2.0	2.8	3.0	7.0	531	1.99	19.4	7.0	
OS1	0.02	0.05	1.14	243	4.7	17.71	206	15	2.0	2.1	1.6	19.3	449	3.46	30.0	19.3	
ROW1	0.74	0.64	0.07	18	2.0	2.79	96	20	0.8	1.8	0.9	3.7	114	1.02	14.4	5.0	
ROW2	0.80	0.69	0.28	18	2.0	2.47	381	20	0.7	1.7	3.8	6.2	399	0.77	16.1	6.2	
ROW3	0.81	0.70	0.54	35	1.6	3.68	749	20	2.0	2.8	4.5	8.1	784	1.94	16.8	8.1	

Equation 6-3 t_i =((0.395(1.1-C₅)SQRT(L))/(S_o^0.33)) t_c =(26-17i)+(L_t /(60(14i+9)SQRT(S_o))) Equation 6-5

NRCS Conveyance Factor K	Table - Cv Value
Heavy Meadow	2.5
Tillage/Field	5
Short Pasture and Lawns	7
Nearly Bare Ground	10
Grassed Waterway	15
Paved Areas and Shallow Paved Swales	20

= FORMULA CELLS = USER INPUT CELLS Calculated By: SPC
Date: 6/26/2021
Checked By: xxxxxxxxx
5-Year
1-hour rainfall=

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project: Vista West - Keenesburg

Job No.: 3490
Design Storm: 5-Year

= FORMULA CELLS = USER INPUT CELLS

			DI	IRECT	RUNO	FF			Т	OTAL I	RUNOF	F	STR	EET		PIPE					
BASIN	DESIGN	AREA DESIGN	AREA (AC)	RUNOFF	t _د (MIN)	C * A (AC)	I (IN/HR)	Q (CFS)	t _د (MIN)	S (C * A) (CA)	I (IN/HR)	Q (CFS)	SLOPE (%)	STREET FLOW	DESIGN FLOW (CFS)	SLOPE (%)	PIPE DIAM. (IN.)	LENGTH (FT)	VELOCITY (FPS)	t _t (MIN)	REMARKS
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Н	0	0	31.55	0.05	44.8	1.62	1.40	2.3													
P1	1	1	4.64	0.56	10.3	2.58	3.04	7.8													
P2	2	1	0.85	0.44	7.3	0.38	3.45	1.3													
P3	3	1	1.12	0.56	7.8	0.63	3.38	2.1													
P4	4	1	2.89	0.50	10.3	1.45	3.05	4.4													
P5	5	1	0.87	0.57	6.5	0.50	3.59	1.8													
P6	6	1	1.44	0.55	5.6	0.79	3.74	3.0													
P7	7	1	1.48	0.45	10.7	0.66	3.00	2.0													
P8	8	1	3.71	0.55	10.5	2.06	3.02	6.2													
P9	9	1	2.47	0.52	7.4	1.29	3.45	4.5													
P10	10	1	0.96	0.53	6.7	0.51	3.56	1.8													
P11	11	1	1.28	0.53	9.5	0.68	3.15	2.1													
P12	12	1	1.06	0.55	18.0	0.58	2.36	1.4													
P13	13	1	5.24	0.23	24.3	1.21	2.02	2.4													
PO1	14	0	0.48	0.36	5.4	0.17	3.78	0.7													
PO2	15	0	1.13	0.52	9.2	0.58	3.19	1.9													
PO3	16	0	1.91	0.53	7.0	1.01	3.50	3.5													
OS1	17	1	1.14	0.05	19.3	0.06	2.28	0.1													
ROW1	18	0	0.07	0.64	5.0	0.04	3.87	0.2													
ROW2	19	1	0.28	0.69	6.2	0.20	3.63	0.7													
ROW3	20	0	0.54	0.70	8.1	0.38	3.33	1.3													

Calculated By: SPC
Date: 6/26/2021
Checked By: xxxxxxxxx
100-Year
1-hour rainfall=
2.65

STANDARD FORM SF-3

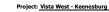
STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

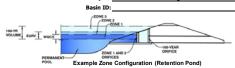
Project: Vista West - Keenesburg

Job No.: 3490
Design Storm: 100-Year

= FORMULA CELLS = USER INPUT CELLS

			D	IRECT	RUNO	FF			Т	OTAL I	RUNOF	F	STR	EET		PIPE					002.4
BASIN	DESIGN	AREA DESIGN	AREA (AC)	RUNOFF	t _c (MIN)	C * A (AC)	I (IN/HR)	Q (CFS)	t _c (MIN)	S (C * A) (CA)	I (IN/HR)	Q (CFS)	SLOPE (%)	STREET FLOW	DESIGN FLOW (CFS)	SLOPE (%)	PIPE DIAM. (IN.)	LENGTH (FT)	VELOCITY (FPS)	t _t (MIN)	REMARKS
	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
Н	0	0	31.55	0.49	44.8	15.53	3.25	50.4													
P1	1	1	4.64	0.74	10.3	3.45	7.07	24.4													
P2	2	1	0.85	0.69	7.3	0.58	8.02	4.7													
P3	3	1	1.12	0.75	7.8	0.84	7.85	6.6													
P4	4	1	2.89	0.72	10.3	2.07	7.09	14.7													
P5	5	1	0.87	0.75	6.5	0.66	8.36	5.5													
P6	6	1	1.44	0.74	5.6	1.07	8.70	9.3													
P7	7	1	1.48	0.69	10.7	1.02	6.97	7.1													
P8	8	1	3.71	0.74	10.5	2.76	7.03	19.4													
P9	9	1	2.47	0.73	7.4	1.80	8.02	14.4													
P10	10	1	0.96	0.73	6.7	0.70	8.28	5.8													
P11	11	1	1.28	0.73	9.5	0.94	7.31	6.9													
P12	12	1	1.06	0.74	18.0	0.78	5.50	4.3													
P13	13	1	5.24	0.58	24.3	3.05	4.69	14.3													
PO1	14	0	0.48	0.64	5.4	0.31	8.79	2.7													
PO2	15	0	1.13	0.72	9.2	0.82	7.41	6.1													
PO3	16	0	1.91	0.73	7.0	1.40	8.14	11.4													
OS1	17	1	1.14	0.49	19.3	0.56	5.31	3.0													
																					_
ROW1	18	0	0.07	0.79	5.0	0.05	8.99	0.5													
ROW2	19	1	0.28	0.81	6.2	0.23	8.45	2.0													
ROW3	20	0	0.54	0.82	8.1	0.44	7.74	3.4													


JOB NO.: 3490 CALC. BY: SPC DATE: 6/26/2021



				F	UNOFF	SUMN	IARY			
BASIN LABEL	DESIGN POINT	AREA	lmp.	C5	C100	LO(CAL FS)		JLATIVE FS)	Notes
LADEL	FOINT					Q5	Q100	Q5	Q100	
Н	0	31.55	2%	0.05	0.49	2.27	50.43			
P1	1	4.64	63%	0.56	0.74	7.85	24.44			
P2	2	0.85	50%	0.44	0.69	1.30	4.68			
P3	3	1.12	65%	0.56	0.75	2.14	6.61			
P4	4	2.89	57%	0.50	0.72	4.42	14.70			
P5	5	0.87	66%	0.57	0.75	1.81	5.51			
P6	6	1.44	63%	0.55	0.74	2.97	9.31			
P7	7	1.48	50%	0.45	0.69	1.99	7.12			
P8	8	3.71	63%	0.55	0.74	6.22	19.40			
P9	9	2.47	60%	0.52	0.73	4.46	14.40			
P10	10	0.96	60%	0.53	0.73	1.80	5.79			
P11	11	1.28	61%	0.53	0.73	2.15	6.87			
P12	12	1.06	63%	0.55	0.74	1.37	4.31			
P13	13	5.24	24%	0.23	0.58	2.44	14.30			
PO1	14	0.48	39%	0.36	0.64	0.65	2.75			
PO2	15	1.13	59%	0.52	0.72	1.86	6.06			
PO3	16	1.91	60%	0.53	0.73	3.53	11.36			
OS1	17	1.14	2%	0.05	0.49	0.13	2.99			
ROW1	18	0.07	74%	0.64	0.79	0.17	0.49			
ROW2	19	0.28	80%	0.69	0.81	0.72	1.95			
ROW3	20	0.54	81%	0.70	0.82	1.25	3.40			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	31.55	acres
Watershed Length =	1,970	ft
Watershed Length to Centroid =	589	ft
Watershed Slope =	0.014	ft/ft
Watershed Imperviousness =	54.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	34.0%	percent
Percentage Hydrologic Soil Groups C/D =	66.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1 br Painfall Donths -	Hear Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

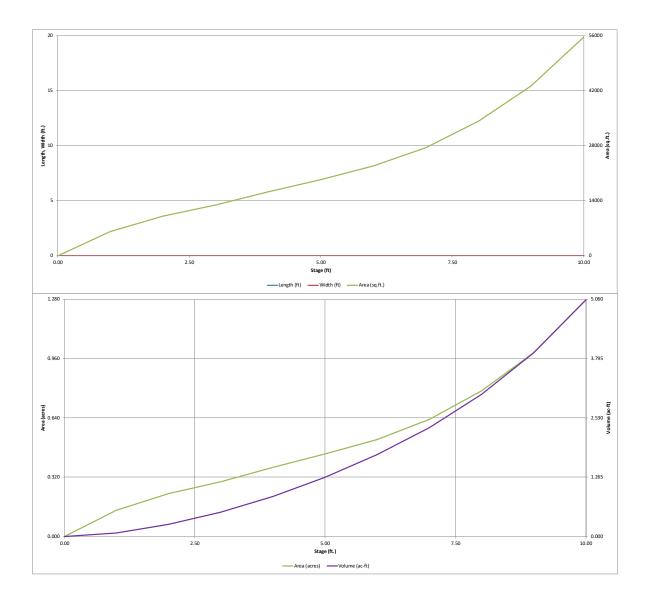
the embedded Colorado Urban Hydrograph Procedure.					
Water Quality Capture Volume (WQCV) =	0.572	acre-feet			
Excess Urban Runoff Volume (EURV) =	1.693	acre-feet			
2-yr Runoff Volume (P1 = 0.86 in.) =	1.108	acre-feet			
5-yr Runoff Volume (P1 = 1.14 in.) =	1.649	acre-feet			
10-yr Runoff Volume (P1 = 1.41 in.) =	2.276	acre-feet			
25-yr Runoff Volume (P1 = 1.84 in.) =	3.530	acre-feet			
50-yr Runoff Volume (P1 = 2.23 in.) =	4.576	acre-feet			
100-yr Runoff Volume (P1 = 2.65 in.) =	5.820	acre-feet			
500-yr Runoff Volume (P1 = 3.13 in.) =	7.153	acre-feet			
Approximate 2-yr Detention Volume =	1.024	acre-feet			
Approximate 5-yr Detention Volume =	1.548	acre-feet			
Approximate 10-yr Detention Volume =	1.959	acre-feet			
Approximate 25-yr Detention Volume =	2.418	acre-feet			
Approximate 50-yr Detention Volume =	2.703	acre-feet			
Approximate 100-yr Detention Volume =	3.206	acre-feet			

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.572	acre-fe
Zone 2 Volume (EURV - Zone 1) =	1.122	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	1.512	acre-fe
Total Detention Basin Volume =	3.206	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
		-

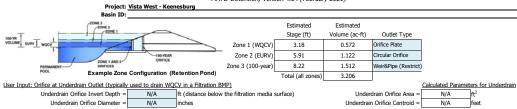
Initial Surcharge Area (A _{ISV}) =	user	ft²
Surcharge Volume Length $(L_{ISV}) =$	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft²
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$		ft²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume $(V_{total}) =$	user	acre-feet

Depth Increment =	4,940.00	ft
		С


acre-feet acre-feet

0.86 inches 1.14 inches 1.41 inches

1.84 inches 2.23 inches 2.65 inches 3.13 inches


Separation Separation Complete Compl	Depth Increment =	4,940.00	π Optional				Optional			
Decorption (1) Super (2) (2)	Stage - Storage	Stage	Override	Length	Width		Override	Area	Volume	Volume
4941		(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft 2)	(acre)	(ft 3)	(ac-ft)
494-100 - 200 19020 020 11,177 0256 1518 494-00 - 300 1916 1525 0273 37,188 0825 2525 1518 494-00 400 1916 1525 0273 37,188 0825 2525 1518 494-00 500 1916 1525 0273 37,188 0825 2525 1518 494-00 500 1916 1525 0273 37,188 0825 2526 1526 1526 1526 1526 1526 1526 15	Top of Micropool		0.00				0	0.000		
494-100 - 200 19020 020 11,177 0256 1518 494-00 - 300 1916 1525 0273 37,188 0825 2525 1518 494-00 400 1916 1525 0273 37,188 0825 2525 1518 494-00 500 1916 1525 0273 37,188 0825 2525 1518 494-00 500 1916 1525 0273 37,188 0825 2526 1526 1526 1526 1526 1526 1526 15	4941		1.00	-		_	6.116	0.140	3.058	0.070
494.00										
4,945.00		-		1		-				
4,945.00	4,943.00		3.00	-			12,844	0.295	22,561	0.518
4.945.00	4.944.00		4.00	-			16.251	0.373	37,108	0.852
4,94:00 - 0 - 0 - 0 - 0 - 0 - 2,78										
4,94.90										
4.94.9.00 8.00 34.233 0.766 131.978 3.00 4.94.90.00 10.00 55.635 12.77 120.001 5.053 4.94.90.00 10.00 55.635 12.77 120.001 5.053 55.635 12.77 120.001 5.053										
4,990.00 - 900 41179 9981 176,664 3.918 4,990.00 - 10.00 55,555 1277 220,001 5.553	4,947.00	-	7.00	-			27,485	0.631	101,119	2.321
4,99,00	4,948.00		8.00	-			34,233	0.786	131,978	3.030
4,99,00				-						
	4,950.00		10.00				55,035	1.2//	220,091	5.053
				-						
				-						
				-						
		-		-						
		-		-		-				
		-		-		-				
										
								<u></u>	<u></u>	<u></u>
						-				
		-		-	-	-				
		-		-						
				-		-				
						L [_]				
				-						
		-		-						
		-		1		_				
				-		-				
				-		-				
				-		_				
				-						
				-						
				-						
								-	-	-
		-		-		-				
		-		-		-				
						-				
		-								
				-		-				
		-		1		-				
				-		-				
						-		-	-	-
		-		-		-				
				-		-				
				1		-				
		-		-		-				
						-				
		-		-		-				
					-	-				
					-	-				
						-				
		-		1		-				
						-				
				-		-				
		-		-	-	-				
				-		-				
		-		-		-				
				-		-				

349 - MHFD-Detention_v4 04, Basin 6/25/2021, 10:57 AM

349 - MHFD-Detention_v4 04, Basin 6/25/2021, 10:57 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.04 (February 2021)

User Input: Orifice Plate with one or more orifice	es or Elliptical Slot \	Neir (typically used to drain WQCV and/or EURV in a sedin	mentation BMP)	Calculated Parame	ters for Plate
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area per Row =	1.729E-02	ft ²
Depth at top of Zone using Orifice Plate =	3.18	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	12.10	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	2.49	sq. inches (diameter = 1-3/4 inches)	Elliptical Slot Area =	N/A	ft ²

	Office Flate. Office Area per Now -	2.13	sq. inches (didines	a = 1 3/4 marcs)	_	ilipucui Siot Aicu –	
User	nput: Stage and Total Area of Each Orifice	Row (numbered t	from lowest to highe	st)			
							-

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.06	2.12					
Orifice Area (sq. inches)	2.49	2.49	2.49					
	Row 9 (ontional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (ontional)	Row 14 (ontional)	Row 15 (optional)	Row 16 (ontional)

Underdrain Orifice Area = Underdrain Orifice Centroid =

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								
								·

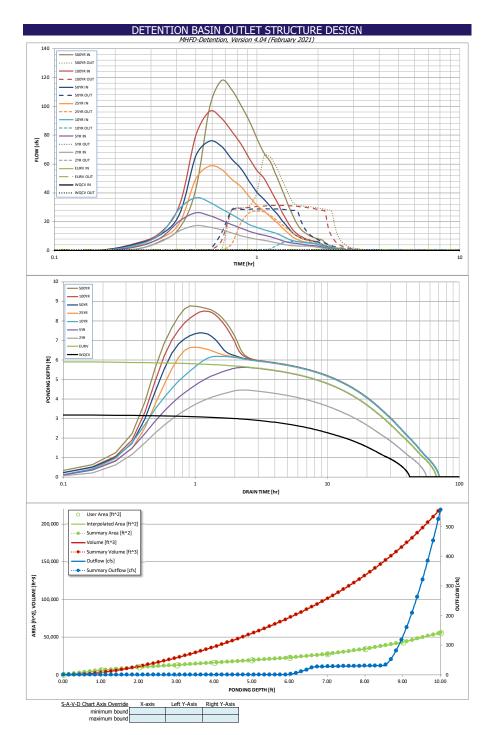
User Input: Vertical Orifice (Circular or Rectangu	ılar)				Calculated Parameters for Vertical Orifice		
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	3.18	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.02	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	5.92	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.07	N/A	feet
Vertical Orifice Diameter =	1.75	N/A	inches				=

User Input: Overflow Weir (Dropbox with Flat or	Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.92	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, Ht =	5.92	N/A	feet
Overflow Weir Front Edge Length =	10.66	N/A	feet Overflow Weir Slope Length =	2.92	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	9.31	N/A	
Horiz. Length of Weir Sides =	2.92	N/A	feet Overflow Grate Open Area w/o Debris =	21.66	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	10.83	N/A	ft ²
Debris Clogging % -	50%	N/A	106			•

User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	strictor Plate, or Re	ectangular Orifice)	Calculated Parameters	Calculated Parameters for Outlet Pipe w/ Flow Restriction		
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.07	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	2.33	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	0.78	N/A	feet
Restrictor Plate Height Above Pipe Invert =	16.66		inches Half-Central Angle	of Restrictor Plate on Pipe =	1.97	N/A	radians

User Input: Emergency Spillway (Rectangular or *	Frapezoidal)			Calculated Paramet	ers for Spillway
Spillway Invert Stage=	8.50	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.49	feet
Spillway Crest Length =	90.00	feet	Stage at Top of Freeboard =	9.99	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.27	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	5.04	acre-ft

Routed Hydrograph Results	Tt	14- 4- 4-6- 4-011	10 1			- I- H - T- G II-d			-
					entering new value				
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =		N/A	0.86	1.14	1.41	1.84	2.23	2.65	3.13
CUHP Runoff Volume (acre-ft) =		1.693	1.108	1.649	2.276	3.530	4.576	5.820	7.153
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.108	1.649	2.276	3.530	4.576	5.820	7.153
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.3	3.0	8.5	23.5	33.6	46.5	59.5
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.09	0.27	0.74	1.06	1.47	1.88
Peak Inflow Q (cfs) =	N/A	N/A	17.3	26.2	36.5	58.6	75.9	96.5	117.8
Peak Outflow Q (cfs) =	0.4	0.7	0.5	0.7	6.2	27.3	28.9	31.27	65.5
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.2	0.7	1.2	0.9	0.7	1.1
Structure Controlling Flow =	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.3	1.2	1.3	1.4	1.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	38	57	49	57	57	53	50	47	45
Time to Drain 99% of Inflow Volume (hours) =	40	63	53	63	65	62	61	59	57
Maximum Ponding Depth (ft) =	3.18	5.91	4.44	5.61	6.17	6.65	7.37	8.49	8.75
Area at Maximum Ponding Depth (acres) =	0.31	0.52	0.40	0.49	0.54	0.59	0.69	0.89	0.94
Maximum Volume Stored (acre-ft) =	0.572	1.697	1.023	1.541	1.835	2.101	2.565	3.440	3.668


3.440 3.668

OFFSITE PLOWS = 20.17

OFFSITE FLOWS TO POND= 4.94

RELEASE RATE = 46.5+4.94-20.17

3490 - MHFD-Detention_v4 04, Outlet Structure 6/25/2021, 10:57 AM

3490 - MHFD-Detention_v4 04, Outlet Structure 6/25/2021, 10:57 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

<u>Inflow Hydrographs</u>
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calc	ulated inflow hy	drographs from	this workbook	with inflow hyd	rographs develo	ped in a separat	e program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.27	0.23	0.96
	0:15:00	0.00	0.00	0.87	2.40	3.61	3.03	4.47	4.84	6.34
	0:20:00	0.00	0.00	5.88	8.71	11.23	8.31	10.76	12.39	15.90
	0:25:00	0.00	0.00	13.73	20.64	29.23	19.40	25.76	32.20	42.70
	0:30:00	0.00	0.00	17.33	26.16	36.54	49.77	65.61	79.96	99.01
	0:35:00	0.00	0.00	16.17	24.27	33.50	58.58	75.90	96.50	117.80
	0:40:00 0:45:00	0.00	0.00	14.34 12.19	20.99 18.03	28.91 25.06	56.29 49.51	72.31 63.53	91.75 82.86	111.62 100.77
	0:50:00	0.00	0.00	10.30	15.60	21.26	44.35	56.90	73.90	89.80
	0:55:00	0.00	0.00	8.80	13.24	18.00	37.34	47.99	63.88	77.63
	1:00:00	0.00	0.00	7.82	11.65	15.96	31.26	40.33	55.48	67.59
	1:05:00	0.00	0.00	7.12	10.53	14.52	27.40	35.50	50.22	61.23
	1:10:00	0.00	0.00	6.17	9.53	13.18	23.25	30.31	41.84	51.16
	1:15:00	0.00	0.00	5.27	8.23	11.85	19.57	25.67	34.20	42.01
	1:20:00	0.00	0.00	4.45	6.88	10.06	15.77	20.64	26.48	32.50
	1:25:00	0.00	0.00	3.78	5.79	8.10	12.47	16.26	19.82	24.31
	1:30:00	0.00	0.00	3.37	5.15	6.87	9.40	12.24	14.51	17.89
	1:40:00	0.00	0.00	3.17	4.82	6.16	7.58	9.88	11.34	14.05
	1:45:00	0.00	0.00	3.07	4.32 3.92	5.68 5.33	6.46 5.74	8.39 7.41	9.43 8.08	11.70 10.04
	1:50:00	0.00	0.00	2.96	3.63	5.09	5.23	6.73	7.15	8.90
	1:55:00	0.00	0.00	2.61	3.42	4.81	4.91	6.28	6.50	8.09
	2:00:00	0.00	0.00	2.30	3.17	4.36	4.68	5.96	6.03	7.51
	2:05:00	0.00	0.00	1.75	2.41	3.30	3.55	4.51	4.49	5.59
	2:10:00	0.00	0.00	1.30	1.77	2.40	2.58	3.26	3.26	4.05
	2:15:00	0.00	0.00	0.96	1.30	1.74	1.88	2.37	2.38	2.95
	2:20:00	0.00	0.00	0.70	0.94	1.26	1.37	1.72	1.75	2.17
	2:25:00	0.00	0.00	0.50	0.66	0.90	0.97	1.22	1.25	1.55
	2:30:00	0.00	0.00	0.35	0.46	0.64	0.68	0.86	0.88	1.09
	2:35:00 2:40:00	0.00	0.00	0.24	0.32	0.45	0.49	0.61	0.62	0.77
	2:45:00	0.00	0.00	0.15	0.21	0.29	0.33	0.41	0.41	0.51
	2:50:00	0.00	0.00	0.09	0.13	0.17	0.19	0.24	0.25 0.12	0.30
	2:55:00	0.00	0.00	0.01	0.02	0.03	0.03	0.04	0.04	0.05
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0.00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

6/25/2021, 10:57 AM 3490 - MHFD-Detention_v4 04, Outlet Structure

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

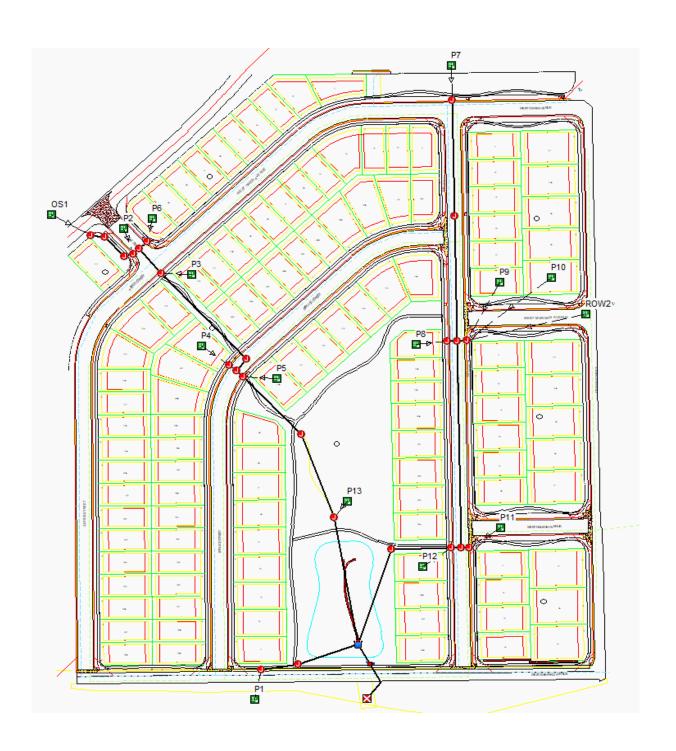
Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]
POTTOM	0.00	0	0.000	0	0.000	0.00
BOTTOM		856	0.020	60	0.001	0.03
	0.14		0.020	240	0.001	
	0.28	1,712				0.04
	0.42	2,569	0.059	539	0.012	0.05
	0.56	3,425	0.079	959	0.022	0.06
	0.70	4,281	0.098	1,498	0.034	0.07
	0.84	5,137	0.118	2,157	0.050	0.08
	0.98	5,994	0.138	2,937	0.067	0.08
	1.12	6,585	0.151	3,820	0.088	0.11
	1.26	7,132	0.164	4,780	0.110	0.13
	1.40	7,679	0.176	5,817	0.134	0.15
	1.54	8,226	0.189	6,930	0.159	0.16
	1.68	8,773	0.201	8,120	0.186	0.17
	1.82	9,320	0.214	9,386	0.215	0.18
	1.96	9,867	0.227	10,730	0.246	0.20
	2.10	10,305	0.237	12,144	0.279	0.21
	2.24	10,700	0.246	13,614	0.313	0.24
	2.38	11,095	0.255	15,140	0.348	0.27
	2.52	11,490	0.264	16,721	0.384	0.29
	2.66	11,885	0.273	18,357	0.421	0.30
	2.80	12,280	0.282	20,049	0.460	0.32
	2.94	12,674	0.291	21,795	0.500	0.32
	3.08	13,116	0.301	23,599	0.542	0.35
		13,593	0.301	25,469	0.585	0.36
	3.22		0.312	27,405	0.629	0.40
	3.36	14,070				
	3.50	14,547	0.334	29,409	0.675	0.42
	3.64	15,024	0.345	31,479	0.723	0.45
	3.78	15,501	0.356	33,615	0.772	0.46
	3.92	15,978	0.367	35,819	0.822	0.48
	4.06	16,437	0.377	38,089	0.874	0.50
	4.20	16,870	0.387	40,420	0.928	0.52
	4.34	17,303	0.397	42,812	0.983	0.53
	4.48	17,736	0.407	45,265	1.039	0.55
	4.62	18,169	0.417	47,778	1.097	0.56
	4.76	18,602	0.427	50,352	1.156	0.58
	4.90	19,036	0.437	52,987	1.216	0.59
	5.04	19,483	0.447	55,683	1.278	0.60
	5.18	19,967	0.458	58,444	1.342	0.62
	5.32	20,450	0.469	61,273	1.407	0.63
	5.46	20,933	0.481	64,170	1.473	0.64
	5.60	21,417	0.492	67,135	1.541	0.65
	5.74	21,900	0.503	70,167	1.611	0.66
	5.88	22,384	0.514	73,267	1.682	0.68
	6.02	22,892	0.526	76,435	1.755	2.07
	6.16	23,548	0.541	79,685	1.829	5.84
		24,204	0.556	83,028	1.906	10.96
	6.30	24,860	0.571	86,462	1.985	17.13
	6.44	25,516	0.586	89,989	2,066	24.19
	6.58	26,173	0.601	93,607	2.149	27.48
	6.72	26,829			2.149	27.46
	6.86	26,829	0.616	97,317		27.80
	7.00 7.14	28,430	0.631	101,119 105,033	2.321	28.43
	7.28	29,374	0.674	109,079	2.504	28.73
	7.42	30,319	0.696	113,258	2.600	29.04
	7.56	31,264	0.718	117,569	2.699	29.34
	7.70	32,209	0.739	122,012	2.801	29.64
	7.84	33,153	0.761	126,587	2.906	29.93
	7.98	34,098	0.783 0.811	131,295	3.014 3.126	30.23
	8.12	35,307 36,559	0.839	136,150	3.241	30.51 30.80
	8.26 8.40	37,811	0.868	141,181 146,387	3.361	31.09
	8.54	39,064	0.897	151,768	3.484	33.53
	8.68	40,316	0.926	157,325	3.612	52.40
	8.82	41,569	0.954	163,057	3.743	81.35
	8.96	42,821	0.983	168,964	3.879	117.81
	9.10	44,425	1.020	175,064	4.019	160.63
	9.24 9.38	46,168 47,912	1.060 1.100	181,406 187,991	4.165 4.316	209.14 262.87
	9.38	47,912	1.100	194,821	4.472	321.50
	9.66	51,400	1.180	201,895	4.635	384.77
	9.80	53,144	1.220	209,213	4.803	452.50
	0.04	54 888	1 260	216 775	4 976	524 50

For best results, include the stages of all grade slope thanges (e.g. ISV and Floor) rom the S-A-V table on sheet 'Basin'.

Also include the inverts of all butlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

3490 - MHFD-Detention_v4 04, Outlet Structure 6/25/2021, 10:57 AM

VISTA WEST SUBDIVISION STORM SEWER CALCS


Project Options

Flow Units	CFS
Elevation Type	Elevation
Hydrology Method	Rational
Time of Concentration (TOC) Method	User-Defined
Link Routing Method	Hydrodynamic
Enable Overflow Ponding at Nodes	YES
Skip Steady State Analysis Time Periods	YES

Analysis Options

Start Analysis On	. Jun 24, 2021	00:00:00
End Analysis On	. Jul 01, 2021	00:00:00
Start Reporting On	. Jun 24, 2021	00:00:00
Antecedent Dry Days		days
Runoff (Dry Weather) Time Step	. 0 01:00:00	days hh:mm:ss
Runoff (Wet Weather) Time Step		days hh:mm:ss
Reporting Time Step		days hh:mm:ss
Routing Time Step		seconds

Rainfall Details

Subbasin Summary

SN Subbasin ID	Area	Weighted Runoff	Total Rainfall	Total Runoff	Total Runoff	Peak Runoff	Time of Concentration
		Coefficient			Volume		
	(ac)		(in)	(in)	(ac-in)	(cfs)	(days hh:mm:ss)
1 OS1	1.14	0.4900	1.71	0.84	0.96	2.97	0 00:19:18
2 P1	4.64	0.7400	1.22	0.90	4.19	24.33	0 00:10:18
3 P10	0.96	0.7300	0.92	0.67	0.64	5.79	0 00:06:42
4 P11	1.28	0.7300	1.16	0.85	1.08	6.83	0 00:09:30
5 P12	1.06	0.7400	1.65	1.22	1.30	4.32	0 00:18:00
6 P13	5.24	0.5800	1.90	1.10	5.78	14.26	0 00:24:18
7 P2	0.85	0.6900	0.98	0.68	0.58	4.71	0 00:07:18
8 P3	1.12	0.7500	1.03	0.77	0.86	6.60	0 00:07:48
9 P4	2.89	0.7200	1.22	0.88	2.54	14.74	0 00:10:18
10 P5	0.87	0.7500	0.90	0.68	0.59	5.44	0 00:06:30
11 P6	1.44	0.7400	0.82	0.61	0.88	9.29	0 00:05:36
12 P7	1.48	0.6900	1.24	0.86	1.27	7.13	0 00:10:42
13 P8	3.71	0.7400	1.23	0.91	3.38	19.30	0 00:10:30
14 P9	2.47	0.7300	0.98	0.71	1.76	14.42	0 00:07:24
15 ROW2	0.28	0.8100	0.87	0.70	0.20	1.92	0 00:06:12

Link Summary

SN Element	Element		To (Outlet)	Length	Inlet							Peak Flow/				Total Time Reported
ID	Туре	(Inlet)	Node		Invert	Invert	Slope	Height	Roughness	Flow	Capacity	Design Flow	Velocity	Depth		Surcharged Condition
		Node			Elevation	Elevation						Ratio			Total Depth	
				(6)	(6)	(61)	(0/)	<i>(</i> : \		(5)	(5)		(6)	(61)	Ratio	
4111.00	<u>.</u>	0714141004	OUT ET OTRUGTURE	(ft)	(ft)	(ft)	(%)	(in)	0.0100	(cfs)	(cfs)		(ft/sec)	(ft)		(min)
1 Link-02	Pipe	STM MH C01	OUTLET STRUCTURE	81.89		4941.35	1.5000	24.000	0.0130		27.73	0.88	7.94	2.00	1.00	837.00 SURCHARGED
, . ,	Pipe	STM MH A03	STM INLET A02	20.17		4941.98		36.000	0.0130		47.16	0.90	6.00	3.00	1.00	542.00 SURCHARGED
3 Pipe - (21)	Pipe	STM INLET A02	STM MH A01	124.83		4941.36		36.000	0.0130		47.16	0.95	6.32	3.00	1.00	599.00 SURCHARGED
4 Pipe - (22)	Pipe	STM MH A01	OUTLET STRUCTURE	76.59		4940.97	0.5100	36.000	0.0130		47.60	0.94	6.84	3.00	1.00	968.00 SURCHARGED
5 Pipe - (23)	Pipe	STM INLET B07	STM MH B06	259.93	4958.01	4948.98	3.4700	24.000	0.0130		42.16	0.44	7.69	1.52	0.76	0.00 Calculated
6 Pipe - (24)	Pipe	STM MH B06	STM MH B04	33.32		4948.61	0.5000	24.000	0.0130		16.00	1.16	5.92	2.00	1.00	8.00 SURCHARGED
7 Pipe - (25)	Pipe	STM MH B04	STM INLET B03	20.17		4948.31	0.5000	24.000	0.0130		16.00	1.88	9.55	2.00	1.00	5.00 SURCHARGED
8 Pipe - (26)	Pipe	STM INLET B03	STM FES B02	174.66	4948.11	4947.24	0.5000	30.000	0.0130	34.02	29.00	1.17	8.50	1.90	0.76	0.00 > CAPACITY
9 Pipe - (27)	Pipe	STM FES B01	OUTLET STRUCTURE	94.79	4943.04	4940.89	2.2700	30.000	0.0130	37.02	61.77	0.60	10.50	2.50	1.00	256.00 SURCHARGED
10 Pipe - (28)	Pipe	STM INLET C02	STM MH C01	49.27	4943.77	4942.58	2.4200	24.000	0.0130	24.32	35.16	0.69	7.74	2.00	1.00	114.00 SURCHARGED
11 Pipe - (30)	Pipe	STM INLET B05	STM MH B04	20.17	4951.78	4951.38	2.0000	18.000	0.0130	14.74	14.86	0.99	8.76	1.49	0.99	0.00 Calculated
12 Pipe - (32) (1)	Pipe	STM MH A05	STM MH A03	461.18	4945.17	4942.08	0.6700	36.000	0.0130	35.73	54.58	0.65	5.65	2.91	0.97	0.00 Calculated
13 Pipe - (35)	Pipe	STM MH A05	Out-1Pipe - (35)	20.16	4945.17	4945.57	-2.0000	18.000	0.0130	19.12	14.86	1.29	10.82	1.50	1.00	9.00 SURCHARGED
14 Pipe - (36)	Pipe	STM MH A05	Out-1Pipe - (36)	20.26	4945.17	4945.57	-2.0000	18.000	0.0130	21.18	14.86	1.43	11.98	1.50	1.00	8.00 SURCHARGED
15 Pipe - (39)	Pipe	STM INLET A04	STM MH A03	20.17	4943.35	4942.95	1.9800	18.000	0.0130	6.84	14.79	0.46	4.95	1.50	1.00	680.00 SURCHARGED
16 Pipe - (40)	Pipe	STM INLET B09	STM MH B08	22.61	4959.88	4959.43	2.0000	18.000	0.0130	9.28	14.86	0.62	6.61	1.50	1.00	2.00 SURCHARGED
17 Pipe - (41)	Pipe	STM MH B08	STM INLET B07	68.83	4958.35	4958.01	0.5000	18.000	0.0130	13.83	7.43	1.86	9.05	1.27	0.85	0.00 > CAPACITY
18 Pipe - (42)	Pipe	STM INLET B10	STM MH B08	17.72	4958.44	4958.35	0.5000	18.000	0.0130	5.85	7.43	0.79	3.38	1.50	1.00	5.00 SURCHARGED
19 Pipe - (43)	Pipe	STM MH A05	STM MH A08	274.98	4945.89	4950.03	-1.5100	18.000	0.0130	6.92	12.89	0.54	6.55	1.14	0.76	0.00 Calculated
20 Pipe - (43) (1)	Pipe	STM MH A08	STM MH A09	255.18	4950.03	4953.66	-1.4200	18.000	0.0130	7.06	12.54	0.56	7.07	0.83	0.55	0.00 Calculated
21 Pipe - (50)	Pipe	STM MH B11	STM INLET B10	18.71	4958.78	4958.69	0.5000	15.000	0.0130	2.93	4.57	0.64	3.56	1.25	1.00	5.00 SURCHARGED
22 Pipe - (53)	Pipe	STM MH B12	STM MH B11	58.22	4959.07	4958.78	0.5000	15.000	0.0130	2.94	4.57	0.64	3.08	1.25	1.00	4.00 SURCHARGED
23 Pipe - (55)	Pipe	STM INLET B13	STM MH B12	29.87	4959.22	4959.07	0.5000	15.000	0.0130	2.95	4.57	0.65	2.95	1.25	1.00	4.00 SURCHARGED
24 SWALE	Channel	STM FES B02	STM FES B01	194.61	4947.24	4943.04	2.1600	36.000	0.0320	33.91	315.30	0.11	4.13	1.75	0.58	0.00
25 Outlet-01	Outlet	OUTLET STRUCTURE	Out-1Pipe - (29)		4939.93	4939.26				6.16						

Junction Input

SN Element	Invert	Ground/Rim	Ground/Rim	Surcharge	Surcharge	Ponded	Minimum
ID	Elevation	(Max)	(Max)	Elevation	Depth	Area	Pipe
		Elevation	Offset				Cover
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft²)	(in)
1 Out-1Pipe - (35)	4945.57	4950.41	4.84	4950.41	0.00	30.00	40.06
2 Out-1Pipe - (36)	4945.57	4950.41	4.84	4950.41	0.00	30.00	40.04
3 STM FES B01	4943.04	4948.50	5.46	4948.50	0.00	0.00	29.53
4 STM FES B02	4947.24	4953.24	6.00	4953.24	0.00	0.00	36.00
5 STM INLET A02	4941.97	4949.32	7.35	4949.32	0.00	30.00	52.05
6 STM INLET A04	4943.35	4949.31	5.96	4949.31	0.00	30.00	53.52
7 STM INLET B03	4948.11	4956.94	8.83	4956.94	0.00	30.00	75.93
8 STM INLET B05	4951.78	4956.95	5.17	4956.95	0.00	30.00	44.03
9 STM INLET B07	4958.01	4964.01	6.00	4964.01	0.00	30.00	48.00
10 STM INLET B09	4959.88	4964.94	5.06	4964.94	0.00	30.00	42.67
11 STM INLET B10	4958.44	4964.94	6.50	4964.94	0.00	30.00	59.97
12 STM INLET B13	4959.22	4962.23	3.01	4962.23	0.00	8.50	21.08
13 STM INLET C02	4943.43	4948.50	5.07	4948.50	0.00	16.52	32.76
14 STM MH A01	4941.34	4950.99	9.65	4950.99	0.00	10.50	79.56
15 STM MH A03	4942.07	4949.26	7.19	4949.26	0.00	10.50	50.19
16 STM MH A05	4945.17	4950.35	5.19	4950.35	0.00	10.50	26.22
17 STM MH A08	4950.03	4954.40	4.37	4954.40	0.00	10.50	34.42
18 STM MH A09	4953.66	4958.72	5.06	4958.72	0.00	30.00	42.70
19 STM MH B04	4948.41	4956.87	8.46	4956.87	0.00	10.50	47.91
20 STM MH B06	4948.78	4957.00	8.22	4957.00	0.00	10.50	72.29
21 STM MH B08	4958.35	4964.81	6.46	4964.81	0.00	10.50	46.55
22 STM MH B11	4958.78	4965.51	6.72	4965.51	0.00	5.50	65.67
23 STM MH B12	4959.07	4967.48	8.41	4967.48	0.00	5.50	85.87
24 STM MH C01	4942.58	4949.00	6.42	4949.00	0.00	5.50	53.04

Junction Results

SN Element	Peak	Peak	Max HGL	Max HGL	Max	Min	Average HGL	Average HGL	Time of	Time of	Total	Total Time
ID	Inflow	Lateral	Elevation	Depth	Surcharge	Freeboard	Elevation	Depth	Max HGL	Peak	Flooded	Flooded
		Inflow	Attained	Attained	Depth	Attained	Attained	Attained	Occurrence	Flooding	Volume	
					Attained					Occurrence		
	(cfs)	(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(days hh:mm)	(days hh:mm)	(ac-in)	(min)
1 Out-1Pipe - (35)	19.30	19.30	4950.45	4.88	0.04	0.00	4945.58	0.01	0 00:10	0 00:10	0.00	0.00
2 Out-1Pipe - (36)	21.18	21.18	4950.18	4.61	0.00	0.23	4945.58	0.01	0 00:07	0 00:00	0.00	0.00
3 STM FES B01	38.88	14.26	4946.18	3.14	0.00	2.32		0.26	0 00:33	0 00:00	0.00	0.00
4 STM FES B02	34.02	0.00	4948.54	1.30	0.00	4.70	4947.24		0 00:08	0 00:00	0.00	0.00
5 STM INLET A02	44.72	4.32	4946.10	4.13	0.00	3.22		0.50	0 00:37	0 00:00	0.00	0.00
6 STM INLET A04	6.83	6.83	4946.72	3.37	0.00	2.59	4943.56	0.21	0 00:11	0 00:00	0.00	0.00
7 STM INLET B03	34.01	5.44	4951.10	2.99	0.00	5.84	4948.11	0.00	0 00:08	0 00:00	0.00	0.00
8 STM INLET B05	14.74	14.74	4954.19	2.41	0.00	2.77	4951.79	0.01	0 00:10	0 00:00	0.00	0.00
9 STM INLET B07	18.73	6.60	4959.04	1.03	0.00	4.96	4958.01	0.00	0 00:08	0 00:00	0.00	0.00
10 STM INLET B09	9.28	9.28	4962.41	2.53	0.00	2.53	4959.88	0.00	0 00:05	0 00:00	0.00	0.00
11 STM INLET B10	5.84	4.71	4962.00	3.56	0.00	2.94	4958.44		0 00:05	0 00:00	0.00	0.00
12 STM INLET B13	2.97	2.97	4962.24	3.02	0.01	0.00	4959.23	0.01	0 00:05	0 00:05	0.00	0.00
13 STM INLET C02	24.32	24.32	4947.02	3.59	0.00	1.48	4943.92		0 00:10	0 00:00	0.00	0.00
14 STM MH A01	44.67	0.00	4946.09	4.75	0.00	4.90	4942.03	0.69	0 00:38	0 00:00	0.00	0.00
15 STM MH A03	42.40	0.00	4946.52	4.45	0.00	2.74	4942.55	0.48	0 00:11	0 00:00	0.00	0.00
16 STM MH A05	39.02	0.00	4947.98	2.81	0.00	2.37	4945.19	0.02	0 00:11	0 00:00	0.00	0.00
17 STM MH A08	7.06	0.00	4950.81	0.78	0.00	3.59	4950.03	0.00	0 00:11	0 00:00	0.00	0.00
18 STM MH A09	7.12	7.12	4954.54	0.88	0.00	4.18	4953.66	0.00	0 00:10	0 00:00	0.00	0.00
19 STM MH B04	29.94	0.00	4952.86	4.45	0.00	4.01	4948.42		0 00:08	0 00:00	0.00	0.00
20 STM MH B06	18.59	0.00	4953.61	4.83	0.00	3.40	4948.79	0.01	0 00:08	0 00:00	0.00	0.00
21 STM MH B08	13.80	0.00	4961.81	3.46	0.00	3.00	4958.35	0.00	0 00:05	0 00:00	0.00	0.00
22 STM MH B11	2.94	0.00	4962.07	3.29	0.00	3.44	4958.79	0.01	0 00:05	0 00:00	0.00	0.00
23 STM MH B12	2.95	0.00	4962.23	3.16	0.00	5.25	4959.08	0.01	0 00:05	0 00:00	0.00	0.00
24 STM MH C01	24.32	0.00	4946.10	3.52	0.00	2.90	4942.93	0.35	0 00:40	0 00:00	0.00	0.00

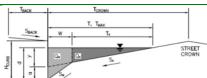
Channel Input

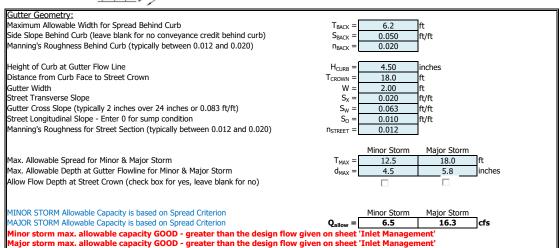
SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average Shape	Height	Width	Manning's	Entrance	Exit/Bend	Additional	Initial Flap
ID		Invert	Invert	Invert	Invert	Drop	Slope			Roughness	Losses	Losses	Losses	Flow Gate
		Elevation	Offset	Elevation	Offset									
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)	(ft)	(ft)					(cfs)
1 SWALE	194.61	4947.24	0.00	4943.04	0.00	4.20	2.1600 Triangular	3.000	24.000	0.0320	0.5000	0.5000	0.0000	0.00 No

Channel Results

;	SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
	ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Number Condition
			Occurrence		Ratio	_			Total Depth	_	
									Ratio		
		(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
	1 SWALE	33.91	0 00:08	315.30	0.11	4.13	0.79	1.75	0.58	0.00	

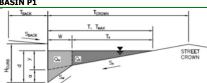
Pipe Input

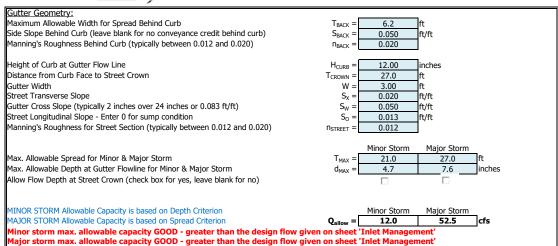

SN Element	Length	Inlet	Inlet	Outlet	Outlet	Total	Average	Pipe	Pipe	Pipe	Manning's	Entrance	Exit/Bend	Additional	Initial Flap	No. of
ID		Invert	Invert	Invert	Invert	Drop	Slope	Shape	Diameter or	Width	Roughness	Losses	Losses	Losses	Flow Gate	Barrels
		Elevation	Offset	Elevation	Offset				Height							
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(%)		(in)	(in)					(cfs)	
1 Link-02	81.89	4942.58	0.00	4941.35	1.42	1.23	1.5000	CIRCULAR	24.000	24.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
2 Pipe - (20) (1)	20.17	4942.08	0.01	4941.98	0.01	0.10	0.5000	CIRCULAR	36.000	36.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
3 Pipe - (21)	124.83	4941.98	0.01	4941.36	0.02	0.62	0.5000	CIRCULAR	36.000	36.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
4 Pipe - (22)	76.59	4941.36	0.02	4940.97	1.04	0.39	0.5100	CIRCULAR	36.000	36.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
5 Pipe - (23)	259.93	4958.01	0.00	4948.98	0.20	9.03	3.4700	CIRCULAR	24.000	24.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
6 Pipe - (24)	33.32	4948.78	0.00	4948.61	0.20	0.17	0.5000	CIRCULAR	24.000	24.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
7 Pipe - (25)	20.17	4948.41	0.00	4948.31	0.20	0.10	0.5000	CIRCULAR	24.000	24.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
8 Pipe - (26)	174.66	4948.11	0.00	4947.24	0.00	0.87	0.5000	CIRCULAR	30.000	30.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
9 Pipe - (27)	94.79	4943.04	0.00	4940.89	0.96	2.15	2.2700	CIRCULAR	30.000	30.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
10 Pipe - (28)	49.27	4943.77	0.34	4942.58	0.00	1.19	2.4200	CIRCULAR	24.000	24.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
11 Pipe - (30)	20.17	4951.78	0.00	4951.38	2.97	0.40	2.0000	CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
12 Pipe - (32) (1)	461.18	4945.17	0.00	4942.08	0.01	3.09	0.6700	CIRCULAR	36.000	36.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
13 Pipe - (35)	20.16	4945.17	0.00	4945.57	0.00	-0.40	-2.0000	CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
14 Pipe - (36)	20.26	4945.17	0.00	4945.57	0.00	-0.41	-2.0000	CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
15 Pipe - (39)	20.17	4943.35	0.00	4942.95	0.88	0.40	1.9800	CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
16 Pipe - (40)	22.61	4959.88	0.00	4959.43	1.08	0.45	2.0000	CIRCULAR		18.000	0.0130	0.5000	0.5000	0.0000		1
17 Pipe - (41)	68.83	4958.35	0.00	4958.01	0.00	0.34		CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000		1
18 Pipe - (42)	17.72	4958.44	0.00	4958.35	0.00	0.09	0.5000	CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
19 Pipe - (43)	274.98	4945.89	0.72	4950.03	0.00	-4.14	-1.5100	CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
20 Pipe - (43) (1)	255.18	4950.03	0.00	4953.66	0.00	-3.63	-1.4200	CIRCULAR	18.000	18.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
21 Pipe - (50)	18.71	4958.78	0.00	4958.69	0.25	0.09	0.5000	CIRCULAR	15.000	15.000	0.0130	0.5000	0.5000	0.0000		1
22 Pipe - (53)	58.22	4959.07	0.00	4958.78	0.00	0.29	0.5000	CIRCULAR	15.000	15.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1
23 Pipe - (55)	29.87	4959.22	0.00	4959.07	0.00	0.15	0.5000	CIRCULAR	15.000	15.000	0.0130	0.5000	0.5000	0.0000	0.00 No	1


Pipe Results

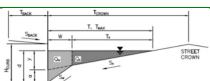
SN Element	Peak	Time of	Design Flow	Peak Flow/	Peak Flow	Travel	Peak Flow	Peak Flow	Total Time	Froude Reported
ID	Flow	Peak Flow	Capacity	Design Flow	Velocity	Time	Depth	Depth/	Surcharged	Number Condition
		Occurrence		Ratio				Total Depth		
								Ratio		
-	(cfs)	(days hh:mm)	(cfs)		(ft/sec)	(min)	(ft)		(min)	
1 Link-02	24.32	0 00:10	27.73	0.88	7.94	0.17	2.00	1.00	837.00	SURCHARGED
2 Pipe - (20) (1)	42.44	0 00:09	47.16	0.90	6.00	0.06	3.00	1.00	542.00	SURCHARGED
3 Pipe - (21)	44.67	0 00:09	47.16	0.95	6.32	0.33	3.00	1.00	599.00	SURCHARGED
4 Pipe - (22)	44.67	0 00:09	47.60	0.94	6.84	0.19	3.00	1.00	968.00	SURCHARGED
5 Pipe - (23)	18.59	0 00:07	42.16	0.44	7.69	0.56	1.52	0.76	0.00	Calculated
6 Pipe - (24)	18.59	0 00:07	16.00	1.16	5.92	0.09	2.00	1.00	8.00	SURCHARGED
7 Pipe - (25)	30.01	0 00:08	16.00	1.88	9.55	0.04	2.00	1.00	5.00	SURCHARGED
8 Pipe - (26)	34.02	0 00:08	29.00	1.17	8.50	0.34	1.90	0.76	0.00	> CAPACITY
9 Pipe - (27)	37.02	0 00:09	61.77	0.60	10.50	0.15	2.50	1.00	256.00	SURCHARGED
10 Pipe - (28)	24.32	0 00:10	35.16	0.69	7.74	0.11	2.00	1.00	114.00	SURCHARGED
11 Pipe - (30)	14.74	0 00:10	14.86	0.99	8.76	0.04	1.49	0.99	0.00	Calculated
12 Pipe - (32) (1)	35.73	0 00:10	54.58	0.65	5.65	1.36	2.91	0.97	0.00	Calculated
13 Pipe - (35)	19.12	0 00:10	14.86	1.29	10.82	0.03	1.50	1.00	9.00	SURCHARGED
14 Pipe - (36)	21.18	0 00:07	14.86	1.43	11.98	0.03	1.50	1.00	8.00	SURCHARGED
15 Pipe - (39)	6.84	0 00:09	14.79	0.46	4.95	0.07	1.50	1.00	680.00	SURCHARGED
16 Pipe - (40)	9.28	0 00:05	14.86	0.62	6.61	0.06	1.50	1.00	2.00	SURCHARGED
17 Pipe - (41)	13.83	0 00:05	7.43	1.86	9.05	0.13	1.27	0.85	0.00	> CAPACITY
18 Pipe - (42)	5.85	0 00:07	7.43	0.79	3.38	0.09	1.50	1.00	5.00	SURCHARGED
19 Pipe - (43)	6.92	0 00:11	12.89	0.54	6.55	0.70	1.14	0.76	0.00	Calculated
20 Pipe - (43) (1)	7.06	0 00:11	12.54	0.56	7.07	0.60	0.83	0.55	0.00	Calculated
21 Pipe - (50)	2.93	0 00:20	4.57	0.64	3.56	0.09	1.25	1.00	5.00	SURCHARGED
22 Pipe - (53)	2.94	0 00:19	4.57	0.64	3.08	0.32	1.25	1.00	4.00	SURCHARGED
23 Pipe - (55)	2.95	0 00:19	4.57	0.65	2.95	0.17	1.25	1.00	4.00	SURCHARGED

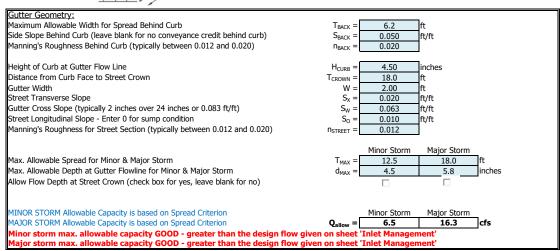
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: ASPEN ST. BASIN P2

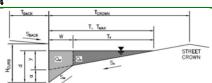


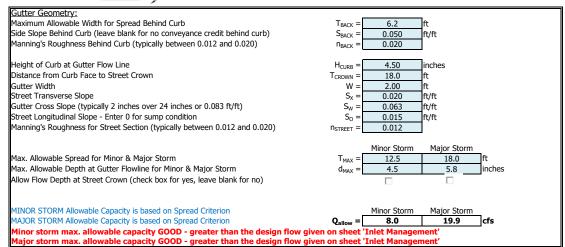
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: WEST SHEPARD AVE BASIN P1

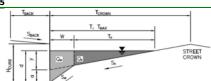


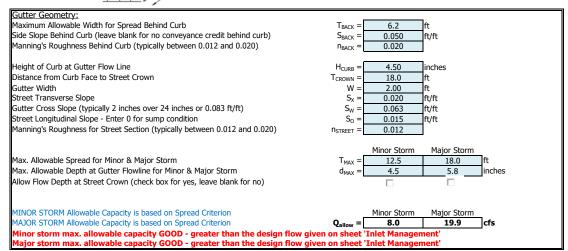
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: ASPEN ST. BASIN P3

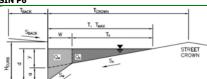


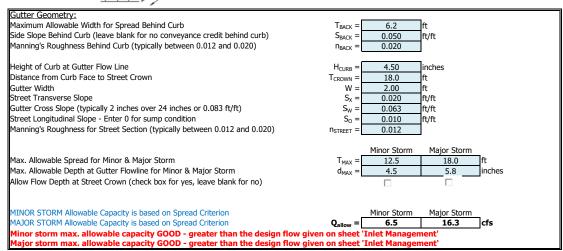
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: SPRUCE ST. BASIN P4

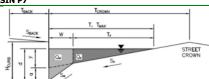


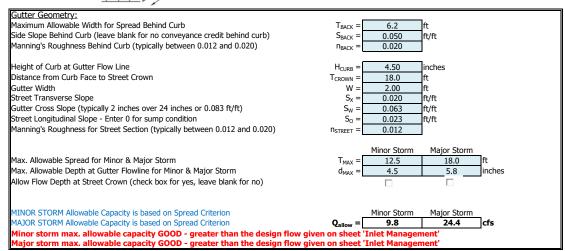
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: SPRUCE ST. BASIN P5

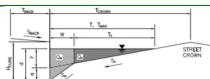


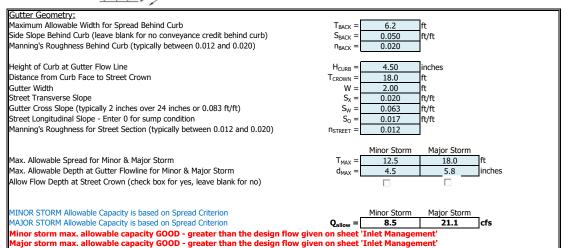
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: WEST OWEN AVE. BASIN P6

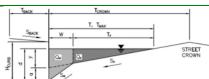


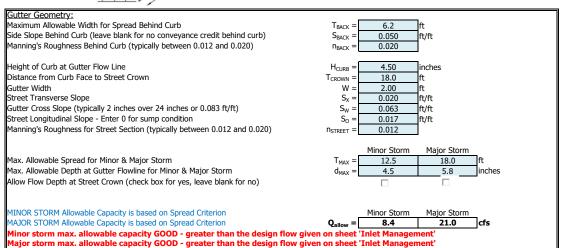
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: WEST OWEN AVE. BASIN P7

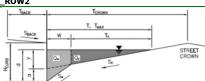


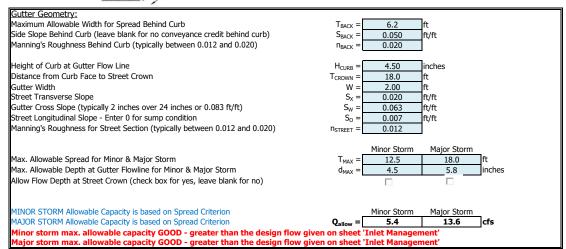
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: MAPLE ST. BASIN P8

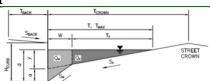


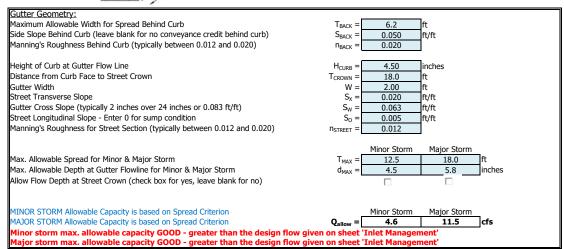
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: MAPLE ST. BASIN P9

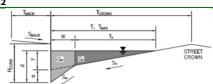


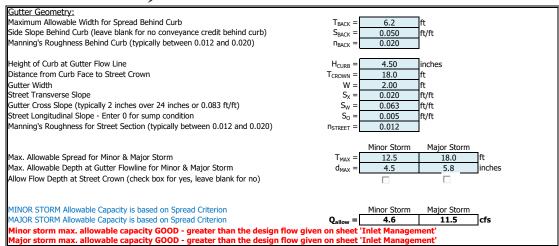
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: CEDAR ST BASIN P10_ROW2

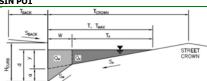


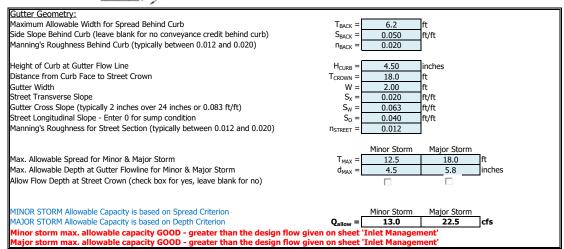
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: MAPLE ST. BASIN P11

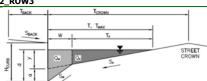


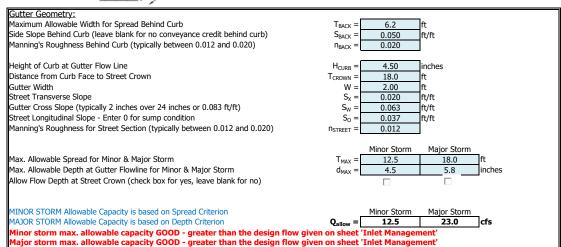
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: MAPLE ST. BASIN P12

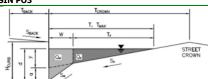


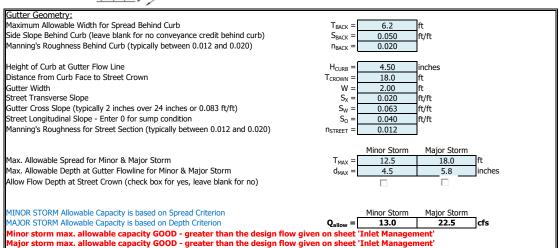
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Project: VISTA WEST SUBDIVISION
Inlet ID: WEST OWEN AVE. BASIN PO1

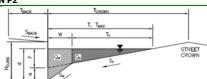


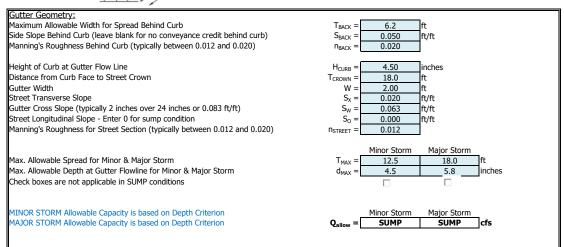
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

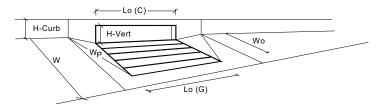

Project: VISTA WEST SUBDIVISION
Inlet ID: CEDAR ST. BASIN PO2_ROW3



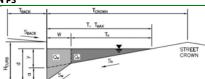
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

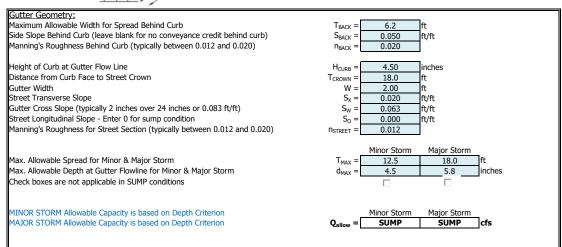

Project: VISTA WEST SUBDIVISION
Inlet ID: W SHEPARD AVE. BASIN PO3



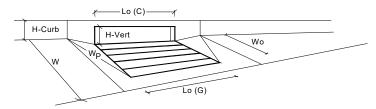

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION
Inlet ID: STM INLET B10 BASIN P2

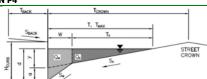

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

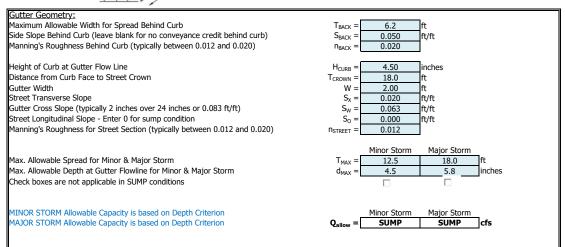


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.25	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqged condition)	Q _a =	3.5	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.3	4.7	cfs

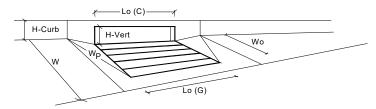

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION
Inlet ID: STM INLET B07 BASIN P3

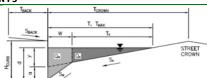

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

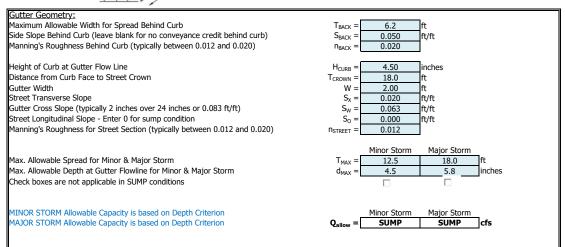


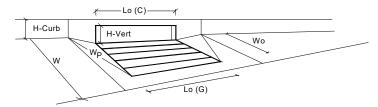
Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L₀ (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	∃ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.1	6.6	cfs


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION
Inlet ID: STM INLET B05 BASIN P4

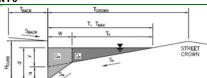

INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

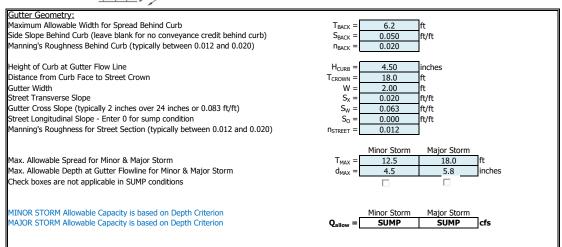


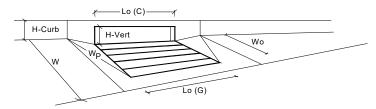

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.25	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.42	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.83	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	4.8	27.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.4	14.7	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION Inlet ID: STM INLET B03 BASIN P5

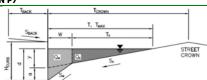


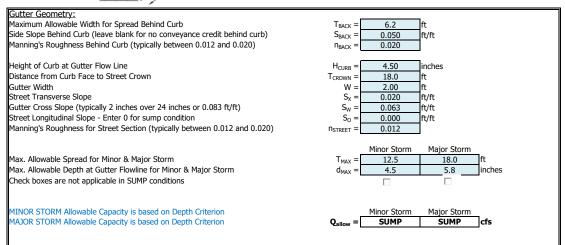


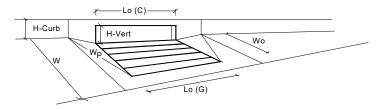

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqged condition)	Q _a = [3.5	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.8	5.5	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION Inlet ID: STM INLET B09 BASIN P6

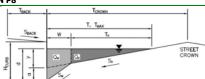


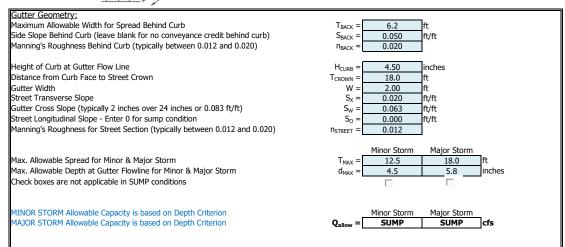


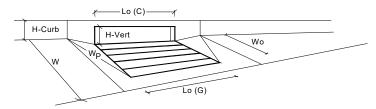

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information	, <u> </u>	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	∃ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.88	T _{ft}
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	9.3	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION Inlet ID: STM INLET A09 BASIN P7

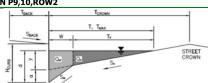


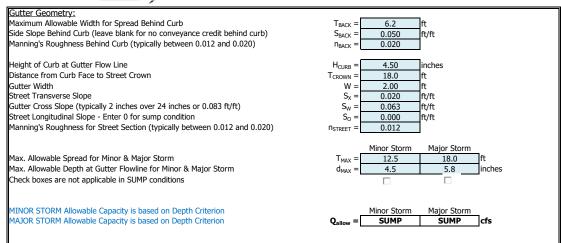


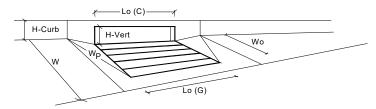

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information	3	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft .
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	7.1	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION
Inlet ID: STM INLET A07 BASIN P8

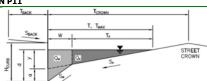


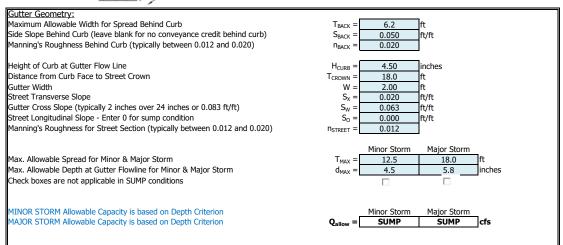


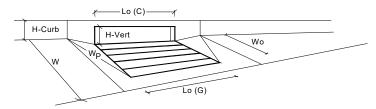

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	12.0	inches
Grate Information	·	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	lfeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C₀ (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	L₀ (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	7ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.34	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqged condition)	Q _a =	8.3	27.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.2	19.4	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION
Inlet ID: STM INLET A06 BASIN P9,10,ROW2

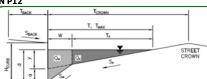


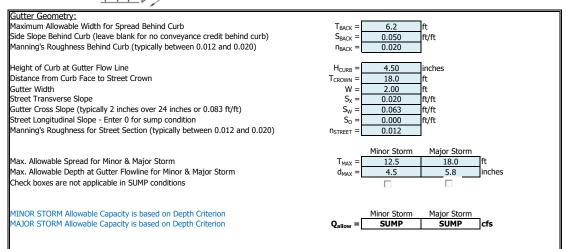


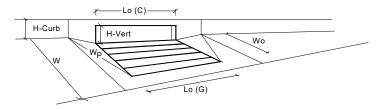

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.6	12.0	inches
Grate Information		MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	lfeet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C₀ (G) =	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	∃ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.35	0.88	T _{ft}
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.53	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.91	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.5	27.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	7.0	22.1	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION
Inlet ID: STM INLET A04 BASIN P11






Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information	, <u> </u>	MINOR	MAJOR	✓ Override Depths
Length of a Unit Grate	L₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	lft.
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	3.5	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.2	6.9	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: VISTA WEST SUBDIVISION
Inlet ID: STM INLET A02 BASIN P12

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	1
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	4.50	4.50	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.5	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.25	0.88	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqged condition)	Q _a =	3.5	13.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.4	4.3	cfs

INLET CAPACITY

DATE:

6/29/2021

PROJECT NAME: Vista West - Keenesburg

PROJECT NUMBER: 3,490.00 CALCULATED BY: SPC CHECKED BY: MLL

 $C_{0} =$ 0.67

BASIN ID	INII ET TVDE
q=	32.2
•	

BASIN ID	INLET TYPE	UNCLOGGED	100-YR FLOW	CLOGGING	CLOGGED	PONDING HEAD	PROVIDED	PROVIDED INLET
BASINID	INLETTIFE	OPEN AREA	100-1K FLOW	CLOGGING	OPEN AREA	REQUIRED	PONDING DEPTH	CAPACITY
		(SQFT)	(CFS)	(%)	(SQFT)	(FT)	(FT)	(CFS)
B13 (OS1)	CDOT TYPE C	6.3	2.99	50	3.15	0.03	0.78	15.0
C02(P1)	CDOT TYPE D	11.5	24.44	50	5.75	0.62	0.67	25.3

PER UDFCD CHAPTER 7 SECTION 3.2.7 VOLUME 1

The hydraulic capacity of grate, curb-opening, and slotted inlets operating as orifices is expressed as:

$$Q_i = C_o A_o (2gd)^{0.5}$$

Where:

 $Q_i = \text{inlet capacity (cfs)}$

 C_o = orifice discharge coefficient

 $A_o = \text{ orifice area (ft}^2)$

d = characteristic depth (ft) as defined in Table 7-8

 $g = 32.2 \text{ ft/sec}^2$.

Values for C_o and A_o are presented in Table 7-8 for different types of inlets.

Equ	

	C _o	A_0^{4}	Orifice Equation Valid for	Definition of Terms
Grate Inlet	0.67	Clear opening area ⁵	$d > 1.79(A_o/L_w)$	d = Depth of water over grate (ft)
Curb-opening Inlet (depressed or undepressed, horizontal orifice throat ⁶)	0.67	(h)(L)	d _i > 1.4h	$d = d_i - (h/2) \text{ (ft)}$ $d_i = \text{Depth of water at curb}$ opening (ft) $h = \text{Height of curb opening (ft)}$
Slotted Inlet	0.80	(L)(W)	d > 0.40 ft	L = Length of slot (ft) $W = Width of slot (ft)$ $d = Depth of water over slot (ft)$

The orifice area should be reduced where clogging is expected.

The ratio of clear opening area to total area is 0.8 for P-1-7/8-4 and reticuline grates, 0.9 for P-1-7/8 and 0.6 for P-1-1/8 grates. Curved vane and tilt bar grates are not recommended at sump locations unless in combination with curb openings.

See Figure 7-12 for other types of throats.

Project Name:

Vista West - Keenesburg

Project Number: 3490 Calculated By: SPC Checked By: MLL

Date: 6/26/2021

For use when channel slopes are between 2% and 10%.

This method is one of the approved methods by UDFCD and is described in the *Design of Rock Chutes* by K.M. Robinson, C.E. Rice, and K.C. Kadavy (1998)

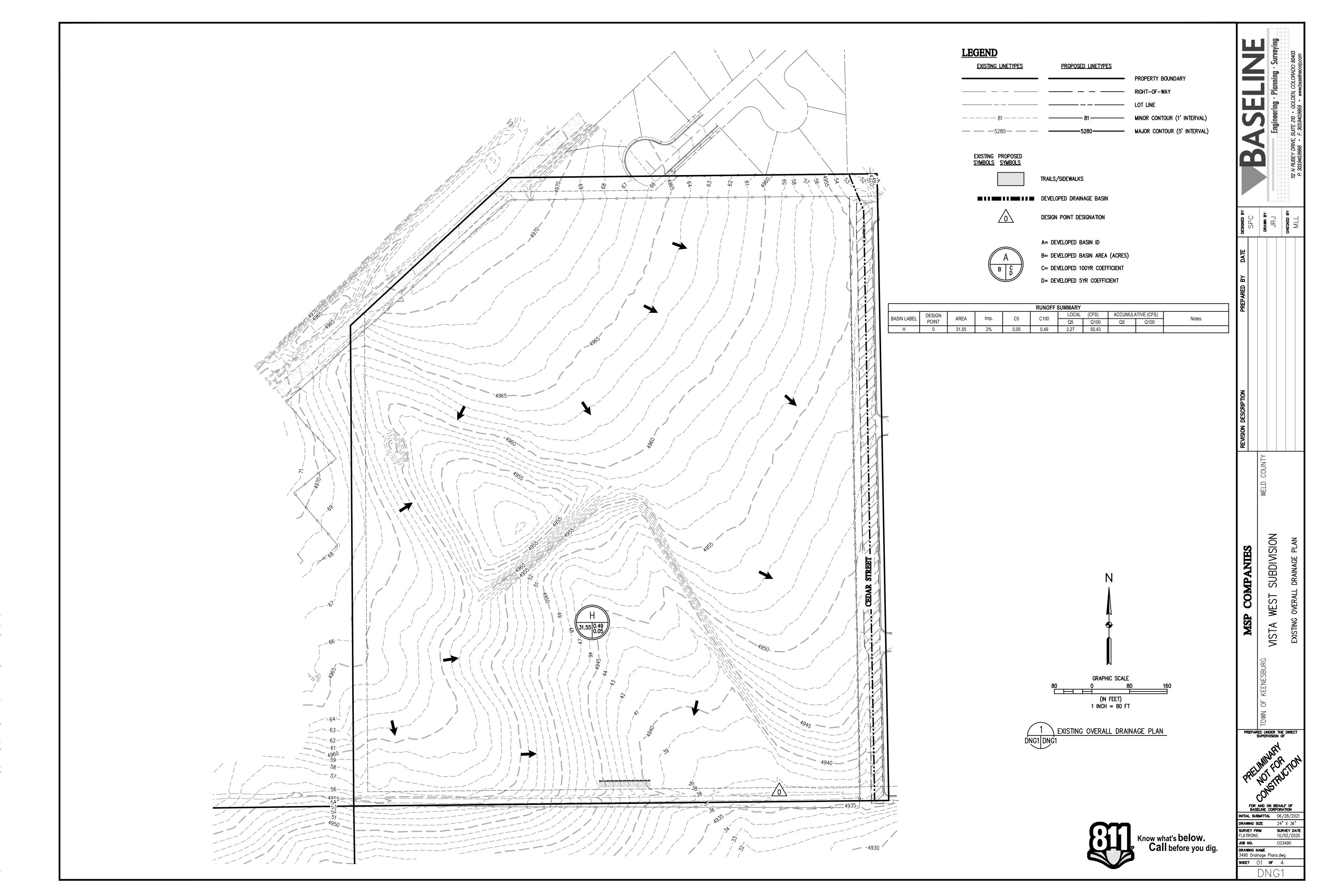
Input Parameters:

	SI U	Inits	Metric		
Flow (Q) =	96.5	cfs	2.733	m³/s	
Flow per unit crest width (q) =		cfs/ft	0.179	m³/s/m	
Bed Slope (S) =	0.02	ft/ft	0.02	m/m	
Channel Bottom Width (B) =	50	ft	15.24	m	
Channel Side Slopes (Z) =	0.25	ft/ft	0.25	m/m	

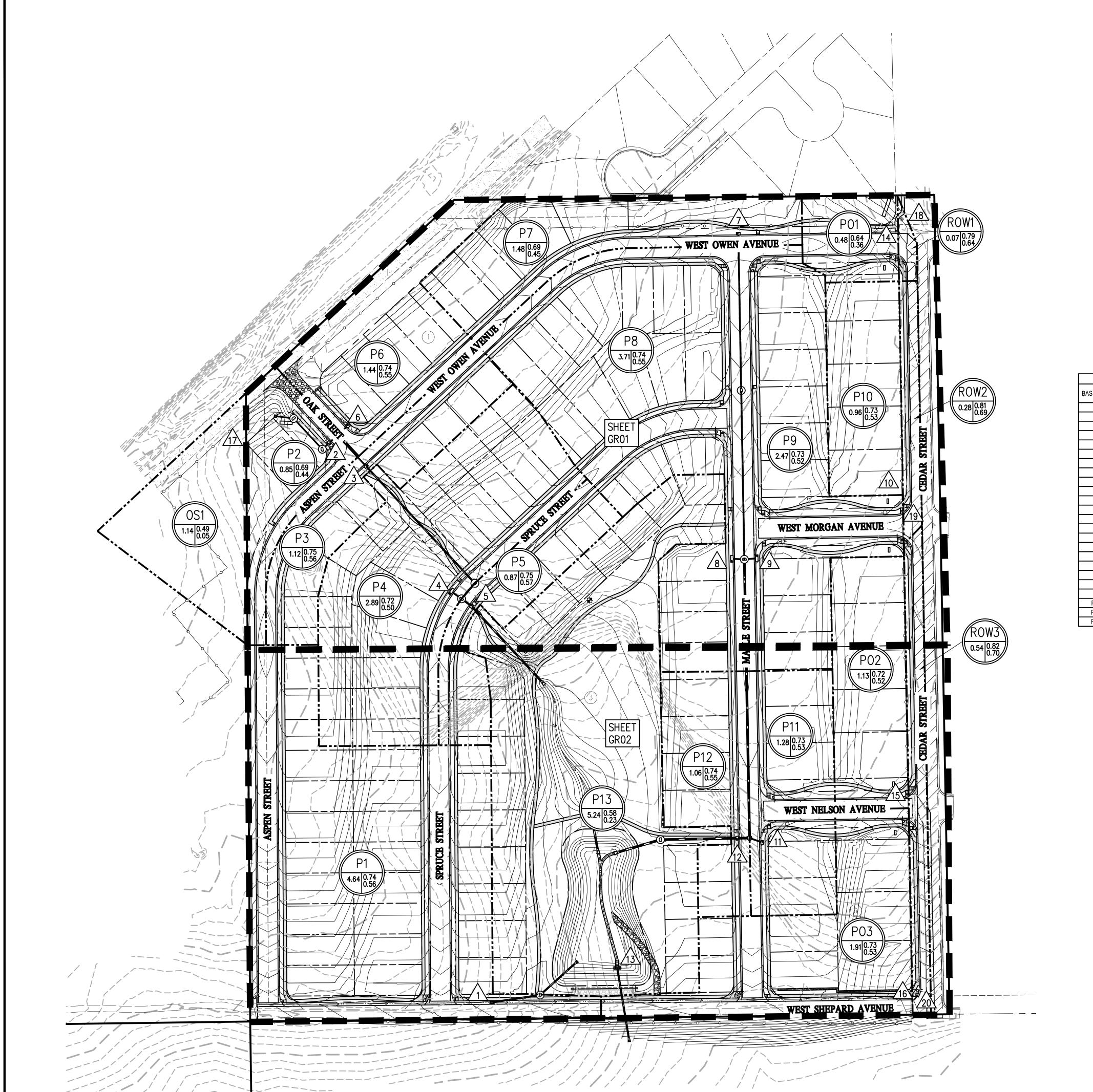
The calculated D_{50} for the riprap is as follows:

$$D_{50} = \left[\frac{(qS^{1.5})}{9.76E - 7}\right]^{1/1.89}$$

Per UDFCD the size calculated should be increased by 30%:


$$D_{50}$$
 with 30% Increase = 1.40 ir

Per UDFCD the increased size should also have a 1.5 Factor of Safety applied:


$$\begin{array}{c} D_{50} \text{ with S.F. applied} = & 3 \text{ in} \\ UDFCD \text{ Riprap Type} = & Type \text{ VL} \\ Design D_{50} = & 6 \text{ in} \\ Mannings n = & 0.034 \\ Minimum Mantle Thickness = & 12 \text{ in} \\ Minimum Length of Apron = & 7.5 \text{ ft} \\ \end{array}$$

Appendix C:

Drainage Plans

N:\co3490 — Summerfield — Keenesburg\Drawings\Drainage Plans\3490 Drainage Plans.dwa, 6/29/2021 5:19:25 PM, Sean Callahan

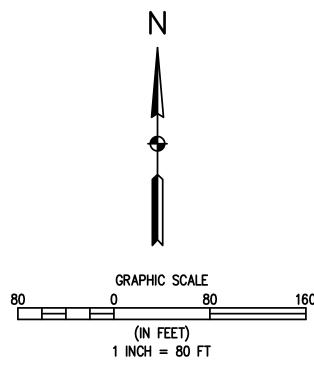
EXISTING LINETYPES PROPOSED LINETYPES	
	PROPERTY BOUNDARY
	RIGHT-OF-WAY
	LOT LINE
81	MINOR CONTOUR (1' INTERV
	MAJOR CONTOUR (5' INTERV

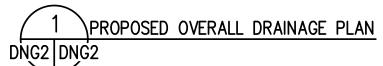
EXISTING PROPOSED SYMBOLS

TRAILS/SIDEWALKS

DEVELOPED DRAINAGE BASIN

DESIGN POINT DESIGNATION


A= DEVELOPED BASIN ID


B= DEVELOPED BASIN AREA (ACRES)

C= DEVELOPED 100YR COEFFICIENT

D= DEVELOPED 5YR COEFFICIENT

RUNOFF SUMMARY										
DAGINI ADEI	DESIGN	DESIGN AREA	lmn	05	C5 C100	LOCAL	(CFS)	ACCUMULATIVE (CFS)		N-t
BASINI ABELL	POINT		I ADEA I IMPO I	C5		Q5	Q100	Q5	Q100	Notes
Н	0	31.55	2%	0.05	0.49	2.27	50.43			
P1	1	4.64	63%	0.56	0.74	7.85	24.44			
P2	2	0.85	50%	0.44	0.69	1.30	4.68			
P3	3	1.12	65%	0.56	0.75	2.14	6.61			
P4	4	2.89	57%	0.50	0.72	4.42	14.70			
P5	5	0.87	66%	0.57	0.75	1.81	5.51			
P6	6	1.44	63%	0.55	0.74	2.97	9.31			
P7	7	1.48	50%	0.45	0.69	1.99	7.12			
P8	8	3.71	63%	0.55	0.74	6.22	19.40			
P9	9	2.47	60%	0.52	0.73	4.46	14.40			
P10	10	0.96	60%	0.53	0.73	1.80	5.79			
P11	11	1.28	61%	0.53	0.73	2.15	6.87			
P12	12	1.06	63%	0.55	0.74	1.37	4.31			
P13	13	5.24	24%	0.23	0.58	2.44	14.30			
PO1	14	0.48	39%	0.36	0.64	0.65	2.75			
PO2	15	1.13	59%	0.52	0.72	1.86	6.06			
PO3	16	1.91	60%	0.53	0.73	3.53	11.36			
OS1	17	1.14	2%	0.05	0.49	0.13	2.99			
ROW1	18	0.07	74%	0.64	0.79	0.17	0.49			
ROW2	19	0.28	80%	0.69	0.81	0.72	1.95			
ROW3	20	0.54	81%	0.70	0.82	1.25	3.40			

SPC
DRAWN BY
JRJ
CHECKED BY
DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY DATE
SPC
DRAWN BY
JRJ
CHECKED BY
MLL
PREPARED BY ORDEN, COLON
PREPARED BY ORDEN BY ORDEN, COLON
PREPARED BY ORDEN BY ORDEN

MSP COMPANIES
SBURG
VISTA WEST SUBDIVISION

TOWN OF KEENESBURG

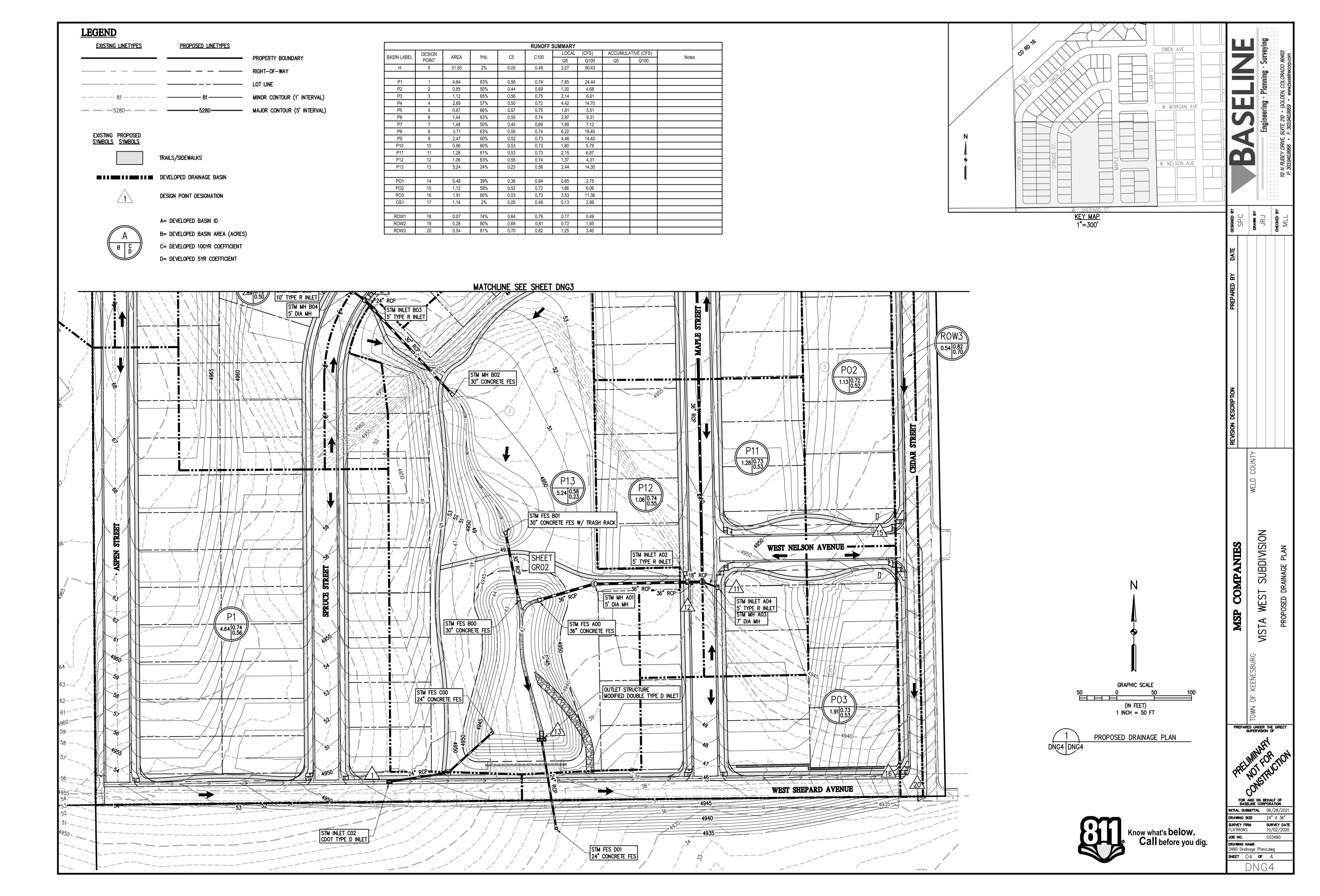
PREPARED UNDER THE DIRECT SUPERVISION OF PRELIMINARY PRECION OF PRELIMINARY CONSTRUCTION CONSTRUCTION

FOR AND ON BEHALF OF BASELINE CORPORATION

NITIAL SUBMITTAL 06/28/2021

DRAWING SIZE 24" X 36"

SURVEY FIRM SURVEY DATE
FLATIRONS 10/02/2020


SURVEY FIRM FLATIRONS 10/02/2020

JOB NO. C03490

DRAWING NAME 3490 Drainage Plans.dwg

SHEET 02 OF 4

N:\co3490 - Summerfield - Keenesburg\Drawings\Drainage Plans\3490 Drainage Plans.dwg, 6/29/2021 5:19:45 PM, Sean Callahan

N:\co3490 — Summerfield — Keenesburg\Drawings\Drainage Plans\3490 Drainage Plans.dwg, 6/29/2021 5:19:51 PM, Sean Callah