# Phase III Drainage Report

for

# **Pioneer Village**

Planning Areas 1-4, 17, and 21

Town of Keenesburg, Weld County, Colorado



SDD Project Number: 1919-001

Drainage Report Prepared for: **Pioneer Community Authority Board** 450 E. 17<sup>th</sup> Ave., Suite 400 Denver, CO 80203-1254 Contact: Joel Farkas (720) 362-5995

> Initial Submittal: Resubmittal: Resubmittal (If required): For Signatures:

Prepared by: **Strategic Site Designs, LLC** 88 Inverness Circle East, Suite E101 Englewood, CO 80112 Contact: Christopher Perdue

(720) 206-6931

April 9, 2021

# **Table of Contents**

### Certifications

### Section I – General Location and Description

- 1.1 Site Location
- 1.2 Description of Property

### Section II – Drainage Basins and Sub-Basins

- 2.1 Major Drainage Basins
- 2.2 Minor Drainage Basins

### Section III – Drainage Design Criteria

- 3.1 Regulations
- 3.2 Drainage Studies, Outfall Systems Plans, Site Constraints
- 3.3 Hydrology
- 3.4 Hydraulics
- 3.5 Water Quality Enhancement

### Section IV – Stormwater Management Facility Design

- 4.1 Stormwater Conveyance Facilities
- 4.2 Stormwater Storage Facilities
- 4.3 Water Quality Enhancement Best Management Practices
- 4.4 Floodplain Modification
- 4.5 Additional Permitting Requirements
- 4.6 General

### Section V - Conclusions

- 5.1 Compliance
- 5.2 Variance
- 5.3 Design Concepts

### Appendices

- Appendix A Hydrology
- Appendix B Hydraulics
- Appendix C EDB Pond Details
- Appendix D Reference Material
- Appendix E Drainage Map
- Appendix F Soils Information

# Certifications

### **Engineer Certification**

"This report and plan for the Phase III drainage design of Pioneer Village was prepared under my direct supervision in accordance with the provisions of the Town of Keenesburg, the Pioneer Community Authority Board and Weld County. I understand that this jurisdiction does not and will not assume liability for drainage facilities designed by others."

| (AFFIX SEAL) |
|--------------|
|              |

Signature:

Christopher L Perdue, P.E. Registered Professional Engineer State of Colorado No. 50745

### Developer/Owner Certification

"\_\_\_\_\_\_hereby certifies that the drainage facilities for Pioneer Village shall be constructed according to the design presented in this report. I understand that the Town of Keenesburg, the Pioneer Community Authority Board and Weld County does not and will not assume liability for the drainage facilities designed and/or certified by my engineer and that each jurisdiction reviews drainage plans pursuant to Colorado Revised Statutes, Title 30, Article 28; but cannot, on behalf of Pioneer Village, guarantee that final drainage design review will absolve \_\_\_\_\_\_ and/or their successors and/or assigns of future liability for improper design."

Name of Developer/Owner

Authorized Representative

# **Section I – General Location and Description**

#### 1.1 Site Location

Pioneer Village is a large and complex development located at the northwest corner of County Roads 22 and 49. The project will encompass all of Sections 5, 7, 8, 9 and the southern half of Section 4 within Township 2 North of Range 64 West. Later phases of Project will the also propose development in portions of Section 12 of 2 North, 65 West and Section 32 of 3 North. 64 West. Sections 7, 8 and 9 along with a portion of



Section 4 was annexed into the Town of Keenesburg in the fall of 2019. The remaining Sections outlined above will be annexed into the Town in the coming months.

A copy of the Annexation Zoning Map has been provided in the appendices for reference.

As of now, the Project is primarily bounded by residential and agricultural uses. Residential uses are typically large lots in this area with an estimated impervious coverage less than 10% of the overall property.

The primary road network serving the property is Weld County Road 49 to the west and Weld County Road 51 to the southwest. Weld County Road 49 is a major arterial highway and was expanded in recent years to include two north and south lanes and an auxiliary lane. The highway currently aligns with a rural section meaning there is no curb and gutter along this segment. All runoff drains to a roadside ditch where culverts collect the runoff and convey it west towards Box Elder Creek. County Road 51 is a gravel road from the intersection with County Road 18 north to the southeast corner of Pioneer Village. From there a narrower improved surface drive makes up County Road 22 at the moment. The small segment of 22 currently supports local oil and gas activity within the subject property. As part of this Project, over time County Roads 22, 24 and 51 will be improved to their master planned sections within the limits of the Project. The timeline of such improvements hinge upon the overall success of the Project and the transportation needs associated with such success.

The description above is an excerpt from the Phase I Report prepared for the portions of Pioneer Village lying within Sections 7, 8 and 9. This Phase III Report is beig

prepared to provide specific detail related to the construction of Planning Areas 1 through 4, 17 and 21. Planning Areas 1 through 4 lie in the northwest corner of Section 7. Planning Areas 17 and 21 lie within the southern portion of Section 8. All of the proposed work will lie within the eastern and middle basins outlined in the Phase I Report.

In addition to the residential planning areas, these plans will also address construction of the Pioneer Village Regional Drainage Way and three large extended detention basins (EDB's).

Due to the overall size of Pioneer Village, our team has drafted this report with a specific focus on Sections 7 through 9. Those sections lie within the first 30-years of master planned permitting and construction. In the case of most master plans of this magnitude, this study will need to be continually revisited to ensure compliance as well as proper long-range planning and revisions as required to address the on-going deviation from the Project's vision as of this draft.

proposed community development project that has been annexed into the Town of Keenesburg. The site is centered around the intersection of Weld County Roads (WCR) 51 and 24, north of WCR 22 and west of WCR 49. This community will lie within Sections 7, 8, 9, and 5 of Township 2 North, Range 64 West and Section 35 of Township 3 North, Range 64 West. The property is located north of the Towns of Hudson and Keenesburg as well as Interstate 76. A Vicinity Map is provided here for reference.

Three primary drainage basins have been identified within the Pioneer Development Area for the first Phase. A natural ridge line runs from the Northwest corner of the NW1/4 of Section 7, East towards the center of Section 7 and North towards WCR 24. The drainage basin located to the west of this ridge line drains West towards Box Elder Creek, a tributary of the South Platte River, while the two basins to the East of this ridge line drain East to a tributary of Box Elder Creek, that runs north to south through Sections 5 and 8 of T3N, R64W. All three basins fall within the larger South Platte River Basin.

### 1.2 Description of Property

The entire Pioneer Development region spans approximately 3,150 acres zoned for commercial, residential, and industrial development. Currently, this area is comprised of open space and agricultural land with a few well pads and associated gravel access roads. The existing landscape primarily consists of gentle, rolling topography covered in native grasses with surface elevations ranging from approximately 4,800 to 4,950. The only structures currently within the development area are oil and gas infrastructure, some active and some abandoned over the last 10 or so years thereby allowing the current development plan to come to fruition.



In general, Pioneer slopes gradually from south to north with most of Section 7, 8 and half of 9 bearing in a westerly direction. The east half of Section 9 will flow northeast towards the Section corner. Currently, there is a portion of Section 8 encumbered by the 100-year floodplain. The area dissects Section 8 and is listed as Zone "A" meaning no base flood elevation has been determined at this Reference time Map Number 08123C1975E with an effective date of January 20th, 2016.

Our research and site investigation

have confirmed that no existing irrigation canals or ditches lie within the property.

The geotechnical report available to us during the design process did not allude to any significant geological hazards within the property. A summary of the on-site soils is provided in the table below based on NRCS information made publicly available. Additional soil information is available in the custom soils report in the appendices.

As outlined in the previous section, Planning Area's 1 through 4 are located in the northwest corner of the project. An existing ridge bisects Planning Areas 1 through 4 with the eastern most planning areas (3&4) draining northeast and the western planning areas (1&2) draining northwest. Due to this natural divide, SSD has proposed two separate stormwater management facilities to address those planning areas.

Planning area's 17 and 21 naturally drain to the northeast to the existing "un-named" stream listed shown on the above referenced FEMA Firm Panel. The proposed design herein will honor this natural divide with both planning areas sloping gently to the northeast.

In the existing condition, the site is primarily covered in native grasses, with a few, scattered dirt roads providing access to the oil and gas wells on the property (both active and abandoned).

Based on the Custom Soil Resource Report for Pioneer Section 7 included in the Appendices, the portions of Pioneer contained in Section 7 (Planning Areas 1-4 and 17) are primarily composed of the soil types listed below.

| Map Unit<br>Symbol | Map Unit Name                    | % of AOI | Hydrologic Soil<br>Group |
|--------------------|----------------------------------|----------|--------------------------|
| 44                 | Olney Loamy Sand, 1 to 3% slopes | 0.2      | В                        |
| 49                 | Osgood Sand, 0 to 3% slopes      | 14.4     | А                        |
| 70                 | Valent Sand, 3 to 9% slopes      | 76.7     | A                        |
| 72                 | Vona Loamy Sand, 0 to 3% slopes  | 8.6      | A                        |

Based on the Custom Soil Resource Report for Pioneer Section 8 included in the Appendices, the soils in this section are primarily composed of the soil types listed in the table below.

| Map Unit<br>Symbol | Map Unit Name                         | % of AOI | Hydrologic Soil<br>Group |
|--------------------|---------------------------------------|----------|--------------------------|
| 35                 | Loup-Boel Loamy Sands, 0 to 3% slopes | 11.6     | A/D                      |
| 44                 | Olney Loamy Sand, 1 to 3% slopes      | 3.4      | В                        |
| 49                 | Osgood Sand, 0 to 3% slopes           | 26.0     | A                        |
| 70                 | Valent Sand, 3 to 9% slopes           | 53.0     | A                        |
| 72                 | Vona Loamy Sand, 0 to 3% slopes       | 5.5      | A                        |
| 85                 | Water                                 | 0.6      |                          |

However, the portion of Section 8 utilized for the construction of Planning Area 21 only contains soil types 44, 49, 70 and 72 as shown on page 9 of the Custom Soil Resource Report for Pioneer Section 8.

The predominant soil type for each of these Sections is Hydrologic Group Type "A".

There is an existing drainage ditch running South to North on the East side of WCR 49 that contains two culverts. The first culvert allows the ditch to flow under WCR 22, in the Southwest corner of the development area, and a second culver that allows the ditch to flow under WCR 24, in the Northwest corner of the development area.

Our field visits and results of previous a Geotechnical Engineering Study suggest that no major geological features lie within the basin.

The proposed development consists of six residential planning areas, including approximately 1,273 units. The development will include all necessary infrastructure, including wet and dry utilities, parking facilities, connections to existing roadways, storm drainage, and drainage control facilities. Three extended detention basins (EDB) will be located within the development area. One EDB will be located in the northeast corner of Section 7, in the southeast corner of the intersection of WCR 49 and WCR 24. A second will be located north, center of Section 7, just south of WCR 24. The third pond will be located slightly southwest of the center of Section 8, just north of Planning

Area 21 and east of the tributary running through the property. See the exhibit on the following page for delineation of each of these basins, labeled by their associated detention pond.

## **Section II – Drainage Basins and Sub-Basins**

### 2.1 Major Drainage Basins

There are three major drainage basins identified within the development area for Development Phase 1 of Pioneer.

The first major basin identified is Basin Pond A. This delineation includes 66.46 acres in the NW1/4 and SW1/4 of Section 7 with an impervious land cover condition of 48.87%. This basin will contain all drainage associated with Planning Areas 1 and 2 of this development, a portion of Collector D, a portion of Local road G, and a portion of WCR 24. Pond A's proposed location is in the NW1/4 of the NW1/4 of Section 7, in the southeast corner of the intersection of WCRs 49 and 22.

The second major basin identified is Basin Pond B. The delineation of Pond B includes 51.64 acres in the NE1/4 and SE1/4 of the NW1/4 of Section 7 with an impervious land cover condition of 58%. Basin Pond B will collect drainage from Planning Areas 3 and 4, a portion of Collector A, a portion of Collector D, a portion of WCR 24, and Collector B. Pond B's proposed location is in the NW1/4 of the NE1/4 of Section 7.

The final major basin in Basin Pond C. Basin Pond C contains 144.88 acres that lies within the SE1/4 of Section 7 and the SW ¼ of Section 8. The land cover condition for Basin Pond C is 49% imperviousness. Pond C will collect runoff from Planning Areas 17 and 21, Collector XX, a portion of Collector A, and the portions of WCR 22 included in the initial phase. The proposed location for pond C is in the NE1/4 of the SE1/4 of Section 8

All construction on this site will provide water quality treatment and peak runoff reduction in accordance with Mile High Flood District (MHFD) requirements.

### 2.2 Minor Drainage Basins

Specifically, this report will focus on the minor drainage basins associated with the proper design of "on-site" and adjacent stormwater management collection, conveyance, and treatment infrastructure. As shown in the attached construction plans, there are four (4) closed conduit systems which will be addressed.

On-Site Conduit Systems:

 A system consisting of 17 Type "R" Inlets which will collect runoff generated within Planning Areas 1 and 2, as well as all runoff West of the centerline of Local Road G and North of the centerline of Collector A. This conduit system will drain to Pond A, located in the NW1/4 of the NW1/4 corner of Section 7, and will ultimately outfall to an existing Culvert located on the Northeast side of the intersection of WCRs 49 and 24.

- 2. A system consisting of 18 Type "R' Inlets and 2 Type "C" drop inlets which will collect runoff from Planning Areas 3 and 4, as well as all runoff East of the centerline of Local Road G and West of Collector B. This conduit system will drain to Pond B, located in the NE 1/4 of Section 7 and will outfall to a ditch draining east toward the tributary of Box Elder Creek.
- 3. A system consisting of 31 Type "R" Inlets which will collect runoff from all of Planning Area 17, all of the drainage in Planning Area 21 East of Local Road 21-4, and the Northern half of Planning Area 21 that falls West of Local Road 21-4. This system will also collect drainage from Collector XX East of WCR 51, and drainage from the portions of the East side of Collector A that fall South of Collector XX. This system will drain to Pond C, located slightly southwest of the center of Section 8, just north of Planning Area 21 and east of the tributary running through the property.
- 4. And a system consisting of 16 Type "R" Inlets which will collect runoff from the portions of Planning Area 21 that fall east of Local Road 21-7, the Southern half of Planning Area 21 that falls west of Local Road 21-7, and runoff from WCR 22. This conduit system will also drain to Pond C.

Off-site Systems Tributary to the On-Site Systems

1. While no there are no independent, off-site conduit systems, a portion of the conduit system draining to Pond A is located off-site, to the west of Planning Areas 1 and 2. This portion of the system runs south to north parallel to WCR 49.

### A detailed summary of each basin can be found on the following page.

| Sub<br>Basin | Basin Description                                                                                    | DP   | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                       | C₅   | <b>C</b> 100 | Q₅   | <b>Q</b> 100 |
|--------------|------------------------------------------------------------------------------------------------------|------|-----------------|-----|----------|------------------------------------------------------------------|------|--------------|------|--------------|
| CI 1.00      | Type "R" Inlet on the Northern half<br>of Collector D, west of Local Road<br>G                       | 1.00 | 2.77            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54         | 2.59 | 8.10         |
| CI 1.01      | Type "R" Inlet on the Northwest<br>side of Local Road 1A                                             | 1.01 | 1.00            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54         | 1.16 | 3.60         |
| CI 1.02      | Type "R" Inlet on the Northeast side<br>of Local Road A                                              | 1.02 | 2.90            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54         | 3.36 | 10.50        |
| CI 1.03      | Type "R" Inlet on the West side of<br>Local Road 1A at the intersection of<br>Local Roads 1A and 1B  | 1.03 | 3.26            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54         | 3.12 | 9.76         |
| CI 1.04      | Type "R" Inlet on the South side of<br>Local Road 1B at the intersection of<br>Local Roads 1A and 1B | 1.04 | 4.96            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54         | 4.66 | 14.59        |
| CI 1.05      | Type "R" Inlet on the North side of<br>Local Road 1B at the intersection of<br>Local Roads 1A and 1B | 1.05 | 2.29            | A   | 55.00    | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54         | 2.41 | 7.53         |
| CI 1.06      | Type "R' Inlet on the South side of<br>Country Road 24 that lies west of<br>Local Road G             | 1.06 | 0.83            | A   | 54.00    | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.39 | 0.53         | 0.99 | 3.13         |
| CI 1.07      | Type "R" Inlet located on Northwest<br>side of Local Road G                                          | 1.07 | 0.31            | A   | 81.4     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.66 | 0.74         | 0.79 | 2.08         |

| Sub<br>Basin     | Basin Description                                                                                  | DP   | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                       | C₅   | C <sub>100</sub> | Q₅   | <b>Q</b> 100 |
|------------------|----------------------------------------------------------------------------------------------------|------|-----------------|-----|----------|------------------------------------------------------------------|------|------------------|------|--------------|
| CI 1.08          | Type "R" Inlet located on Northeast<br>side of Local Road G                                        | 1.08 | 0.74            | A   | 80.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.65 | 0.73             | 1.60 | 4.23         |
| Pond A<br>Direct | Direct runoff contributing to Pond A                                                               |      | 9.68            | A   | 2.0      | Open Space                                                       | 0.01 | 0.13             | 0.10 | 5.17         |
| CI 2.00          | Type "R" Inlet on the Southern half<br>of Collector D, west of Local Road<br>G                     | 2.00 | 6.40            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54             | 4.83 | 15.12        |
| CI 2.01          | Type "R" Inlet on the Northwest<br>corner of Local Road 2A                                         | 2.01 | 3.85            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54             | 3.82 | 11.96        |
| CI 2.02          | Type "R" Inlet on the Northeast<br>corner of Local Road 2A                                         | 2.02 | 2.90            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54             | 2.98 | 9.32         |
| CI 2.03          | Type "R" Inlet on the Western side<br>of the Northern half of Local Road<br>G                      | 2.03 | 5.26            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54             | 4.36 | 13.63        |
| CI 2.04          | Type "R' Inlet on the Southwest<br>corner of the Intersection of Local<br>Road G and Local Road 2B | 2.04 | 2.52            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54             | 2.91 | 9.09         |
| CI 2.05          | Type "R' Inlet on the Southwest<br>corner of the Intersection of Local<br>Road G and Local Road 2C | 2.05 | 5.66            | А   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54             | 5.37 | 16.79        |
| CI 2.06          | Type "R' Inlet on the Southeast<br>corner of the Intersection of Local<br>Road G and Local Road 2C | 2.06 | 6.37            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54             | 5.50 | 17.23        |

| Sub<br>Basin | Basin Description                                                                                                                   | DP   | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                       | C₅   | C100 | Q5   | Q100  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|------|-----------------|-----|----------|------------------------------------------------------------------|------|------|------|-------|
| CI 2.07      | Type "R" Inlet on the Northwest<br>corner of Local Road 2B                                                                          | 2.07 | 1.57            | А   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.40 | 0.54 | 1.80 | 5.64  |
| CI 3.00      | Type "R" Inlet on the Northern half<br>of Collector D, east of Local Road<br>G                                                      |      | 1.29            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.79 | 0.84 | 3.38 | 7.96  |
| CI 3.01      | Type "R" Inlet on the Southern half<br>of Collector D, east of Local Road<br>G                                                      |      | 3.94            | A   | 55.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.51 | 0.60 | 5.91 | 13.94 |
| CI 3.02      | Type "R" Inlet on the Eastern half of<br>the most Eastern side of Local 3A,<br>north of Tract A                                     |      | 2.40            | А   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60 | 3.74 | 8.78  |
| CI 3.03      | Type "R" Inlet on the Western half<br>of the most Eastern side of Local<br>Road 3A, north of the intersection<br>with Local Road 3B |      | 1.71            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60 | 2.87 | 6.77  |
| CI 3.04      | Type "R" Inlet on the Eastern half of<br>the most Eastern side of Local 3A,<br>south of Tract A                                     |      | 3.45            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60 | 5.17 | 12.00 |
| CI 3.05      | Type "R" Inlet on the Northern half<br>of the East side of Local Road 3B                                                            |      | 1.38            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60 | 2.40 | 5.63  |

| Sub<br>Basin | Basin Description                                                                                                                   | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                       | C <sub>5</sub> | <b>C</b> 100 | Q5   | <b>Q</b> 100 |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|------------------------------------------------------------------|----------------|--------------|------|--------------|
| CI 3.06      | Type "R" Inlet on the Southern half<br>of the East side of Local Road 3B                                                            |    | 1.64            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51           | 0.60         | 3.24 | 7.47         |
| CI 3.07      | Type "R" Inlet on the Western half<br>of the most Eastern side of Local<br>Road 3A, south of the intersection<br>with Local Road 3B |    | 1.71            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51           | 0.60         | 2.77 | 6.56         |
| CI 3.08      | Type "R" Inlet on the Northwest<br>corner of the intersection of<br>Collector B and Local Road E                                    |    | 0.38            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.79           | 0.84         | 1.22 | 2.89         |
| CI 3.08A     | Type "R" Inlet on the Northeast<br>corner of the intersection of<br>Collector B and Local Road E                                    |    | 0.28            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.79           | 0.84         | 0.90 | 2.13         |
| CI 3.09      | Type "R" Inlet on the Northern half<br>of the East side of Local Road E                                                             |    | 2.28            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51           | 0.60         | 4.24 | 9.70         |
| CI 4.00      | Type "R" Inlet on the Southern half<br>of the East side of Local Road E                                                             |    | 4.63            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51           | 0.60         | 6.66 | 15.27        |
| CI 4.01      | Type "R" Inlet on the West side of<br>Collector B in the Southwest corner<br>of the intersection of Collector B<br>and Local Road E |    | 2.48            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51           | 0.60         | 4.16 | 9.66         |

| Sub<br>Basin | Basin Description                                                                                                                                             | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                       | C5   | <b>C</b> 100 | Q <sub>5</sub> | <b>Q</b> 100 |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|------------------------------------------------------------------|------|--------------|----------------|--------------|
| CI 4.01A     | Type "R" Inlet on the East side of<br>Collector B in the Southeast corner<br>of the intersection of Collector B<br>and Local Road E                           |    | 1.30            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.79 | 0.84         | 3.51           | 8.24         |
| DI 4.02      | Type "C" Inlet on the North side of<br>Local Road 4B in the Northeast<br>corner of Planning Area 4                                                            |    | 4.35            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60         | 10.17          | 23.47        |
| DI 4.03      | Type "C" Inlet on the South side of<br>Local Road 4B in the Northeast<br>corner of Planning Area 4                                                            |    | 1.50            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60         | 3.51           | 8.09         |
| CI 4.04      | Type "R" Inlet on the West side of<br>Local Road 4A in the Southwest<br>corner of the intersection of Local<br>Road 4A and Local Road E                       |    | 3.17            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60         | 7.41           | 17.10        |
| CI 4.05      | Type "R" Inlet on the South side of<br>Local Road 4B, east of the<br>intersection with Local Road 4A and<br>directly North of Tract D                         |    | 2.06            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60         | 4.82           | 11.11        |
| CI 4.06      | Type "R" Inlet on the South side of<br>Local Road 4B, east of the<br>intersection with Local Road 4A and<br>directly North Planning Area 4,<br>Block 5, Lot 1 |    | 0.90            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60         | 1.51           | 3.51         |

| Sub<br>Basin             | Basin Description                                                                                                                          | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                                        | C₅   | C <sub>100</sub> | Q₅   | Q100  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-----------------------------------------------------------------------------------|------|------------------|------|-------|
| CI 4.07                  | Type "R" Inlet on the West side of<br>Local Road 4A, in the Southwest<br>corner of the intersection of Local<br>Road 4A and Local Road 4B  |    | 2.36            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                               | 0.51 | 0.60             | 3.68 | 8.49  |
| Future<br>Flow<br>WCR 24 | Future flow attributed to the<br>continued development of Weld<br>Country Road 24                                                          |    | 4.39            | A   | 85.00    | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn                  | 0.79 | 0.84             |      |       |
| Pond B<br>Direct         | Direct runoff contributing to Pond B                                                                                                       |    | 0.49            | A   | 17.00    | Combination of Open<br>Space and Sidewalk                                         | 0.16 | 0.29             |      |       |
| CI<br>17A.01             | Type "R" Inlet on the North half of<br>Collector XX, on the Northwest<br>corner of the intersection of<br>Collector XX and Country Road 51 |    | 2.44            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn                  | 0.79 | 0.84             | 8.04 | 18.55 |
| CI<br>17A.02             | Type "R" Inlet on the South half of<br>Collector XX, on the Southwest<br>corner of the intersection of<br>Collector XX and Country Road 51 |    | 7.85            | A   | 51.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, some Open<br>Space, and Tree Lawn | 0.47 | 0.56             | 9.30 | 21.26 |
| CI<br>17A.03             | Type "R" Inlet on the South half of<br>Collector XX, just East of the<br>intersection of Collector XX and<br>Local Road 17-6               |    | 1.27            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                               | 0.51 | 0.60             | 2.44 | 5.71  |

| Sub<br>Basin | Basin Description                                                                                                                                  | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                                                      | C <sub>5</sub> | <b>C</b> <sub>100</sub> | Q₅    | <b>Q</b> 100 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-------------------------------------------------------------------------------------------------|----------------|-------------------------|-------|--------------|
| CI<br>17A.04 | Type "R" Inlet on the South half of<br>Collector XX, just West of the<br>intersection of Collector XX and<br>Local Road 17-6                       |    | 4.06            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.79           | 0.84                    | 8.92  | 20.58        |
| CI<br>17A.05 | Type "R" Inlet centered on the<br>South half of Local 17 Loop Road at<br>the intersection of Local 17 Loop<br>Road and Local Road 17-6             |    | 4.64            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60                    | 8.35  | 19.75        |
| CI<br>17A.06 | Type "R" Inlet on the East side of<br>Local Road 17-1, on the Southeast<br>corner of the intersection of Local<br>Road 17-1 and Collector XX       |    | 5.66            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60                    | 10.52 | 24.09        |
| CI<br>17A.07 | Type "R" Inlet on the North side of<br>Local 17 Loop Road, directly West<br>of the Intersection of Local 17 Loop<br>Road and Local Road 17-1       |    | 6.38            | A   | 35.0     | Single-Family<br>Residential and Open<br>Space                                                  | 0.33           | 0.44                    | 6.46  | 15.16        |
| CI<br>17A.08 | Type "R" Inlet on the West side of<br>Local Road 17-1, on the Southwest<br>corner of the intersection of Local<br>Road 17-1 and Local 17 Loop Road |    | 1.33            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60                    | 2.39  | 5.58         |
| CI<br>17A.09 | Type "R" Inlet on the East side of<br>Local Road 17-1, on the Southeast<br>corner of the intersection of Local<br>Road 17-1 and Local 17 Loop Road |    | 1.58            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60                    | 3.13  | 7.39         |
| CI<br>17A.10 | Type "R" Inlet on the East side of<br>Local Road 17-3, on the Southeast<br>corner of the intersection of Local<br>Road 17-3 and Local 17 Loop Road |    | 4.33            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60                    | 7.01  | 16.35        |

| Sub<br>Basin         | Basin Description                                                                                                                                                           | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                       | C5   | C100 | Q₅   | <b>Q</b> 100 |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|------------------------------------------------------------------|------|------|------|--------------|
| CI<br>17A.11         | Type "R" Inlet on the West side of<br>Local Road 17-3, on the Southwest<br>corner of the intersection of Local<br>Road 17-3 and Local 17 Loop Road                          |    | 3.38            | A   | 46.0     | Single-Family<br>Residential and Open<br>Space                   | 0.43 | 0.52 | 5.67 | 13.12        |
| CI<br>17A.12         | Type "R" Inlet on the West side of<br>Local Road 17-5, on the Southwest<br>corner of the intersection of Local<br>Road 17-5 and Local 17 Loop Road                          |    | 4.05            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60 | 7.28 | 17.24        |
| CI<br>17A.13         | Type "R" Inlet on the South half of<br>Local 17 Loop Road, to the east of<br>the intersection of Local 17 Loop<br>Road and Local Road 17-5                                  |    | 2.34            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development              | 0.51 | 0.60 | 3.79 | 8.98         |
| CI<br>17A.14         | Type "R" Inlet on the East side of<br>Local Road 17-6, on the Southeast<br>corner of the intersection of Local<br>Road 17-6 and Collector XX                                |    | 6.34            | A   | 39.0     | Single-Family<br>Residential and Open<br>Space                   | 0.36 | 0.47 | 5.66 | 13.10        |
| Pond C<br>Direct     | Direct runoff contributing to Pond B                                                                                                                                        |    | 3.74            | А   | 7.00     | Combination of Open<br>Space with some<br>Asphalt and Sidewalk   | 0.06 | 0.21 |      |              |
| CI<br>21A.01<br>(NW) | Type "R" Inlet on the North half of<br>Collector XX, on the Northwest<br>corner of the intersection of<br>Collector XX and the Gravel Access<br>Road located West of Pond C |    | 2.07            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.79 | 0.84 | 4.72 | 11.19        |
| CI<br>21A.01<br>(NE) | Type "R" Inlet on the North half of<br>Collector XX, on the Northeast<br>corner of the intersection of<br>Collector XX and the Gravel Access<br>Road located West of Pond C |    | 1.68            | A   | 85.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn | 0.79 | 0.84 | 4.12 | 9.51         |

| Sub<br>Basin        | Basin Description                                                                                                                                                           | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                                                      | C <sub>5</sub> | C100 | Q <sub>5</sub> | <b>Q</b> 100 |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-------------------------------------------------------------------------------------------------|----------------|------|----------------|--------------|
| CI<br>21A.01<br>(S) | Type "R" Inlet on the South half of<br>Collector XX, on the southwest<br>corner of the intersection of<br>Collector XX and the Gravel Access<br>Road located West of Pond C |    | 5.65            | A   | 51.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, and Tree<br>Lawn                                | 0.47           | 0.56 | 8.29           | 19.14        |
| CI<br>21A.02        | Type "R" Inlet on the South half of<br>Collector XX, on the southwest<br>corner of the intersection of<br>Collector XX and Local Road 21-4                                  |    | 9.63            | A   | 42.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.39           | 0.50 | 9.59           | 23.02        |
| CI<br>21A.02A       | Type "R" Inlet on the East side of<br>Local Road 21-4, on the southeast<br>corner of the intersection of<br>Collector XX and Local Road 21-4                                |    | 0.25            | A   | 100.0    | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.93           | 0.96 | 0.94           | 2.17         |
| CI<br>21A.03        | Type "R" Inlet on the North half of<br>Local 21 Loop Road, on the<br>Northwest corner of the intersection<br>of Local 21 Loop Road and Local<br>21-4                        |    | 2.79            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 4.18           | 9.53         |
| CI<br>21A.04        | Type "R" Inlet on the South half of<br>Local 21 Loop Road, on the<br>Southwest corner of the intersection<br>of Local 21 Loop Road and Local<br>21-4                        |    | 2.55            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 4.28           | 9.78         |
| CI<br>21A.05        | Type "R" Inlet on the South half of<br>Local 21 Loop Road, on the<br>Southeast corner of the intersection<br>of Local 21 Loop Road and Local<br>21-4                        |    | 3.49            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 6.07           | 14.02        |

| Sub<br>Basin | Basin Description                                                                                                                                          | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                                                      | C <sub>5</sub> | C100 | Q <sub>5</sub> | <b>Q</b> 100 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-------------------------------------------------------------------------------------------------|----------------|------|----------------|--------------|
| CI<br>21A.06 | Type "R" Inlet on the North half of<br>Local 21 Loop Road, on the<br>Northeast corner of the intersection<br>of Local 21 Loop Road and Local<br>21-4       |    | 1.19            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 1.93           | 4.57         |
| CI<br>21A.07 | Type "R" Inlet on the Northeast side<br>of Local Road 21-3, on the<br>Southeast corner of the intersection<br>of Local Road 21-3 and Local 21<br>Loop Road |    | 1.97            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 3.31           | 7.68         |
| CI<br>21A.08 | Type "R" Inlet on the Northwest<br>side of Local Road 21-3, on the<br>Southwest corner of the intersection<br>of Local Road 21-3 and Local 21<br>Loop Road |    | 2.33            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 4.05           | 9.36         |
| CI<br>21A.09 | Type "R" Inlet on the Northeast side<br>of Local Road 21-2, on the<br>Southeast corner of the intersection<br>of Local Road 21-2 and Local 21<br>Loop Road |    | 1.95            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 3.04           | 7.25         |
| CI<br>21A.10 | Type "R" Inlet on the Northwest<br>side of Local Road 21-2, on the<br>Southwest corner of the intersection<br>of Local Road 21-2 and Local 21<br>Loop Road |    | 6.10            | A   | 38.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.36           | 0.46 | 6.23           | 14.45        |
| CI<br>21A.11 | Type "R" Inlet on the Northeast side<br>of Local Road 21-1, on the<br>Southeast corner of the intersection<br>of Local Road 21-1 and Local 21<br>Loop Road |    | 1.92            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 3.11           | 7.37         |

| Sub<br>Basin | Basin Description                                                                                                                                          | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                                                      | C <sub>5</sub> | C100 | Q5   | <b>Q</b> 100 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-------------------------------------------------------------------------------------------------|----------------|------|------|--------------|
| CI<br>21A.12 | Type "R" Inlet on the Northwest<br>side of Local Road 21-1, on the<br>Southwest corner of the intersection<br>of Local Road 21-1 and Local 21<br>Loop Road |    | 4.27            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 6.40 | 14.59        |
| CI<br>21A.13 | Type "R" Inlet on the Northeast side<br>of Local Road 21-5, on the<br>Southeast corner of the intersection<br>of Local Road 21-5 and Local 21<br>Loop Road |    | 2.17            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 3.77 | 8.72         |
| CI<br>21A.14 | Type "R" Inlet on the Northeast side<br>of Local Road 21-6, on the<br>Southeast corner of the intersection<br>of Local Road 21-6 and Local 21<br>Loop Road |    | 1.46            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 2.45 | 5.78         |
| CI<br>21B.01 | Type "R" Inlet on the North half of<br>Tract N, just east of center                                                                                        |    | 3.12            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60 | 5.61 | 5.61         |
| CI<br>21B.02 | Type "R" Inlet on the South half of<br>Tract N, just east of center                                                                                        |    | 4.75            | A   | 23.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.21           | 0.34 | 2.89 | 2.89         |
| CI<br>21B.03 | Type "R" Inlet on the East side of<br>Local 21 Loop Road, on the<br>Southeast corner of the intersection<br>of Local Road 21-9, and Tract N                |    | 2.84            | A   | 42.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.39           | 0.50 | 3.52 | 3.52         |

| Sub<br>Basin | Basin Description                                                                                                                                                  | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                                                      | C <sub>5</sub> | <b>C</b> 100 | Q5   | <b>Q</b> 100 |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-------------------------------------------------------------------------------------------------|----------------|--------------|------|--------------|
| CI<br>21B.04 | Type "R" Inlet on the West side of<br>Local 21 Loop Road, on the<br>Southwest corner of the intersection<br>of Local 21 Loop Road, Local Road<br>21-9, and Tract N |    | 2.14            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60         | 3.59 | 12.91        |
| CI<br>21B.05 | Type "R" Inlet on the Southwest<br>side of Local Road 21-8, just North<br>of the intersection of Local 21 Loop<br>Road and Local Road 21-8                         |    | 0.95            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60         | 1.71 | 6.91         |
| CI<br>21B.06 | Type "R" Inlet on the Southeast<br>side of Local Road 21-8, just North<br>of the intersection of Local 21 Loop<br>Road and Local Road 21-8                         |    | 0.24            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60         | 0.56 | 8.30         |
| CI<br>21B.07 | Type "R" Inlet on the South side of<br>Local 21 Loop Road, Southwest of<br>the intersection of Local 21 Loop<br>Road and Local Road 21-8                           |    | 1.03            | A   | 43.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.40           | 0.50         | 1.45 | 8.47         |
| CI<br>21B.08 | Type "R" Inlet on the North side of<br>Local 21 Loop Road, Northwest of<br>the intersection of Local 21 Loop<br>Road and Local Road 21-8                           |    | 1.63            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development                                             | 0.51           | 0.60         | 2.64 | 6.06         |
| CI<br>21B.09 | Type "R" Inlet on the West side of<br>Local Road 21-7, on the Southwest<br>corner of the intersection of Local<br>Road 2107 and Local 21 Loop<br>Road              |    | 5.50            | A   | 34.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.32           | 0.43         | 4.27 | 9.97         |

| Sub<br>Basin | Basin Description                                                                                                                                          | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                          | C <sub>5</sub> | C100 | Q₅   | <b>Q</b> 100 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-----------------------------------------------------|----------------|------|------|--------------|
| CI<br>21B.10 | Type "R" Inlet on the West side of<br>Local Road 21-7, on the Northwest<br>corner of the intersection of Local<br>Road 2107 and Local 21 Loop<br>Road      |    | 1.61            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development | 0.51           | 0.60 | 2.70 | 6.18         |
| CI<br>21B.11 | Type "R" Inlet on the Southeast<br>side of Local Road 21-6, on the<br>Northeast corner of the intersection<br>of Local Road 21-6 and Local 21<br>Loop Road |    | 0.98            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development | 0.51           | 0.60 | 1.70 | 3.94         |
| CI<br>21B.12 | Type "R" Inlet on the Southwest<br>side of Local Road 21-6, on the<br>Northwest corner of the intersection<br>of Local Road 21-6 and Local 21<br>Loop Road |    | 1.08            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development | 0.51           | 0.60 | 1.88 | 4.34         |
| CI<br>21B.13 | Type "R" Inlet on the Southeast<br>side of Local Road 21-5, on the<br>Northeast corner of the intersection<br>of Local Road 21-5 and Local 21<br>Loop Road |    | 0.78            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development | 0.51           | 0.60 | 1.36 | 3.23         |
| CI<br>21B.14 | Type "R" Inlet on the Southwest<br>side of Local Road 21-5, on the<br>Northwest corner of the intersection<br>of Local Road 21-5 and Local 21<br>Loop Road |    | 0.98            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development | 0.51           | 0.60 | 1.70 | 4.05         |
| CI<br>21B.15 | Type "R" Inlet on the Northwest<br>side of Local Road 21-8, on the<br>Southwest corner of the intersection<br>of Local Road 21-8 and Local 21<br>Loop Road |    | 1.46            | A   | 55.0     | Typical Single-Family<br>Residential<br>Development | 0.51           | 0.60 | 2.63 | 6.04         |

| Sub<br>Basin | Basin Description                                                                                                                        | DP | Area<br>(acres) | HSG | IMP<br>% | Land Cover                                                                                      | C5   | C <sub>100</sub> | Q₅   | <b>Q</b> 100 |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------|-----|----------|-------------------------------------------------------------------------------------------------|------|------------------|------|--------------|
| CI<br>21B.16 | Type "R" Inlet on the South half of<br>Local 21 Loop Road, Southeast of<br>the intersection of Local Road 21-5<br>and Local 21 Loop Road |    | 4.93            | A   | 29.0     | Combination of<br>Asphalt Roadway,<br>Sidewalk, Single-<br>Family Residential,<br>and Tree Lawn | 0.27 | 0.39             | 5.40 | 12.54        |

# Section III – Drainage Design Criteria

### 3.1 Regulations

All storm drainage infrastructure proposed for construction in connection with this Project have been designed using the following criteria as required by local jurisdictions.

- Weld County Engineering and Construction Guidelines
- Urban Drainage and Flood Control District's Technical Criteria Manual
   Volumes One, Two and Three
- Urban Drainage Technical Bulletin T-5
- Urban Drainage Technical Bulletin T-12

### 3.2 Drainage Studies, Outfall Systems Plans, Site Constraints

To our knowledge, no prior drainage studies have been conducted in this area prior to this project. In addition to this Phase III Drainage Report, a Phase I report, including a Master Drainage study has also been completed for this development.

As mentioned in Section 2.1, due to the limited existing infrastructure in the project area, the principal constraint for this system is the existing topography and tributary running North/South across the center of the property. Drainage from Planning Areas One and Two of the development naturally drain Westward, while the remaining Planning Areas naturally drain eastward towards a tributary of Box Elder Creek.

Planning Areas 17 and 21 will drain Northeast to an Extended Detention Basin (EDB) that will slowly release flow into the tributary of Box Elder Creek. Drainage from Planning Areas 1 and 2 will flow to an EDB located in the NW1/4 of Section 7; this EDB shall outfall to an existing culvert located underneath WCR 24, on the eastern side of the intersection of WCRs 49 and 24. Drainage from Planning Areas 3 and 4 will flow to an EDB located in the NE1/4 of Section 7, just south of WCR 22. This EDB shall outfall to a ditch that spans west/east along the southern border of WCR 24 until ultimately out falling into the tributary.

### 3.3 Hydrology

Hydrology for the Project was determined using two methodologies.

All storm sewer collection and conveyance infrastructure were sized based upon the minor and major storm event. The Weld County Engineering and Construction Guidelines define the "major" storm event as a 100-year storm event. The "minor" storm definition for this report shall be a 5-year storm event. The Rational Method was used for determining peak discharge rates required to size on-site collection system infrastructure. Runoff Coefficients were determined for each on-site basin per values provided in UDFCD's Table 6-3 and 6-4. To calculate peak flows, UDFCD's "UD-Rational Spreadsheet" was used. The rainfall depths utilized are provided below:

|                   | 5-year, 1-hour | 100-year, 1-hour |
|-------------------|----------------|------------------|
| Depth (P1) Inches | 1.14           | 2.66             |

These values were obtained from the National Oceanic and Atmospheric Administrations (NOAA) Rainfall data base.

The stormwater management facility was designed in accordance with volume and release rate criteria outlined by MHFD.

### 3.4 Hydraulics

All on-site storm sewers are proposed to be constructed using a combination of Corrugated High-Density Polyethylene (HDPE) pipe, Pre-cast Box Culverts, or Class III Reinforced Concrete Pipe (RCP) and are sized to convey runoff generated during the 100-year event. On-site curb inlets have been sized using UDFCD's UD-Inlet Software. A modeling software called Stormwater Studio was utilized to evaluate the capacity and velocity of the conveyance network and determine the hydraulic grade lines during the minor and major event.

Given the overall size of the site and the proposed land cover conditions, the primary design constraint used to size the collection system was pipe capacity. The systems were evaluated to ensure that all proposed pipes and box culverts remained a size that could be prefabricated, and that the Hydraulic Grade Line (HGL) for the major-storm event was not above the ground surface. The primary design goal was to maintain HGL elevations at a minimum of 9-inchs below the top of structure, this was achieved at the vast majority of structures in the proposed network<sup>1</sup>. Note that Chapter 7 of the MHFD Manual does not establish the minimum distance from the top of structure to HGL. Our team utilizes 9-inches since it is a median between the two widely accepted industry standards of one (1) foot and the other being the HGL contained within the structure.

It should also be pointed out that our team made some minor assumptions that attribute to a conservative design which are provided below:

- Due to the size of the basin(s), the intensity reduction based upon the time of concentration was not reduced beyond that of the actual basin. Therefore, basin flows on the perimeter of the development will be higher in our analysis than actual flows if the time of concentration were further reduced as flows from the upstream basin traverse downstream basins to the overall outfall. *Our analysis suggests that no major inefficiencies are created by doing this since the minimum pipe size of 15-inches is oversized as is.*
- In order to design the Storm Drain Network and the Detention Pond, both the rational method and CUHP are required. Mixing the two methodologies often generates unfavorable results so SSD's typical procedure is to size the closed conduits, inlets, culverts, etc. using the rational method and then all pond infrastructure is designed using CUHP working within the UD-Detention Spreadsheet. As our design is presented later this this report, we will highlight the methodologies uses to size each element.

<sup>&</sup>lt;sup>1</sup> Our team utilized 9 inches as a reference based on the Type R inlet dimension from the top of structure to invert of throat opening being 9 inches.

### 3.5 Water Quality Enhancement

Permanent water quality enhancement has been provided in accordance with the UDFCD's Drainage Criteria. Based on the existing topography of the site and the required 100-year detention volume, the post-construction Best Management Practice selected for this site is an EDB. The pond has been sized to provide the required Water Quality Capture Volume (WQCV) and release it over a period of 40-hours per the guidelines in Volume 3 of the Urban Drainage's Manual and Technical Bulletin T-5. A detailed description of the proposed EDB is provided in Section IV on the following pages.

# Section IV – Stormwater Management Facility Design

### 4.1 Stormwater Conveyance Facilities

The design concept used for this site was simple: grade the site to the extent possible to honor the natural drainage divides. As outlined previously, the site has a natural ridgeline (highpoint) that runs north/south through the middle of Section 7. Everything to the west of this ridgeline drains westward towards Weld Country Road 49, while everything located to the east of this ridgeline drains east towards a tributary of Box Elder Creek that runs north/south through the Center of Section 8. To honor these existing drainage paths to the greatest extent possible, this design proposes the construction of three separate EBDs: Pond A, Pond B, and Pond C. Pond A's proposed location is in the northeast corner of Section 7, in the southeast corner of the intersection of WCR 49 and WCR 24. Pond B's proposed location is in the north, center of Section 7, just south of WCR 24. Pond C's Proposed location is slightly southwest of the center of Section 8, just north of Planning Area 21 and east of the tributary running through the property.

Street capacities were also evaluated based upon Weld County's design criteria for major and minor storm events:

- 1. Major Storm: Drainage system must be able to convey the fully developed flow from a 1-hour, 100-year event without significant damage to the system
- 2. Minor Storm: Road overtopping not to exceed 6-inches in the 10-year event and 18 inches in the 100 year event

All on-site inlets were proposed and analyzed in accordance with Chapter 7 of the MHFD's manual. The key criteria utilized were spread width and ponding depth.

Results of the street capacity analysis is provided in the UD-Inlet Spreadsheets in the appendices. Our assumptions for allowable spread for each road classification are provided below for the minor and major storms.

| Street<br>Classification | Event          | Spread       | Allowable<br>Depth          | Reasoning                                                                                                 |
|--------------------------|----------------|--------------|-----------------------------|-----------------------------------------------------------------------------------------------------------|
| Local<br>Residential     | Minor<br>Major | 17'<br>27'   | 6.4" <sup>2</sup><br>6.4"   | Flow may pond to the street<br>crown<br>Flow may pond to the right of<br>way                              |
| Residential<br>Collector | Minor<br>Major | 17'<br>33.5' | 8.4" <sup>3</sup><br>8.4"   | One, 12' drive isle remains<br>Flow may pond to the right of<br>way, with one 12' drive isle<br>remaining |
| Minor Arterial           | Minor<br>Major | 22'<br>35.5' | 8.88" <sup>4</sup><br>8.88" | Two, 12' drive isles remain<br>Flow may pond to right of way,<br>with two 12' drive isles<br>remaining    |

All Type "C" and Type "R" Inlets were analyzed for capture capacity using UDFCD's UD-Inlet Software and CDOT derived nomographs. Curb inlet calculations and drop inlet computations are provided in the appendices for reference.

<sup>&</sup>lt;sup>2</sup> Based on the street section for a local residential, the maximum depth when ponding to the right of way is 0.53' or 6.4inches. This is derived using a 4-inch curb height and a tree lawn width of 10-feet at 2.0%. During the minor storm event, the street capacity was analyzed by restricting the depth of flow to the crown elevation(s). During the major event, the crown was allowed to overtop and reach the full 6.4" depth.

<sup>&</sup>lt;sup>3</sup> Based on the street section for a local collector, the maximum depth when ponding to the right of way is 0.7' or 8.4inches. This is derived using a 6-inch curb height and a tree lawn width of 10-feet at 2.0%. During the minor storm event, the street capacity was analyzed by restricting the depth of flow to the crown elevation(s). During the major event, the crown was allowed to overtop and reach the full 8.4" depth.

<sup>&</sup>lt;sup>4</sup> Based on the street section for a minor arterial, the maximum depth when ponding to the right of way is 0.74' or 8.88inches. This is derived using a 6-inch curb height and a tree lawn width of 12-feet at 2.0%. During the minor storm event, the street capacity was analyzed by restricting the depth of flow to the crown elevation(s). During the major event, the crown was allowed to overtop and reach the full 8.88" depth.

Each of these system components proposed were designed to adequately convey a 100-year storm event while containing HGL elevations 9" below surface level. The design proposed for this site is consistent with local requirements having well documented maintenance protocols and therefore no concern is warranted with respect to atypical operation and maintenance procedures.

#### 4.2 Stormwater Storage Facilities

There are three EBD stormwater management facilities proposed for construction as part of this project, identified as Pond A, Pond B, and Pond C. Pond A's proposed location is in the NW1/4 of Section 7, in the southeast corner of the intersection of WCR 49 and WCR 24. Pond B's proposed location is in the NE 1/4 Section 7, just south of WCR 24. Pond C's Proposed location is slightly southwest of the center of Section 8, just north of Planning Area 21 and east of the tributary running through the property. UDFCD's UD-Detention Spreadsheet was utilized to size the detention facilities, outlet structures, and emergency overflow. The table below depicts the proposed stage for each event and the associated inflow/outflow, based on the final routing for each Pond and associated conduit system(s).

| Pond | Condition | Drainage<br>Area (ac) | % IMP | 5-Year<br>Peak (cfs) | 100-Year<br>Peak (cfs) |
|------|-----------|-----------------------|-------|----------------------|------------------------|
| Α    | Inflow    | 66.46                 | 47.9  | 16.5                 | 81.9                   |
| A    | Outflow   | 00.40                 | 47.9  | 0.6                  | 24.2                   |
| В    | Inflow    | 51.6                  | 58.0  | 25.1                 | 96.5                   |
| В    | Outflow   |                       |       | 0.7                  | 31.2                   |
| с    | Inflow    | 144.6                 | 49.0  | 48.9                 | 203.4                  |
| C    | Outflow   |                       |       | 1.7                  | 50.1                   |

|        | Event               | Туре          | Stage<br>(ft) | Corresponding<br>Elevation |
|--------|---------------------|---------------|---------------|----------------------------|
| Pond A | Top of<br>Micropool | n/a           | 0.00          | 4878.23'                   |
|        | WQCV                | Top of Volume | 2.82          | 4881.05'                   |
|        | EURV                | Top of Volume | 4.71          | 4882.94'                   |
|        | 100-Year            | Top of Volume | 6.36          | 4884.59'                   |

| Pond B | Top of<br>Micropool | n/a           | 0.00 | 4872.12' |
|--------|---------------------|---------------|------|----------|
|        | WQCV<br>EURV        |               | 2.71 | 4874.83' |
|        |                     |               | 4.71 | 4876.83' |
|        | 100-Year            | Top of Volume | 6.36 | 4878.48' |
| Pond C | Top of<br>Micropool | n/a           | 0.00 | 4862.21' |
|        | WQCV                | Top of Volume | 3.02 | 4865.23' |
|        | EURV                | Top of Volume | 5.49 | 4867.70' |
|        | 100-Year            |               | 7.65 | 4869.86' |

Based on the information above, the proposed facilities are adequately sized to capture, detain and release the required storm events.

The required Initial Surcharge Volume (ISV) has been provided in the outlet structure and trickle channel. Given the Water Quality Capture volume, no additional infrastructure is required to keep the ISV over a hardened surface as recommended by UDFCD.

| Pond | WQCV (CF)  | ISV (0.3% of<br>WQCV) | Volume<br>Provided (CF) |
|------|------------|-----------------------|-------------------------|
| А    | 48,395 CF  | 145.2 CF              | 213                     |
| В    | 43,037 CF  | 129.1 CF              | 219                     |
| С    | 107,026 CF | 321.1 CF              | 344                     |

The UD-Detention Spreadsheet was also utilized to size the emergency spillway for each EDB. Those details can be found in the spreadsheets in the appendices as well as Plan Sheets C7.00 to C7.05 of the Construction Drawings attached hereto.

All outfall pipe sizes were also pulled from the UD-Detention spreadsheet. SSD did confirm the pipe size and slope proposed in the CD's were adequate to convey the flow; however, most normal capacity calculations do not account for the outlet being surcharged by the pond.

An energy dissipation structure will be installed where each conduit system enters the corresponding pond. The dissipation structures will each have a headwall or "seal" immediately upstream of the trickle channel with a notch sized to release 2% of the peak un-detained 100-year event. The required notches sizes and subsequent release rates are provided in the table below:

| Impact<br>Stilling<br>Basin (ISB)<br># | Pond | 100-year<br>UD Flow<br>(CFS) | ISB Release<br>Rate (2% of UD<br>Flow) | Notch Depth (D) x<br>Width (W) Required <sup>3</sup> |
|----------------------------------------|------|------------------------------|----------------------------------------|------------------------------------------------------|
| 1                                      | А    | 81.9                         | 1.64 CFS                               | 30" (D) x 4-1/4" (W)                                 |
| 2                                      | В    | 96.5                         | 1.93 CFS                               | 30" (D) x 4-5/8" (W)                                 |
| 3                                      | С    | 150.5 <sup>6</sup>           | 3.01 CFS                               | 30" (D) x 6-1/8" (W)                                 |
| 4                                      | С    | 52.9 <sup>6</sup>            | 1.1 CFS                                | 30" (D) x 3-5/16" (W)                                |

Each energy dissipation structure will have the minimum forebay volume integrated into the structure. Per UDFCD Table EDB-4, the minimum forebay volume shall be 3% of the WQCV for drainage areas with greater than 20 impervious acres.

| Pond | WQCV (CF) | Required Forebay<br>Volume (CF)<br>(3% of WQCV) | Volume Provided<br>(CF) <sup>4</sup> |
|------|-----------|-------------------------------------------------|--------------------------------------|
| A    | 48,395    | 1,452                                           | 1,595                                |
| В    | 43,037    | 1,291                                           | 1,557                                |
| С    | 107,026   | 3,211                                           | 4,035                                |

A low flow or "trickle" channel is provided from the inflow point to the outlet structure for each of the three ponds. The trickle channels were all designed to have adequate capacity to convey 1% of the 100-year un-detained event.

<sup>&</sup>lt;sup>3</sup> Depth was set based upon providing required forebay volume

<sup>&</sup>lt;sup>6</sup> The Forebays for Pond C were sized based off the acreage draining to each structure. ISB 3 was sized based off 74% of the peak inflow rate contributing to Pond C, while ISB 4 was sized based off 26% of the peak inflow rate contributing to Pond C.

| Trickle<br>from ISB<br># | 100-year<br>UD Flow<br>(CFS) | Required Trickle<br>Capacity<br>(2% of UD Flow) | Dimension of<br>Channel | Capacity<br>Provided<br>(CFS) |
|--------------------------|------------------------------|-------------------------------------------------|-------------------------|-------------------------------|
| 1                        | 81.9                         | 1.64 CFS                                        | 2' wide x 6" deep       | 3.88                          |
| 2                        | 96.5                         | 1.93 CFS                                        | 2' wide x 6" deep       | 3.01                          |
| 3                        | 150.5 <sup>6</sup>           | 3.01 CFS                                        | 3' wide x 6" deep       | 4.88                          |
| 4                        | 52.9 <sup>6</sup>            | 1.06 CFS                                        | 3' wide x 6" deep       | 4.88                          |

Please note that like the outlet structure piping and emergency overflow, the notch and the trickle channel were evaluated based on the CUHP Calculations performed within the UD-Detention Spreadsheet. In our opinion, this alternative mitigates mixing methodologies *(i.e. CUHP vs Rationale)* and yields the best results.

Maintenance access has been provided to the invert of each pond via an 20-foot wide drive.

### 4.3 Water Quality Enhancement Best Management Practices

The proposed EBDs were designed in accordance with MHFD requirements with respect to water quality treatment. A Water Quality Control Plate will be provided within the outlet structure for each pond that will slowly release flow as described below:

| Pond | Water Quality<br>Capture<br>Volume<br>(acre-ft) | Time for Release (hrs) |
|------|-------------------------------------------------|------------------------|
| A    | 1.111                                           | 40                     |
| В    | 0.988                                           | 40                     |
| С    | 2.457                                           | 40                     |

The facilities have also been designed to ensure that the proposed release rates are equal to or less than 90% of the pre-development peak flow rate as determined by UD-Detention.

The previous section outlined the implementation of a sediment forebay at each concentrated pond inflow point which will release 2% of the 100-year un-detained event.

A separate operation and maintenance plan will be prepared for the facility per MHFD standards are part of the facility as-built process. As such, detailed operation and maintenance information will be provided therein. For purposes of this report, the facility's operation and maintenance plan will be consistent with other facilities of this nature. Maintenance information is available from the Mile High Flood Control District should the facility specific operation and maintenance manual be misplaced.

#### 4.4 Floodplain Modification

As mentioned previously, a portion of Section 8 is inundated by the 100-year floodplain which is being amended via construction drawings contained in this package. That design was completed as part of the Pioneer Village Phase I Drainage Study which is attached hereto as a supplement.

### 4.5 Additional Permitting Requirements

Based on background information available and existing site features, no additional permits aside from the local jurisdiction's required applications typical for this type of project.

#### 4.6 General

At the back of this report, maps and supporting calculations have been provided which support the design concepts and conclusions outlined in this report. A summary of the Appendices is provided on the following page:

| Appendix   | Title              | Included Material                                                                                                |
|------------|--------------------|------------------------------------------------------------------------------------------------------------------|
| Appendix A | Hydrology          | <ul> <li>UDFCD Table 6-3 and 6-4</li> <li>Impervious Percentage Calcs</li> <li>UDFCD's UD Rationale</li> </ul>   |
| Appendix B | Hydraulics         | <ul> <li>Stormwater Studio Outputs</li> <li>Inlet Carry Over Calculations</li> <li>Inlet Spreadsheets</li> </ul> |
| Appendix C | EDB Pond Details   | <ul> <li>UDFCD UD-Detention Workbook</li> <li>Trickle Channel Section</li> <li>Forebay Notch Sizing</li> </ul>   |
| Appendix D | Reference Material | <ul> <li>FIRM Map Index – Weld County Un-<br/>incorporated</li> </ul>                                            |
| Appendix E | Drainage Maps      | Post Development Drainage Map                                                                                    |
| Appendix F | Soils Information  | Web Soil Survey Report                                                                                           |

# Section V – Conclusions

### 5.1 Compliance with Standards

As demonstrated throughout this report and concluded in Paragraph 5.3 below, the Stormwater Management Plan proposed for the subject property is considered adequate based upon the analysis completed. Our drainage design was particularly focused on the storm drain collection and conveyance system and compliance with water quality and runoff reduction requirements outlined in the Weld County Standards and Specifications as well as Volumes One through Three of UDFCD's Stormwater Criteria.

#### 5.2 Variances

Based on the current design, no variances to the criteria outlined by Weld County or MHFD have been made.

#### 5.3 Drainage Concept

As shown the in previous sections and the appendices herein, the overall effectiveness of the post construction stormwater management plan outlined herein is considered adequate for the proposed development.

Based on the land cover conditions within the basin, the storm drain collection and conveyance systems are adequate to capture runoff during the minor and major event without generating excessive ponding within the Right of Way. The hydraulic grade line calculations demonstrate that all pipes will operate under normal flow conditions during the minor event. While many pipes will surcharge during a 100-year storm event, the HGLs for each pipe were designed to remain 9" below surface level. The only exception to this is CI 2.00, in which the HGL exceed 9" below surface level but remains below surface level.

As shown in the UD-Inlet Spreadsheet, the proposed roadways and allowable spreading parameters provide adequate street capacity to mitigate hydroplaning issues and provide the necessary travel lanes during the major event.

The stormwater management facility is also adequately sized to provide water quality treatment for both proposed and anticipated future impervious surfaces tributary to the EDBs. The facilities will reduce runoff volumes below pre-developed levels to mitigate any potential impacts of this development on downstream neighbors and existing drainage infrastructure.

### Section VI – References

- 1. Weld County Standards and Specifications, July 2017
- Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, Volume 1 revised March 2017, Volume 2 revised September 2017, Volume 3 Revised November 2010
- 3. Urban Drainage Technical Memo T-5, Extended Detention Basins
- 4. Urban Drainage Technical Memo T-12, Outlet Structure



| Land Use or                                        | Percentage Imperviousness<br>(%) |  |  |
|----------------------------------------------------|----------------------------------|--|--|
| Surface Characteristics                            |                                  |  |  |
| Business:                                          |                                  |  |  |
| Downtown Areas                                     | 95                               |  |  |
| Suburban Areas                                     | 75                               |  |  |
| Residential lots (lot area only):                  |                                  |  |  |
| Single-family                                      |                                  |  |  |
| 2.5 acres or larger                                | 12                               |  |  |
| 0.75 – 2.5 acres                                   | 20                               |  |  |
| 0.25 – 0.75 acres                                  | 30                               |  |  |
| 0.25 acres or less                                 | 45                               |  |  |
| Apartments                                         | 75                               |  |  |
| Industrial:                                        |                                  |  |  |
| Light areas                                        | 80                               |  |  |
| Heavy areas                                        | 90                               |  |  |
| Parks, cemeteries                                  | 10                               |  |  |
| Playgrounds                                        | 25                               |  |  |
| Schools                                            | 55                               |  |  |
| Railroad yard areas                                | 50                               |  |  |
| Undeveloped Areas:                                 |                                  |  |  |
| Historic flow analysis                             | 2                                |  |  |
| Greenbelts, agricultural                           | 2                                |  |  |
| Off-site flow analysis (when land use not defined) | 45                               |  |  |
| Streets:                                           |                                  |  |  |
| Paved                                              | 100                              |  |  |
| Gravel (packed)                                    | 40                               |  |  |
| Drive and walks                                    | 90                               |  |  |
| Roofs                                              | 90                               |  |  |
| Lawns, sandy soil                                  | 2                                |  |  |
| Lawns, clayey soil                                 | 2                                |  |  |

Table 6-3. Recommended percentage imperviousness values

| NRCS          |                    | Storm Return Period  |                      |                      |                      |                      |                      |
|---------------|--------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Soil<br>Group | 2-Year             | 5-Year               | 10-Year              | 25-Year              | 50-Year              | 100-Year             | 500-Year             |
| Α             | C <sub>A</sub> =   | C <sub>A</sub> =     | C <sub>A</sub> =     | C <sub>A</sub> =     | C <sub>A</sub> =     | C <sub>A</sub> =     | C <sub>A</sub> =     |
|               | $0.84i^{1.302}$    | $0.86i^{1.276}$      | $0.87i^{1.232}$      | $0.88i^{1.124}$      | 0.85 <i>i</i> +0.025 | 0.78 <i>i</i> +0.110 | 0.65 <i>i</i> +0.254 |
| В             | C <sub>B</sub> =   | C <sub>B</sub> =     | C <sub>B</sub> =     | $C_B =$              | C <sub>B</sub> =     | C <sub>B</sub> =     | $C_B =$              |
|               | $0.84i^{1.169}$    | $0.86i^{1.088}$      | 0.81 <i>i</i> +0.057 | 0.63 <i>i</i> +0.249 | 0.56 <i>i</i> +0.328 | 0.47 <i>i</i> +0.426 | 0.37 <i>i</i> +0.536 |
| C/D           | C <sub>C/D</sub> = | C <sub>C/D</sub> =   | C <sub>C/D</sub> =   | $C_{C/D} =$          | C <sub>C/D</sub> =   | C <sub>C/D</sub> =   | $C_{C/D} =$          |
|               | $0.83i^{1.122}$    | 0.82 <i>i</i> +0.035 | 0.74 <i>i</i> +0.132 | 0.56 <i>i</i> +0.319 | 0.49 <i>i</i> +0.393 | 0.41 <i>i</i> +0.484 | 0.32 <i>i</i> +0.588 |

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

Where:

- i = % imperviousness (expressed as a decimal)
- $C_A$  = Runoff coefficient for Natural Resources Conservation Service (NRCS) HSG A soils
- $C_B$  = Runoff coefficient for NRCS HSG B soils
- $C_{C/D}$  = Runoff coefficient for NRCS HSG C and D soils.

The values for various catchment imperviousness and storm return periods are presented graphically in Figures 6-1 through 6-3, and are tabulated in Table 6-5. These coefficients were developed for the Denver region to work in conjunction with the time of concentration recommendations in Section 2.4. Use of these coefficients and this procedure outside of the semi-arid climate found in the Denver region may not be valid. The UD-Rational Excel workbook performs all the needed calculations to find the runoff coefficient given the soil type and imperviousness and the reader may want to take advantage of this macro-enabled Excel workbook that is available for download from the UDFCD's website www.udfcd.org.

See Examples 7.1 and 7.2 that illustrate the Rational Method.



| Overall Inputs     |              |
|--------------------|--------------|
| Land Use           | % Impervious |
| Open Space/Lawn    | 0.02         |
| Hardscape/Pavement | 1            |
| Roof               | 0.9          |
| Residential        | 0.55         |
| Packed Gravel      | 0.4          |

|               |                 |                               |             |          | Pond A     | A Percent Imp | ervious Calc | ulations |           |          |           |          |         |                          |
|---------------|-----------------|-------------------------------|-------------|----------|------------|---------------|--------------|----------|-----------|----------|-----------|----------|---------|--------------------------|
| Subbasin      | Total Area (ac) | NRCS Hydrologic<br>Soil Group | Open Space/ | Lawn     | Hardscape/ | Pavement      | R            | oof      | Resi      | dential  | Packee    | d Gravel | % Check | Composite Imperviousness |
|               |                 |                               | Area (ac)   | Imp (ac) | Area (ac)  | Imp (ac)      | Area (ac)    | Imp (ac) | Area (ac) | Imp (ac) | Area (ac) | Imp (ac) |         |                          |
|               |                 |                               |             |          |            |               |              |          |           |          |           |          |         |                          |
| CI2.06        | 6.37            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 6.37      | 3.50     | 0.00      | 0        | 100.00% | 55%                      |
| CI2.05        | 7.16            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 7.16      | 3.94     | 0.00      | 0        | 100.00% | 55%                      |
| CI2.07        | 1.57            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 1.57      | 0.86     | 0.00      | 0        | 100.00% | 55%                      |
| CI2.04        | 2.52            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 2.52      | 1.39     | 0.00      | 0        | 100.00% | 55%                      |
| CI2.03        | 5.24            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 5.24      | 2.88     | 0.00      | 0        | 100.00% | 55%                      |
| CI2.02        | 2.90            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 2.90      | 1.60     | 0.00      | 0        | 100.00% | 55%                      |
| CI2.01        | 3.85            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 3.85      | 2.12     | 0.00      | 0        | 100.00% | 55%                      |
| CI2.00        | 6.44            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 6.44      | 3.54     | 0.00      | 0        | 100.00% | 55%                      |
| CI1.00        | 3.09            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 3.09      | 1.70     | 0.00      | 0        | 100.00% | 55%                      |
| CI1.04        | 4.97            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 4.97      | 2.73     | 0.00      | 0        | 100.00% | 55%                      |
| CI1.03        | 3.25            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 3.25      | 1.79     | 0.00      | 0        | 100.00% | 55%                      |
| CI1.05        | 2.26            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 2.26      | 1.24     | 0.00      | 0        | 100.00% | 55%                      |
| CI1.02        | 4.21            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 4.21      | 2.32     | 0.00      | 0        | 100.00% | 55%                      |
| CI1.01        | 1.01            | A                             | 0.00        | 0.00     | 0.00       | 0.00          | 0.00         | 0.00     | 1.01      | 0.56     | 0.00      | 0        | 100.00% | 55%                      |
| CI1.07        | 0.36            | A                             | 0.06        | 0.00     | 0.30       | 0.30          | 0.00         | 0.00     | 0.00      | 0.00     | 0.00      | 0        | 100.00% | 84%                      |
| CI1.08        | 0.84            | A                             | 0.15        | 0.00     | 0.69       | 0.69          | 0.00         | 0.00     | 0.00      | 0.00     | 0.00      | 0        | 100.00% | 82%                      |
| CI1.06        | 0.70            | A                             | 0.26        | 0.01     | 0.44       | 0.44          | 0.00         | 0.00     | 0.00      | 0.00     | 0.00      | 0        | 100.00% | 64%                      |
| Pond (Direct) | 9.68            | A                             | 9.68        | 0.19     | 0.00       | 0.00          | 0.00         | 0.00     | 0.00      | 0.00     | 0.00      | 0        | 100.00% | 2%                       |
| Total Site    | 66.42           | A                             | 10.15       | 0.20     | 1.43       | 1.43          | 0.00         | 0.00     | 54.84     | 30.16    | 0.00      | 0        | 100.00% | 48%                      |
| CI10.1        | 1.00            | A                             | 0.26        | 0.01     | 0.74       | 0.74          | 0.00         | 0.00     | 0.00      | 0.00     | 0.00      | 0        | 100.00% | 75%                      |

| 1                 |                                  |            |      |         |             |             |             |                     |            |                       |                                               |                                               |                                        |                                      |                                               | Calcula                               | ation of P                             | eak Runc                                         | off using R                             | ational M                      | lethod                                         |                                                  |                                  |                                  |                                  |      |                                               |             |                               |        |        |               |           |          |                |            |          |
|-------------------|----------------------------------|------------|------|---------|-------------|-------------|-------------|---------------------|------------|-----------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------|----------------------------------|----------------------------------|------|-----------------------------------------------|-------------|-------------------------------|--------|--------|---------------|-----------|----------|----------------|------------|----------|
|                   | er: TJH<br>ny: SSD<br>te: 3/24/2 | 021        |      |         | Version 2.  |             |             | 2017<br>Duired user | ripput     |                       | t <sub>i</sub> =                              | 0.395(1.1 - C <sub>5</sub> )                  |                                        | Computed                             | $t_c = t_i + t_t$                             |                                       |                                        | t <sub>minimum</sub> =<br>t <sub>minimum</sub> = | 5 (urban)<br>10 (non-urban)             |                                |                                                |                                                  |                                  |                                  |                                  | 2-vr | Atlas 14 Rainfall D<br>5-yr 10-y<br>1.14 1.41 | r 25-v      | r 50-vr                       | 100-vr | 500-vr | n depths obta | ined from | the NOAA | website (click | this link) |          |
| Proje             | ct: Pionee                       | er Village |      |         | Cells of th | his color a | are for opt | tional over         | ride value | es<br>ed on override: | B t <sub>t</sub>                              | $= \frac{L_t}{60K\sqrt{S_t}} = \frac{L}{60K}$ | r <u>t</u><br>IV <sub>t</sub>          | Regional t                           | <sub>c</sub> = (26 – 17i)                     | $+\frac{L_t}{60(14i+9)}$              | $\sqrt{S_t}$                           | Selected t <sub>c</sub> =                        | = max{t <sub>minimum</sub>              | , min(Comput                   | ed t <sub>c</sub> , Regional                   | t <sub>c</sub> )}                                |                                  |                                  |                                  | а    | b c<br>10.00 0.78                             |             | $hr) = \frac{a * l}{(b + t)}$ |        | 3.65   |               |           | Q(cf     | (s) = CIA      | ]          |          |
|                   |                                  |            |      |         |             | Rur         | noff Coeff  | ficient, C          |            |                       |                                               | Overla                                        | and (Initial) Flo                      | w Time                               |                                               |                                       |                                        | Channe                                           | elized (Travel) F                       | low Time                       |                                                |                                                  | Tim                              | e of Concentr                    | ation                            |      | Rain                                          | fall Intens | ity, I (in/hr)                |        |        |               |           | Peak F   | low, Q (cfs)   |            |          |
| Subcatchm<br>Name | ent Area<br>(ac)                 |            |      | es 2-yr | 5-yr        | 10-yr       | 25-у        | r 50-y              | r 100      | 0-yr 500-yr           | Overland<br>Flow Lengt<br>L <sub>i</sub> (ft) | U/S<br>Elevation<br>(ft)<br>(Optional)        | D/S<br>Elevation<br>(ft)<br>(Optional) | Overland<br>Flow Slope<br>Si (ft/ft) | Overland<br>Flow Time<br>t <sub>i</sub> (min) | Channelized<br>Flow Length<br>Lt (ft) | U/S<br>Elevation<br>(ft)<br>(Optional) | D/S<br>Elevation<br>(ft)<br>(Optional)           | Channelized<br>Flow Slope<br>St (ft/ft) | NRCS<br>Conveyance<br>Factor K | Channelized<br>Flow<br>Velocity<br>Vt (ft/sec) | Channelized<br>Flow Time<br>t <sub>t</sub> (min) | Computed<br>t <sub>c</sub> (min) | Regional<br>t <sub>c</sub> (min) | Selected<br>t <sub>c</sub> (min) | 2-yr | 5-yr 10-y                                     | r 25-y      | r 50-yr                       | 100-yr | 500-yr | 2-yr          | 5-yr      | 10-yr 2  | 25-yr 50-      | yr 100-yr  | r 500-yr |
| CI 1.04           | 4.96                             | 5 A        | 55.0 | 0.39    | 0.40        | 0.42        | 0.45        | 5 0.49              | 9 0.:      | 54 0.61               | 88.50                                         |                                               |                                        | 0.014                                | 10.62                                         | 1065.00                               |                                        |                                                  | 0.013                                   | 20                             | 2.28                                           | 7.78                                             | 18.40                            | 25.97                            | 18.40                            | 1.77 | 2.34 2.90                                     | 3.80        | 4.58                          | 5.46   | 7.87   | 3.38          | 4.66      | 6.00     | 8.51 11.       | 24 14.59   | 23.75    |
| CI 1.03           | 3.26                             | 5 A        | 55.0 |         |             |             |             |                     |            | 54 0.61               | 97.80                                         |                                               |                                        | 0.033                                | 8.41                                          | 1252.70                               |                                        |                                                  | 0.012                                   | 20                             | 2.23                                           | 9.37                                             | 17.78                            | 27.88                            | 17.78                            | 1.80 | 2.38 2.95                                     | i 3.87      | 4.66                          | 5.56   | 8.00   | 2.26          | 3.12      | 4.01     | 5.69 7.5       | 1 9.76     | 15.88    |
| CI 2.05           | 2.29                             | ə A        | 55.0 |         |             |             |             |                     |            | 54 0.61               |                                               |                                               |                                        | 0.031                                | 8.62                                          | 926.50                                |                                        |                                                  | 0.017                                   | 20                             | 2.57                                           | 6.01                                             | 14.63                            | 23.85                            | 14.63                            | 1.98 | 2.62 3.24                                     | 4.25        | 5.12                          | 6.11   | 8.80   | 1.74          | 2.41      | 3.10     | 4.39 5.8       | 0 7.53     | 12.27    |
| CI 1.02           | 2.90                             | A C        | 55.0 | 0.39    | 0.40        | 0.42        | 0.45        | 5 0.49              | 9 0.       | 54 0.61               | 60.00                                         |                                               |                                        | 0.080                                | 4.92                                          | 905.00                                |                                        |                                                  | 0.012                                   | 20                             | 2.19                                           | 6.88                                             | 11.80                            | 24.89                            | 11.80                            | 2.17 | 2.88 3.56                                     | 4.68        | 5.64                          | 6.72   | 9.68   | 2.43          | 3.36      | 4.32     | 6.12 8.0       | 9 10.50    | 17.09    |
| CI 1.01           | 1.00                             | A C        | 55.0 | 0.39    | 0.40        | 0.42        | 0.45        | 5 0.49              | 9 0.1      | 54 0.61               | 19.80                                         |                                               |                                        | 0.038                                | 3.62                                          | 1035.80                               |                                        |                                                  | 0.011                                   | 20                             | 2.10                                           | 8.23                                             | 11.85                            | 26.51                            | 11.85                            | 2.17 | 2.88 3.56                                     | 4.67        | 5.63                          | 6.71   | 9.67   | 0.84          | 1.16      | 1.49     | 2.11 2.1       | 8 3.61     | 5.88     |
| CI 2.02           | 2.90                             | A C        | 55.0 |         |             |             |             |                     |            | 54 0.61               | 94.50                                         |                                               |                                        | 0.021                                | 9.60                                          | 1049.50                               |                                        |                                                  | 0.023                                   | 20                             | 3.03                                           | 5.77                                             | 15.36                            | 23.56                            | 15.36                            |      | 2.56 3.16                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 2.01           | 3.85                             | 5 A        | 55.0 |         |             |             |             |                     |            | 54 0.61               | 93.60                                         |                                               |                                        | 0.025                                | 9.02                                          | 1300.00                               |                                        |                                                  | 0.021                                   | 20                             | 2.90                                           | 7.48                                             | 16.49                            | 25.60                            | 16.49                            |      | 2.47 3.06                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 2.03           | 5.26                             | 5 A        | 55.0 |         |             |             |             |                     |            | 54 0.61               | 93.80                                         |                                               |                                        | 0.021                                | 9.53                                          | 1892.60                               |                                        |                                                  | 0.013                                   | 20                             | 2.28                                           | 13.83                                            | 23.36                            | 33.22                            |                                  |      | 2.06 2.55                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 2.04           | 2.52                             | 2 A        | 55.0 |         |             |             |             |                     |            | 54 0.61               | 30.40                                         |                                               |                                        | 0.019                                | 5.63                                          | 1091.62                               |                                        |                                                  | 0.021                                   | 20                             | 2.90                                           | 6.28                                             | 11.90                            | 24.17                            |                                  |      | 2.87 3.55                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 2.05           | 5.66                             |            | 55.0 |         |             |             |             |                     |            | 54 0.61               | 91.70                                         |                                               |                                        | 0.023                                | 9.17                                          | 1353.07                               |                                        |                                                  | 0.016                                   | 20                             | 2.53                                           | 8.91                                             | 18.09                            | 27.33                            | 21.61                            |      | 2.36 2.92                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 2.06           | 6.37                             |            | 55.0 |         |             |             |             |                     |            | 54 0.61               | 98.60                                         |                                               |                                        | 0.018                                | 9,71                                          | 1545.26                               |                                        |                                                  | 0.013                                   | 20                             | 2.28                                           | 11.29                                            | 21.61                            | 30.18                            | 21.61                            |      | 1.88 2.33                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 2.00           | 6.40                             | _          | 55.0 |         |             |             |             |                     |            | 54 0.61               | 112.00                                        |                                               |                                        | 0.026                                | 6.33                                          | 2466.80                               |                                        |                                                  | 0.013                                   | 20                             | 2.31                                           | 17.82                                            | 12.01                            | 38.00                            |                                  |      | 2.86 3.54                                     |             | 0.00                          |        |        |               |           |          |                |            |          |
| CI 2.07           | 1.57                             | _          | 55.0 |         |             |             |             |                     |            | 54 0.61               | 30.00                                         |                                               |                                        | 0.013                                | 10.31                                         | 1003.50                               |                                        |                                                  | 0.022                                   | 20                             | 2.95                                           | 5.68                                             | 18.63                            | 23.45                            |                                  |      | 2.33 2.88                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 1.00           | 2.71                             | _          | 55.0 |         |             |             |             |                     |            | 53 0.60               | 96.60                                         |                                               |                                        | 0.018                                | 5.61                                          | 1300.98                               |                                        |                                                  | 0.017                                   | 20                             | 2.61                                           | 8.32                                             | 10.29                            | 26.61                            |                                  |      | 3.05 3.77                                     |             |                               |        |        |               |           |          |                |            |          |
| Ci 1.06           | 0.83                             |            | 54.0 |         |             |             |             |                     |            | 74 0.78               | 10.00                                         |                                               |                                        | 0.009                                | 2.83                                          | 633.00                                |                                        |                                                  | 0.013                                   | 20                             | 2.25                                           | 4.68                                             | 4.69                             | 22.47                            |                                  |      | 3.87 4.78                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 1.07           | 0.31                             |            | 81.4 |         |             |             |             |                     |            | 73 0.77               | 28.00                                         |                                               |                                        | 0.036                                | 2.68                                          | 365.70                                |                                        |                                                  | 0.027                                   | 20                             | 3.29                                           | 1.85                                             | 8.06                             | 13.99                            |                                  |      | 3.34 4.13                                     |             |                               |        |        |               |           |          |                |            |          |
| CI 1.08           | 0.74                             | _          | 80.0 |         |             |             |             |                     |            | 13 0.27               | 17.00                                         |                                               |                                        | 0.020                                | 32.35                                         | 912.50                                |                                        |                                                  | 0.020                                   | 20                             | 2.83                                           | 5.38                                             | 34.45                            | 17.72                            |                                  |      | 1.82 2.25                                     |             |                               |        |        |               |           |          |                |            |          |
| Pond A Dire       | ct 9.68                          | 5 A        | 2.0  | 0.01    | 5.01        | 5.01        | 0.01        | . 0.0               |            |                       | 491.00                                        |                                               |                                        | 0.025                                | 52.00                                         | 327.00                                |                                        |                                                  | 0.030                                   | 15                             | 2.60                                           | 2.10                                             |                                  | 29.05                            | 23.00                            |      |                                               | -           | 0.01                          |        |        |               |           |          |                | <u> </u>   |          |
|                   |                                  |            |      |         |             |             |             |                     |            |                       |                                               |                                               |                                        |                                      |                                               |                                       |                                        |                                                  |                                         |                                |                                                |                                                  |                                  |                                  |                                  |      |                                               |             |                               |        |        |               |           |          |                |            |          |

#### Pre-Development C Value Calculations Pioneer Village Keenesburg, COLORADO

| Global Parameters      | 1      |
|------------------------|--------|
| Land Use               | % Imp. |
| Open Space/Landscaping | 2      |
| Hardscaping            | 100    |
| Residential Lots       | 55     |

|               |            |                 | F          | Pond B Percer | nt Impervi | ous Calculatio | ns     |           |                |        |                       |
|---------------|------------|-----------------|------------|---------------|------------|----------------|--------|-----------|----------------|--------|-----------------------|
|               |            | Land Use Area p | er Sub-Bas | in            |            |                |        |           |                | 0.000  | fficient <sup>2</sup> |
| Subbasin      | Total Area | Hardsca         | nina       | Ope           |            | Residentia     | allats |           | Composite      |        | mcient                |
| Cubbuoin      | (acres)    |                 |            | Space/Lanc    |            | reordonic      |        | % Check   | Imperviousness | 5-year | 100-yea               |
|               |            | Area (acres)    | %          | Area (acres)  | %          | Area (acres)   | %      |           |                |        |                       |
| CI 3.00       | 1.29       | 1.10            | 85.0%      | 0.19          | 15.0%      | 0.00           | 0.0%   | 100.00%   | 85%            | 0.79   | 0.84                  |
| CI 3.01       | 3.94       | 0.00            | 0.0%       | 0.00          | 0.0%       | 3.94           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 3.02       | 2.40       | 0.00            | 0.0%       | 0.00          | 0.0%       | 2.40           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 3.03       | 1.71       | 0.00            | 0.0%       | 0.00          | 0.0%       | 1.71           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 3.04       | 3.45       | 0.00            | 0.0%       | 0.00          | 0.0%       | 3.45           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 3.05       | 1.38       | 0.00            | 0.0%       | 0.00          | 0.0%       | 1.38           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 3.06       | 1.64       | 0.00            | 0.0%       | 0.00          | 0.0%       | 1.64           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 3.07       | 1.71       | 0.00            | 0.0%       | 0.00          | 0.0%       | 1.71           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 3.08       | 0.38       | 0.32            | 85.0%      | 0.06          | 15.0%      | 0.00           | 0.0%   | 100.00%   | 85%            | 0.79   | 0.84                  |
| CI 3.08A      | 0.28       | 0.24            | 85.0%      | 0.04          | 15.0%      | 0.00           | 0.0%   | 100.00%   | 85%            | 0.79   | 0.84                  |
| CI 3.09       | 2.28       | 0.00            | 0.0%       | 0.00          | 0.0%       | 2.28           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 4.00       | 4.63       | 0.00            | 0.0%       | 0.00          | 0.0%       | 4.63           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 4.01       | 2.48       | 0.00            | 0.0%       | 0.00          | 0.0%       | 2.48           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 4.01A      | 1.30       | 1.11            | 85.0%      | 0.20          | 15.0%      | 0.00           | 0.0%   | 100.00%   | 85%            | 0.79   | 0.84                  |
| CI 4.04       | 3.17       | 0.00            | 0.0%       | 0.00          | 0.0%       | 3.17           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 4.05       | 2.06       | 0.00            | 0.0%       | 0.00          | 0.0%       | 2.06           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 4.06       | 0.90       | 0.00            | 0.0%       | 0.00          | 0.0%       | 0.90           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| CI 4.07       | 2.36       | 0.00            | 0.0%       | 0.00          | 0.0%       | 2.36           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| DI 4.02       | 4.35       | 0.00            | 0.0%       | 0.00          | 0.0%       | 4.35           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
| DI 4.03       | 1.50       | 0.00            | 0.0%       | 0.00          | 0.0%       | 1.50           | 100.0% | 100.00%   | 55%            | 0.51   | 0.60                  |
|               |            |                 |            |               |            |                |        |           |                |        | <u> </u>              |
| uture CR 24   | 5.16       | 4.39            | 85.0%      | 0.77          | 15.0%      | 0.00           | 0.0%   | 100.00%   | 85%            | 0.79   | 0.84                  |
| Pond (Direct) | 3.27       | 0.49            | 15.0%      | 2.78          | 85.0%      | 0.00           | 0.0%   | 100.00%   | 17%            | 0.16   | 0.29                  |
|               | 5.21       | 0.43            | 13.070     | 2.10          | 00.070     | 0.00           | 0.070  | 100.00 /0 | 1770           | 0.10   | 0.23                  |
| OTAL SITE     | 51.64      | 7.64            | 14.8%      | 4.04          | 7.8%       | 39.96          | 77.4%  | 100.00%   | 58%            | 0.53   | 0.62                  |

<sup>1</sup>From Table 6-3 in UDFCD Volume 1

<sup>2</sup>From Table 6-4 in UDFCD Volume 1

#### STANDARD FORM SF-2

#### TIME OF CONCENTRATION - POST DEV

Development: . Calculated By:

Pioneer Village ~ Keenesburg, CO TH

Date: 3/14/2021

|           |        |          |                |                   |            | Ti                    | me of Cond | centration, | T <sub>c</sub> |                   |                                    | Minimum    | Tc in Urbar          | n Areas                 | Einel T              |           |         |
|-----------|--------|----------|----------------|-------------------|------------|-----------------------|------------|-------------|----------------|-------------------|------------------------------------|------------|----------------------|-------------------------|----------------------|-----------|---------|
|           | Subbas | sin Data |                | Initial/          | Overland T | ime (t <sub>i</sub> ) |            | Tr          | ravel Time     | (t <sub>t</sub> ) |                                    |            | T <sub>c</sub> Check |                         | Final T <sub>c</sub> | Ren       | arks    |
|           |        |          |                |                   |            |                       |            |             |                |                   |                                    |            |                      |                         |                      |           |         |
| Sub-Basin | Area   | C5       | imperviousness | Length (300' max) | Slope      | ţ,                    | Length     | Slope       | Velocity       | t <sub>t</sub>    | t <sub>6</sub> =ti,+t <sub>i</sub> | Comp $T_c$ | Total Length         | $T_{\rm c}$ (urban) Min |                      |           |         |
|           | acres  |          |                | ft                | %          | min.                  | ft         | %           | fps            | min               | min                                | Tc         | min                  | min                     | min                  |           |         |
| 1         | 2      | 3        | 4              | 5                 | 6          | 7                     | 8          | 9           | 10             | 11                | 12                                 | 13         | 14                   | 15                      | 16                   |           |         |
| CI 3.00   | 1.29   | 0.79     | 0.85           | 17                | 2.0%       | 1.8                   | 1200       | 1.5%        | 2.4            | 8.2               | 10.0                               | 10.0       | 1217                 | 9.6                     | 9.6                  |           |         |
| CI 3.01   | 3.94   | 0.51     | 0.55           | 20                | 2.0%       | 3.8                   | 1750       | 1.5%        | 2.4            | 11.9              | 15.7                               | 15.7       | 1770                 | 18.0                    | 15.7                 |           |         |
| CI 3.02   | 2.40   | 0.51     | 0.55           | 110               | 2.0%       | 9.0                   | 940        | 1.8%        | 2.7            | 5.8               | 14.8                               | 14.8       | 1050                 | 14.7                    | 14.7                 |           |         |
| CI 3.03   | 1.71   | 0.51     | 0.55           | 93                | 2.6%       | 7.6                   | 745        | 1.8%        | 2.7            | 4.6               | 12.2                               | 12.2       | 838                  | 13.2                    | 12.2                 |           |         |
| CI 3.04   | 3.45   | 0.51     | 0.55           | 22                | 1.9%       | 4.1                   | 1365       | 0.8%        | 1.7            | 13.1              | 17.2                               | 17.2       | 1387                 | 16.4                    | 16.4                 |           |         |
| CI 3.05   | 1.38   | 0.51     | 0.55           | 95                | 2.9%       | 7.4                   | 700        | 1.9%        | 2.8            | 4.2               | 11.6                               | 11.6       | 795                  | 12.8                    | 11.6                 |           |         |
| CI 3.06   | 1.64   | 0.51     | 0.55           | 17                | 2.0%       | 3.5                   | 850        | 1.9%        | 2.8            | 5.1               | 8.7                                | 8.7        | 867                  | 13.8                    | 8.7                  |           |         |
| CI 3.07   | 1.71   | 0.51     | 0.55           | 20                | 2.0%       | 3.8                   | 980        | 0.8%        | 1.7            | 9.4               | 13.3                               | 13.3       | 1000                 | 14.4                    | 13.3                 |           |         |
| CI 3.08   | 0.38   | 0.79     | 0.85           | 21                | 2.0%       | 2.0                   | 313        | 0.8%        | 1.7            | 3.0               | 5.1                                | 5.1        | 334                  | 6.4                     | 5.1                  |           |         |
| CI 3.08A  | 0.28   | 0.79     | 0.85           | 21                | 2.0%       | 2.0                   | 313        | 0.8%        | 1.7            | 3.0               | 5.1                                | 5.1        | 334                  | 6.4                     | 5.1                  |           |         |
| CI 3.09   | 2.28   | 0.51     | 0.55           | 23                | 2.0%       | 4.1                   | 1030       | 2.0%        | 2.8            | 6.1               | 10.2                               | 10.2       | 1053                 | 14.7                    | 10.2                 |           |         |
| CI 4.00   | 4.63   | 0.51     | 0.55           | 21                | 2.0%       | 3.9                   | 2150       | 1.6%        | 2.6            | 14.0              | 17.9                               | 17.9       | 2171                 | 19.9                    | 17.9                 |           |         |
| CI 4.01   | 2.48   | 0.51     | 0.55           | 21                | 2.0%       | 3.9                   | 1575       | 2.3%        | 3.0            | 8.7               | 12.6                               | 12.6       | 1596                 | 17.2                    | 12.6                 |           |         |
| CI 4.01A  | 1.30   | 0.79     | 0.85           | 44                | 3.4%       | 2.5                   | 1365       | 2.3%        | 3.0            | 7.5               | 10.0                               | 10.0       | 1409                 | 9.1                     | 9.1                  |           |         |
| DI 4.02   | 4.35   | 0.51     | 0.55           | 75                | 9.0%       | 4.5                   | 1095       | 2.3%        | 3.0            | 6.1               | 10.5                               | 10.5       | 1170                 | 12.3                    | 10.5                 |           |         |
| DI 4.03   | 1.50   | 0.51     | 0.55           | 15                | 2.0%       | 3.3                   | 578        | 2.2%        | 3.0            | 3.3               | 6.6                                | 6.6        | 593                  | 12.5                    | 6.6                  |           |         |
| CI 4.04   | 3.17   | 0.51     | 0.55           | 79                | 8.5%       | 4.7                   | 1252       | 1.8%        | 2.7            | 7.8               | 12.5                               | 12.5       | 1331                 | 12.8                    | 12.5                 |           |         |
| CI 4.05   | 2.06   | 0.51     | 0.55           | 27                | 3.5%       | 3.7                   | 705        | 3.2%        | 3.6            | 3.3               | 7.0                                | 7.0        | 732                  | 12.3                    | 7.0                  |           |         |
| CI 4.06   | 0.90   | 0.51     | 0.55           | 26                | 1.2%       | 5.2                   | 547        | 3.7%        | 3.8            | 2.4               | 7.5                                | 7.5        | 573                  | 13.2                    | 7.5                  |           |         |
| CI 4.07   | 2.36   | 0.51     | 0.55           | 17                | 2.0%       | 3.5                   | 925        | 2.3%        | 3.0            | 5.1               | 8.6                                | 8.6        | 942                  | 14.2                    | 8.6                  |           |         |
|           |        |          |                |                   |            |                       |            |             |                |                   |                                    |            |                      |                         |                      |           |         |
| CI 21B.15 | 1.46   | 0.51     | 0.55           | 109               | 2.7%       | 8.1                   | 248        | 0.5%        | 1.4            | 2.9               | 11.0                               | 11.0       | 357                  | 11.2                    | 11.0                 |           |         |
| CI 21B.14 | 0.98   | 0.51     | 0.55           | 118               | 2.7%       | 8.4                   | 233        | 0.5%        | 1.4            | 2.7               | 11.2                               | 11.2       | 351                  | 11.2                    | 11.2                 |           |         |
| CI 21B.13 | 0.78   | 0.51     | 0.55           | 118               | 2.7%       | 8.4                   | 233        | 0.5%        | 1.4            | 2.7               | 11.2                               | 11.2       | 351                  | 11.2                    | 11.2                 |           |         |
| CI 21B.12 | 1.08   | 0.51     | 0.55           | 108               | 1.4%       | 10.0                  | 297        | 0.9%        | 1.9            | 2.6               | 12.7                               | 12.7       | 405                  | 12.0                    | 12.0                 |           |         |
| CI 21B.11 | 0.98   | 0.51     | 0.55           | 108               | 1.4%       | 10.0                  | 297        | 0.9%        | 1.9            | 2.6               | 12.7                               | 12.7       | 405                  | 12.0                    | 12.0                 |           |         |
| CI 21B.10 | 1.61   | 0.51     | 0.55           | 110               | 1.5%       | 10.0                  | 477        | 0.8%        | 1.8            | 4.4               | 14.4                               | 14.4       | 587                  | 13.0                    | 13.0                 |           |         |
| CI 21B.09 | 10.43  | 0.30     | 0.32           | 300               | 0.9%       | 26.4                  | 1632       | 0.6%        | 1.5            | 18.2              | 44.6                               | 44.6       | 1932                 | 30.5                    | 30.5                 |           |         |
| CI 21B.08 | 1.63   | 0.51     | 0.55           | 111               | 1.4%       | 10.2                  | 686        | 0.7%        | 1.7            | 6.8               | 16.9                               | 16.9       | 797                  | 14.2                    | 14.2                 |           |         |
| CI 21B.07 | 1.03   | 0.40     | 0.43           | 46                | 1.4%       | 7.8                   | 459        | 0.8%        | 1.7            | 4.4               | 12.2                               | 12.2       | 505                  | 14.7                    | 12.2                 |           |         |
| CI 21B.06 | 0.24   | 0.51     | 0.55           | 15                | 2.3%       | 3.2                   | 180        | 1.3%        | 2.3            | 1.3               | 4.5                                | 4.5        | 195                  | 10.6                    | 5.0                  | 5 minutes | minimum |
| CI 21B.05 | 0.95   | 0.51     | 0.55           | 109               | 2.7%       | 8.1                   | 310        | 0.9%        | 1.9            | 2.7               | 10.8                               | 10.8       | 419                  | 11.4                    | 10.8                 |           |         |
| CI 21B.04 | 2.14   | 0.51     | 0.55           | 110               | 3.5%       | 7.5                   | 580        | 0.5%        | 1.4            | 7.1               | 14.5                               | 14.5       | 690                  | 12.2                    | 12.2                 |           |         |
| CI 21B.03 | 2.84   | 0.39     | 0.42           | 173               | 2.3%       | 12.9                  | 697        | 0.5%        | 1.3            | 8.7               | 21.5                               | 21.5       | 870                  | 16.0                    | 16.0                 |           |         |
| CI 21B.02 | 4.75   | 0.21     | 0.23           | 46                | 1.4%       | 9.9                   | 1668       | 0.5%        | 1.3            | 20.7              | 30.6                               | 30.6       | 1714                 | 28.4                    | 28.4                 |           |         |
| CI 21B.01 | 3.12   | 0.51     | 0.55           | 90                | 1.0%       | 10.2                  | 807        | 0.8         | 17.7           | 0.8               | 11.0                               | 11.0       | 897                  | 15.7                    | 11.0                 |           |         |
| Notes:    |        |          |                |                   |            |                       |            |             |                |                   |                                    |            |                      |                         |                      |           |         |

Notes:

1. Flows calculated using the rational method, based on the methods provided in chapter 4 section 4 (rainfall), and Chapter 5 Section 2 (runoff) of the USDCM by UDFCD (2008). 2.  $T_1 = 0.395(1.1-C_{10})(L)^{0.5}/S^{0.33}$ 

3. V=KSw^0.5

#### Pre-Development C Value Calculations Pioneer Village Keenesburg, COLORADO

| Global Parameters      | 1      |
|------------------------|--------|
| Land Use               | % Imp. |
| Open Space/Landscaping | 2      |
| Hardscaping            | 100    |
| Residential Lots       | 55     |

|                |                       |               |             | Pond C In        | npervious | Calculations |         |            |                             |        |                       |
|----------------|-----------------------|---------------|-------------|------------------|-----------|--------------|---------|------------|-----------------------------|--------|-----------------------|
|                |                       | Land Use Area | per Sub-Bas | sin              |           |              |         |            |                             | 0.0    | fficient <sup>2</sup> |
| Subbasin       | Total Area<br>(acres) | Hardsca       | ping        | Ope<br>Space/Lan |           | Residentia   | al Lots | % Check    | Composite<br>Imperviousness | 5-vear | 100-yea               |
|                | (00100)               | Area (acres)  | %           | Area (acres)     | %         | Area (acres) | %       | in chicola | Imperviousness              | J-year | 100-yea               |
| CI 21B.16      | 4.93                  | 0.00          | 0.0%        | 2.39             | 48.5%     | 2.54         | 51.5%   | 100.00%    | 29%                         | 0.27   | 0.39                  |
| CI 21B.15      | 1.46                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.46         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.14      | 0.98                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 0.98         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.13      | 0.78                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 0.78         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.12      | 1.08                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.08         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.11      | 0.98                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 0.98         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.10      | 1.61                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.61         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.09      | 5.50                  | 0.00          | 0.0%        | 2.15             | 39.1%     | 3.35         | 60.9%   | 100.00%    | 34%                         | 0.32   | 0.43                  |
| CI 21B.08      | 1.63                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.63         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.07      | 1.03                  | 0.00          | 0.0%        | 0.23             | 22.3%     | 0.80         | 77.7%   | 100.00%    | 43%                         | 0.40   | 0.50                  |
| CI 21B.06      | 0.24                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 0.24         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.05      | 0.95                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 0.95         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.04      | 2.14                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 2.14         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21B.03      | 2.84                  | 0.00          | 0.0%        | 0.69             | 24.3%     | 2.15         | 75.7%   | 100.00%    | 42%                         | 0.39   | 0.50                  |
| CI 21B.02      | 4.75                  | 0.00          | 0.0%        | 2.89             | 60.8%     | 1.86         | 39.2%   | 100.00%    | 23%                         | 0.21   | 0.34                  |
| CI 21B.01      | 3.12                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 3.12         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
|                |                       |               |             |                  |           |              |         |            |                             |        |                       |
| CI 21A.14      | 1.46                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.46         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.13      | 2.17                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 2.17         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.11      | 1.92                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.92         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.12      | 4.27                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 4.27         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.10      | 6.10                  | 0.00          | 0.0%        | 1.92             | 31.5%     | 4.18         | 68.5%   | 100.00%    | 38%                         | 0.36   | 0.46                  |
| CI 21A.09      | 1.95                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.95         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.08      | 2.33                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 2.33         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.07      | 1.97                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.97         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.06      | 1.19                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.19         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.05      | 3.49                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 3.49         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.04      | 2.55                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 2.55         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.03      | 2.79                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 2.79         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 21A.02A     | 0.25                  | 0.25          | 100.0%      | 0.00             | 0.0%      | 0.00         | 0.0%    | 100.00%    | 100%                        | 0.93   | 0.96                  |
| CI 21A.02      | 9.63                  | 2.36          | 24.5%       | 4.28             | 44.4%     | 2.99         | 31.0%   | 100.00%    | 42%                         | 0.39   | 0.50                  |
| CI 21A.01(S)   | 5.65                  | 1.59          | 28.1%       | 1.81             | 32.0%     | 2.25         | 39.8%   | 100.00%    | 51%                         | 0.47   | 0.56                  |
| CI 21A.01(NE)  | 1.68                  | 1.43          | 85.0%       | 0.25             | 15.0%     | 0.00         | 0.0%    | 100.00%    | 85%                         | 0.79   | 0.84                  |
| CI 21A.01(NW)  | 2.07                  | 1.76          | 85.0%       | 0.31             | 15.0%     | 0.00         | 0.0%    | 100.00%    | 85%                         | 0.79   | 0.84                  |
|                |                       |               |             |                  |           |              |         |            |                             |        |                       |
| CI 17A.14      | 6.34                  | 0.00          | 0.0%        | 1.92             | 30.3%     | 4.42         | 69.7%   | 100.00%    | 39%                         | 0.36   | 0.47                  |
| CI 17A.13      | 2.34                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 2.34         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.12      | 4.05                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 4.05         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.11      | 3.38                  | 0.00          | 0.0%        | 0.59             | 17.5%     | 2.79         | 82.5%   | 100.00%    | 46%                         | 0.43   | 0.52                  |
| CI 17A.10      | 4.33                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 4.33         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.09      | 1.58                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.58         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.08      | 1.33                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.33         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.07      | 6.38                  | 0.00          | 0.0%        | 2.37             | 37.1%     | 4.01         | 62.9%   | 100.00%    | 35%                         | 0.33   | 0.44                  |
| CI 17A.06      | 5.66                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 5.66         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.05      | 4.64                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 4.64         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.04      | 4.06                  | 3.45          | 85.0%       | 0.61             | 15.0%     | 0.00         | 0.0%    | 100.00%    | 85%                         | 0.79   | 0.84                  |
| CI 17A.03      | 1.27                  | 0.00          | 0.0%        | 0.00             | 0.0%      | 1.27         | 100.0%  | 100.00%    | 55%                         | 0.51   | 0.60                  |
| CI 17A.02      | 7.85                  | 2.88          | 36.7%       | 3.09             | 39.4%     | 1.88         | 23.9%   | 100.00%    | 51%                         | 0.47   | 0.56                  |
| CI 17A.01      | 2.44                  | 2.07          | 85.0%       | 0.37             | 15.0%     | 0.00         | 0.0%    | 100.00%    | 85%                         | 0.79   | 0.84                  |
|                |                       |               |             |                  |           |              |         |            |                             |        |                       |
| ond C (Direct) | 3.74                  | 0.19          | 5.0%        | 3.55             | 95.0%     | 0.00         | 0.0%    | 100.00%    | 7%                          | 0.06   | 0.21                  |
|                | 144.88                | 15.98         | 11.0%       | 29.42            | 20.3%     | 99.48        | 68.7%   | 100.00%    | 49%                         | 0.46   | 0.55                  |
| TOTAL SITE     |                       |               |             |                  |           |              |         |            |                             |        |                       |

<sup>1</sup>From Table 6-3 in UDFCD Volume 1

<sup>2</sup>From Table 6-4 in UDFCD Volume 1

#### STANDARD FORM SF-2 TIME OF CONCENTRATION - POST DEV

Development: Calculated By:

Pioneer Village ~ Keenesburg, CO TH

Date: 3/14/2021

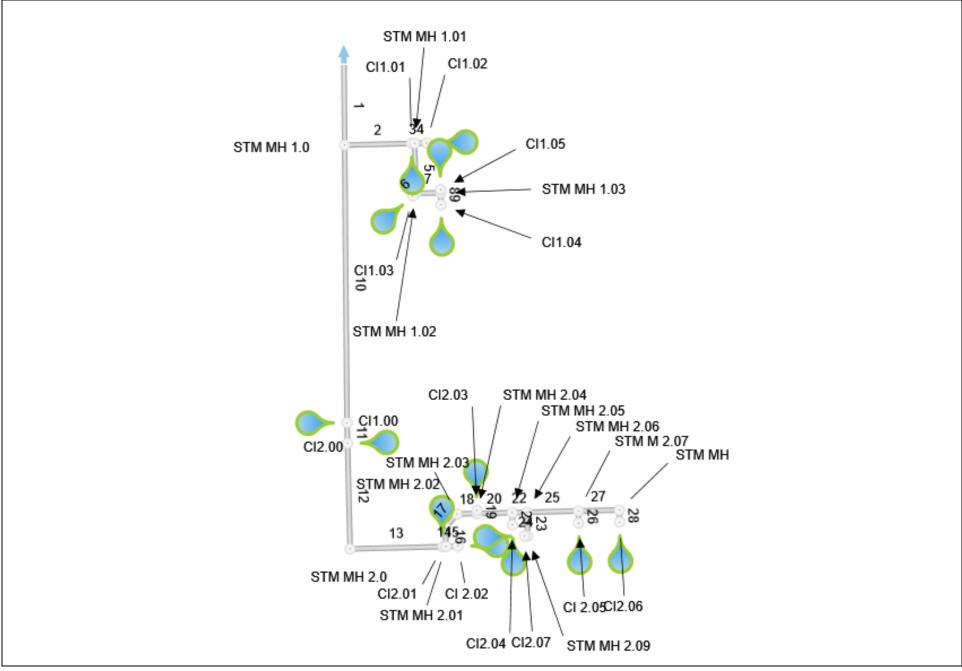
|              | Subbasir | Data |                |                   |            | Ti                    | me of Con | centration, | T <sub>c</sub> |                   |          | Minimum     | Tc in Urban          | Areas                      | Final T.             | Remarks         |     |
|--------------|----------|------|----------------|-------------------|------------|-----------------------|-----------|-------------|----------------|-------------------|----------|-------------|----------------------|----------------------------|----------------------|-----------------|-----|
|              | Subbasir | Data |                | Initial/          | Overland T | ime (t <sub>i</sub> ) |           | Tr          | avel Time      | (t <sub>t</sub> ) |          |             | T <sub>c</sub> Check |                            | rinai i <sub>c</sub> | Remarks         |     |
|              |          |      |                |                   |            |                       |           |             |                |                   |          |             |                      |                            |                      |                 |     |
| Sub-Basin    | Area     | C5   | imperviousness | Length (300' max) | Slope      | ťi                    | Length    | Slope       | Velocity       | tı                | t₀=t₁+tţ | $CompT_{c}$ | Total Length         | T <sub>c</sub> (urban) Min |                      |                 |     |
|              | acres    |      |                | ft                | %          | min.                  | ft        | %           | fps            | min               | min      | Tc          | min                  | min                        | min                  |                 |     |
| 1            | 2        | 3    | 4              | 5                 | 6          | 7                     | 8         | 9           | 10             | 11                | 12       | 13          | 14                   | 15                         | 16                   |                 |     |
| CI 21B.16    | 4.93     | 0.27 | 0.29           | 10                | 2.0%       | 3.8                   | 935       | 0.8%        | 1.7            | 8.9               | 12.7     | 12.7        | 945                  | 19.5                       | 12.7                 |                 |     |
| CI 21B.15    | 1.46     | 0.51 | 0.55           | 109               | 2.7%       | 8.1                   | 248       | 0.5%        | 1.4            | 2.9               | 11.0     | 11.0        | 357                  | 11.2                       | 11.0                 |                 |     |
| CI 21B.14    | 0.98     | 0.51 | 0.55           | 118               | 2.7%       | 8.4                   | 233       | 0.5%        | 1.4            | 2.7               | 11.2     | 11.2        | 351                  | 11.2                       | 11.2                 |                 |     |
| CI 21B.13    | 0.78     | 0.51 | 0.55           | 118               | 2.7%       | 8.4                   | 233       | 0.5%        | 1.4            | 2.7               | 11.2     | 11.2        | 351                  | 11.2                       | 11.2                 |                 |     |
| CI 21B.12    | 1.08     | 0.51 | 0.55           | 108               | 1.4%       | 10.0                  | 297       | 0.9%        | 1.9            | 2.6               | 12.7     | 12.7        | 405                  | 12.0                       | 12.0                 |                 |     |
| CI 21B.11    | 0.98     | 0.51 | 0.55           | 108               | 1.4%       | 10.0                  | 297       | 0.9%        | 1.9            | 2.6               | 12.7     | 12.7        | 405                  | 12.0                       | 12.0                 |                 |     |
| CI 21B.10    | 1.61     | 0.51 | 0.55           | 110               | 1.5%       | 10.0                  | 477       | 0.8%        | 1.8            | 4.4               | 14.4     | 14.4        | 587                  | 13.0                       | 13.0                 |                 |     |
| CI 21B.09    | 5.50     | 0.32 | 0.34           | 300               | 0.9%       | 25.7                  | 1632      | 0.6%        | 1.5            | 18.2              | 43.9     | 43.9        | 1932                 | 29.6                       | 29.6                 |                 |     |
| CI 21B.08    | 1.63     | 0.51 | 0.55           | 111               | 1.4%       | 10.2                  | 686       | 0.7%        | 1.7            | 6.8               | 16.9     | 16.9        | 797                  | 14.2                       | 14.2                 |                 |     |
| CI 21B.07    | 1.03     | 0.40 | 0.43           | 46                | 1.4%       | 7.8                   | 459       | 0.8%        | 1.7            | 4.4               | 12.2     | 12.2        | 505                  | 14.7                       | 12.2                 |                 |     |
| CI 21B.06    | 0.24     | 0.51 | 0.55           | 15                | 2.3%       | 3.2                   | 180       | 1.3%        | 2.3            | 1.3               | 4.5      | 4.5         | 195                  | 10.6                       | 5.0                  | 5 minutes minin | num |
| CI 21B.05    | 0.95     | 0.51 | 0.55           | 109               | 2.7%       | 8.1                   | 310       | 0.9%        | 1.9            | 2.7               | 10.8     | 10.8        | 419                  | 11.4                       | 10.8                 |                 |     |
| CI 21B.04    | 2.14     | 0.51 | 0.55           | 110               | 3.5%       | 7.5                   | 580       | 0.5%        | 1.4            | 7.1               | 14.5     | 14.5        | 690                  | 12.2                       | 12.2                 |                 |     |
| CI 21B.03    | 2.84     | 0.39 | 0.42           | 173               | 2.3%       | 12.9                  | 697       | 0.5%        | 1.3            | 8.7               | 21.5     | 21.5        | 870                  | 16.0                       | 16.0                 |                 |     |
| CI 21B.02    | 4.75     | 0.21 | 0.23           | 46                | 1.4%       | 9.9                   | 1668      | 0.5%        | 1.3            | 20.7              | 30.6     | 30.6        | 1714                 | 28.4                       | 28.4                 |                 |     |
| CI 21B.01    | 3.12     | 0.51 | 0.55           | 90                | 1.0%       | 10.2                  | 807       | 0.8         | 17.7           | 0.8               | 11.0     | 11.0        | 897                  | 15.7                       | 11.0                 |                 |     |
|              |          |      |                |                   |            |                       |           |             |                |                   |          |             |                      |                            |                      |                 |     |
| CI 21A.14    | 1.46     | 0.51 | 0.55           | 105               | 1.0%       | 11.1                  | 284       | 0.8%        | 1.8            | 2.7               | 13.7     | 13.7        | 389                  | 12.3                       | 12.3                 |                 |     |
| CI 21A.13    | 2.17     | 0.51 | 0.55           | 105               | 1.0%       | 11.1                  | 347       | 1.3%        | 2.3            | 2.5               | 13.6     | 13.6        | 348                  | 12.0                       | 12.0                 |                 |     |
| CI 21A.12    | 4.27     | 0.51 | 0.55           | 60                | 1.6%       | 7.2                   | 1256      | 1.1%        | 2.1            | 10.0              | 17.2     | 17.2        | 1316                 | 16.7                       | 16.7                 |                 |     |
| CI 21A.11    | 1.92     | 0.51 | 0.55           | 24                | 2.0%       | 4.2                   | 1096      | 1.0%        | 2.0            | 9.1               | 13.3     | 13.3        | 1097                 | 14.9                       | 13.3                 |                 |     |
| CI 21A.10    | 6.10     | 0.36 | 0.38           | 300               | 1.8%       | 19.6                  | 1188      | 0.8%        | 1.7            | 11.4              | 31.0     | 31.0        | 1488                 | 21.1                       | 21.1                 |                 |     |
| CI 21A.09    | 1.95     | 0.51 | 0.55           | 24                | 2.3%       | 4.0                   | 1171      | 0.9%        | 1.9            | 10.4              | 14.4     | 14.4        | 1171                 | 14.9                       | 14.4                 |                 |     |
| CI 21A.08    | 2.33     | 0.51 | 0.55           | 24                | 2.3%       | 4.0                   | 880       | 0.9%        | 1.8            | 8.0               | 12.0     | 12.0        | 904                  | 13.7                       | 12.0                 |                 |     |
| CI 21A.07    | 1.97     | 0.51 | 0.55           | 83                | 1.8%       | 8.1                   | 610       | 0.8%        | 1.7            | 5.9               | 14.0     | 14.0        | 610                  | 12.8                       | 12.8                 |                 |     |
| CI 21A.06    | 1.19     | 0.51 | 0.55           | 60                | 2.2%       | 6.4                   | 740       | 0.8%        | 1.7            | 7.1               | 13.5     | 13.5        | 800                  | 13.3                       | 13.3                 |                 |     |
| Ci 21A.05    | 3.49     | 0.51 | 0.55           | 25                | 1.5%       | 4.7                   | 705       | 0.7%        | 1.7            | 7.0               | 11.7     | 11.7        | 730                  | 13.7                       | 11.7                 |                 |     |
| CI 21A.04    | 2.55     | 0.51 | 0.55           | 24                | 2.0%       | 4.2                   | 926       | 0.8%        | 1.7            | 8.9               | 13.1     | 13.1        | 926                  | 14.1                       | 13.1                 |                 |     |
| CI 21A.03    | 2.79     | 0.51 | 0.55           | 60                | 1.6%       | 7.2                   | 1256      | 1.1%        | 2.1            | 10.0              | 17.2     | 17.2        | 1316                 | 16.7                       | 16.7                 | _               |     |
| CI 21A.02A   | 0.25     | 0.93 | 1.00           | 23                | 2.0%       | 1.2                   | 15        | 2.0%        | 2.8            | 0.1               | 1.3      | 1.3         | 38                   | 3.1                        | 5.0                  | 5 minutes minin | num |
| CI 21A.02    | 9.63     | 0.39 | 0.42           | 144               | 2.2%       | 11.9                  | 2380      | 0.9%        | 1.9            | 20.6              | 32.5     | 32.5        | 2381                 | 23.7                       | 23.7                 |                 |     |
| CI 21A.01(S) | 5.65     | 0.47 | 0.51           | 20                | 1.6%       | 4.4                   | 890       | 0.4%        | 1.2            | 12.4              | 16.8     | 16.8        | 910                  | 15.4                       | 15.4                 |                 |     |

| CI 21A.01(NE) | 1.68 | 0.79 | 0.85 | 27  | 2.0% | 2.3  | 1870 | 0.4% | 1.2  | 26.0 | 28.3 | 28.3 | 1871 | 12.0 | 12.0 |                   |
|---------------|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|------|-------------------|
| CI 21A.01(NW) | 2.07 | 0.79 | 0.85 | 106 | 2.1% | 4.6  | 2175 | 0.4% | 1.2  | 30.2 | 34.8 | 34.8 | 2281 | 13.4 | 13.4 |                   |
|               |      |      |      |     |      |      |      |      |      |      |      |      |      |      |      |                   |
|               |      |      |      |     |      |      |      |      |      |      |      |      |      |      |      |                   |
| CI 17A.14     | 6.34 | 0.36 | 0.39 | 47  | 1.0% | 9.3  | 2153 | 1.0% | 2.0  | 17.8 | 27.0 | 27.0 | 2200 | 29.3 | 27.0 |                   |
| CI 17A.13     | 2.34 | 0.51 | 0.55 | 24  | 2.0% | 4.2  | 1096 | 1.0% | 2.0  | 9.1  | 13.3 | 13.3 | 1096 | 14.9 | 13.3 |                   |
| CI 17A.12     | 4.05 | 0.51 | 0.55 | 24  | 2.0% | 4.2  | 925  | 1.5% | 2.4  | 6.3  | 10.5 | 10.5 | 949  | 14.2 | 10.5 |                   |
| CI 17A.11     | 3.38 | 0.43 | 0.46 | 13  | 2.0% | 3.5  | 953  | 1.9% | 2.7  | 5.8  | 9.4  | 9.4  | 966  | 16.1 | 9.4  |                   |
| CI 17A.10     | 4.33 | 0.51 | 0.55 | 251 | 2.6% | 12.4 | 734  | 1.7% | 2.6  | 4.7  | 17.1 | 17.1 | 985  | 13.8 | 13.8 |                   |
| CI 17A.09     | 1.58 | 0.51 | 0.55 | 19  | 2.2% | 3.6  | 797  | 2.1% | 2.9  | 4.6  | 8.2  | 8.2  | 816  | 13.4 | 8.2  |                   |
| CI 17A.08     | 1.33 | 0.51 | 0.55 | 98  | 2.4% | 8.0  | 525  | 2.4% | 3.1  | 2.8  | 10.8 | 10.8 | 623  | 12.4 | 10.8 |                   |
| CI 17A.07     | 6.38 | 0.33 | 0.35 | 165 | 3.0% | 12.6 | 1177 | 1.3% | 2.3  | 8.7  | 21.3 | 21.3 | 1342 | 19.0 | 19.0 |                   |
| CI 17A.06     | 5.66 | 0.51 | 0.55 | 19  | 2.2% | 3.6  | 1062 | 1.8% | 2.7  | 6.6  | 10.2 | 10.2 | 1081 | 14.6 | 10.2 |                   |
| CI 17A.05     | 4.64 | 0.51 | 0.55 | 24  | 3.6% | 3.4  | 1052 | 1.6% | 2.5  | 6.9  | 10.3 | 10.3 | 1076 | 13.5 | 10.3 |                   |
| CI 17A.04     | 4.06 | 0.79 | 0.85 | 26  | 1.9% | 2.3  | 2670 | 1.1% | 2.0  | 21.7 | 24.0 | 24.0 | 2696 | 15.2 | 15.2 |                   |
| CI 17A.03     | 1.27 | 0.51 | 0.55 | 15  | 2.0% | 3.3  | 805  | 1.5% | 2.4  | 5.6  | 8.9  | 8.9  | 820  | 13.6 | 8.9  |                   |
| CI 17A.02     | 7.85 | 0.47 | 0.51 | 25  | 2.0% | 4.6  | 2611 | 1.2% | 2.1  | 20.3 | 24.9 | 24.9 | 2636 | 23.3 | 23.3 |                   |
| CI 17A.01     | 2.44 | 0.79 | 0.85 | 24  | 2.6% | 2.0  | 2680 | 1.1  | 21.0 | 2.1  | 4.1  | 4.1  | 2704 | 13.9 | 5.0  |                   |
| 0.00          | #N/A | #N/A | #N/A | -   | -    | -    | 1668 |      | -    | -    | -    | -    | -    | -    | 5.0  | 5 minutes minimum |
| PR20          | #N/A | #N/A | #N/A | 150 | 3.2% | #N/A | 1668 | 0.5% | 1.4  | 19.7 | #N/A | #N/A | 1818 | #N/A | #N/A |                   |
| PR21          | #N/A | #N/A | #N/A | 54  | 5.6% | #N/A | 1668 | 5.0% | 4.5  | 6.2  | #N/A | #N/A | 1722 | #N/A | #N/A |                   |
| PR22          | #N/A | #N/A | #N/A | 97  | 6.5% | #N/A | 1668 | 3.6% | 3.8  | 7.3  | #N/A | #N/A | 1765 | #N/A | #N/A |                   |
|               |      | •    |      | •   | •    |      |      |      |      |      |      | •    |      |      |      | •                 |

Notes:

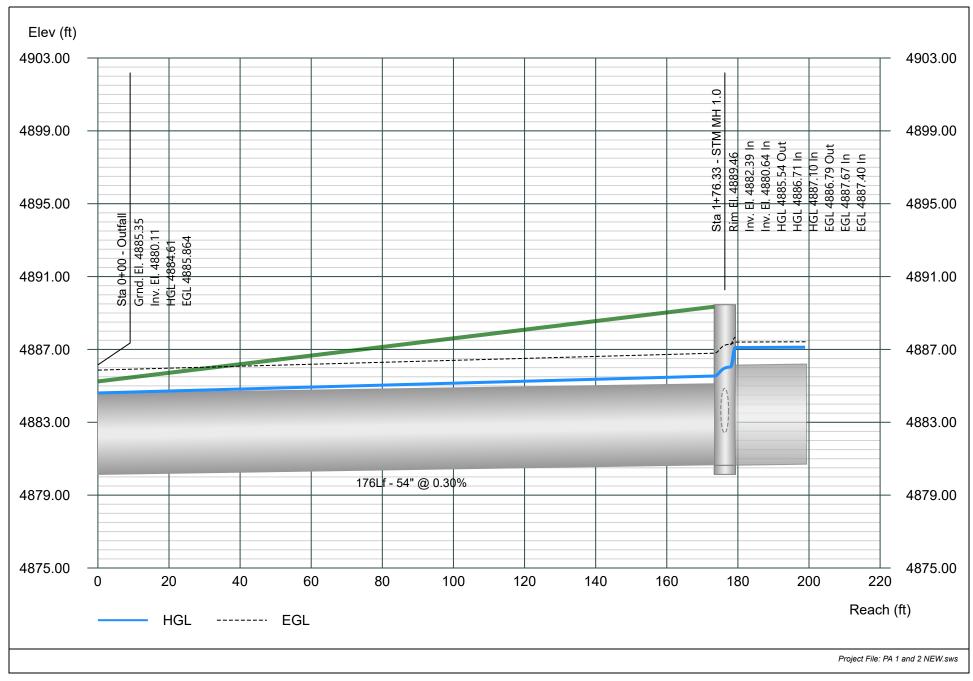
1. Flows calculated using the rational method, based on the methods provided in chapter 4 section 4 (rainfall), and Chapter 5 Section 2 (runoff) of the USDCM by UDFCD (2008). 2.  $T_i = 0.395(1.1-C_{10})(L)^{0.5}/S^{0.33}$ 

3. V=KSw^0.5


#### Pioneer Village Phase 1 Town of Keenesburg

|           |               |           |            | Off       | site Impervio | us Calculations | for Culverts ar | nd Inlets Alor | ng WCR 49 |           |          |           |          |         |            |
|-----------|---------------|-----------|------------|-----------|---------------|-----------------|-----------------|----------------|-----------|-----------|----------|-----------|----------|---------|------------|
|           |               | Total     | NRCS       | Open Spa  | ce/Lawn       | Hardscape/      | Pavement        | Ro             | oof       | Resid     | ential   | Packed    | l Gravel |         | Percent    |
| Structure | Design Points | Area (ac) | Hydrologic | Area (ac) | Imp (ac)      | Area (ac)       | Imp (ac)        | Area (ac)      | Imp (ac)  | Area (ac) | Imp (ac) | Area (ac) | Imp (ac) | % Check | Impervious |
| EX CULV 1 | EX CULV 1     | 5.46      | A          | 4.5692    | 0.091384      | 0.8908          | 0.8908          |                |           |           |          |           |          | 100.00% | 17.99%     |
| P CULV 1  | P CULV 1      | 7.73      | A          | 6.145     | 0.1229        | 1.585           | 1.585           |                |           |           |          |           |          | 100.00% | 22.09%     |
| CI A.00   | P CULV 2      | 0.93      | A          | 0.648     | 0.01296       | 0.282           | 0.282           |                |           |           |          |           |          | 100.00% | 31.72%     |
| Ci A.01   | P CULV 3      | 0.64      | A          | 0.373     | 0.00746       | 0.267           | 0.267           |                |           |           |          |           |          | 100.00% | 42.88%     |

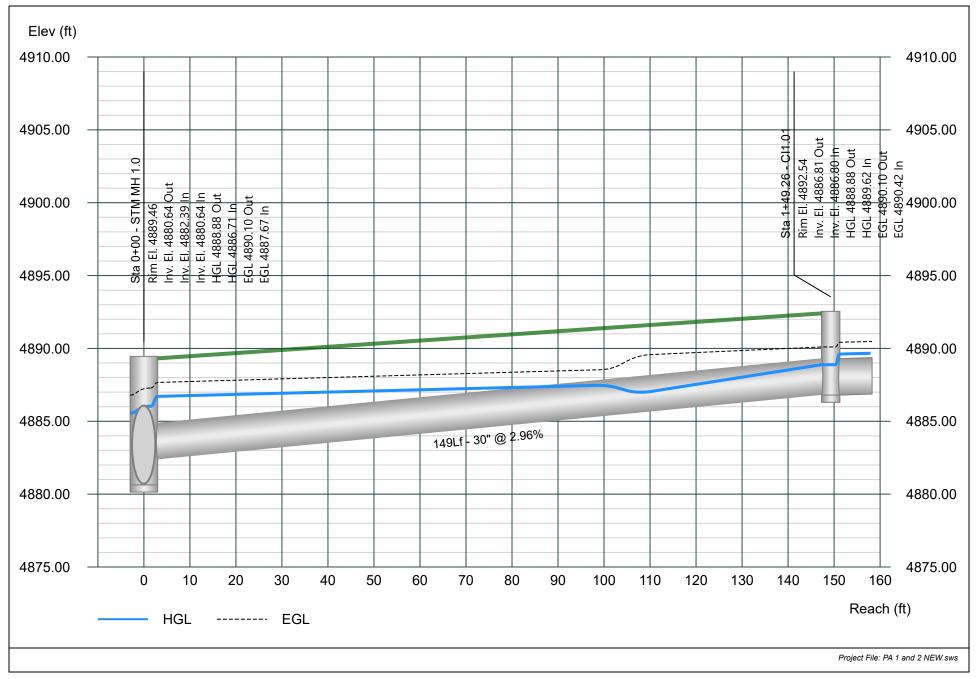
|                     | SSD<br>4/8/2021<br>Pioneer | Village                          |                          |      | Cells of this<br>Cells of this<br>Cells of this<br>Cells of this | color are<br>color are<br>color are | for requir<br>for option<br>for calcul | red user-inp<br>nal override<br>lated result | values | n overrides | t <sub>i</sub> = -      | $\frac{1.395(1.1 - C_5)}{S_1^{0.33}} = \frac{L_t}{60K\sqrt{S_t}} = \frac{L}{60}$ | t.<br>Vt           |                                  | $c = t_i + t_t$<br>= (26 - 17i) - | $+\frac{L_t}{60(14i+9)}$   | 1/St               |                    | 0 (non-urban)<br>max{t <sub>minimum</sub> |          | ed t <sub>e</sub> , Regional        | t <sub>c</sub> )}        | Rainfall Inter                | hour rainfall d           | epth, P1 (in) =<br>Coefficients = | 2-yr<br>0.86 | 5-yr<br>1.14<br>b<br>10.00 | 10-yr 25-<br>1.41 1.8<br>c I(in<br>0.786 | yr = 5i<br>5 = 2i<br>/hr) = -i | alldown list OR e           50-yr         100-yr           2.23         2.66           a * P1<br>(b + tc) <sup>c</sup> 0 |         |        | obtained fro | Q    | Q(cfs) = CIA           | A             | <u>nk)</u> |        |
|---------------------|----------------------------|----------------------------------|--------------------------|------|------------------------------------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------------|--------|-------------|-------------------------|----------------------------------------------------------------------------------|--------------------|----------------------------------|-----------------------------------|----------------------------|--------------------|--------------------|-------------------------------------------|----------|-------------------------------------|--------------------------|-------------------------------|---------------------------|-----------------------------------|--------------|----------------------------|------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------|--------|--------------|------|------------------------|---------------|------------|--------|
| Subcatchmen<br>Name | Area<br>(ac)               | NRCS<br>Hydrologic<br>Soil Group | Percent<br>Imperviousnes | 2-vr | 5-vr                                                             | Runoff                              | f Coeffici<br>25-vr                    |                                              | 100-vr | 500-vr      | Overland<br>Flow Length | U/S                                                                              | D/S<br>Elevation   | V Time<br>Overland<br>Flow Slope |                                   | Channelized<br>Flow Length | U/S<br>Elevation   | D/S                | Channelized<br>Flow Slope                 | NRCS     | Channelized<br>Flow                 | Channelized<br>Flow Time | Computed                      | e of Concentr<br>Regional | Selected                          | 2-vr         |                            | Rainfall Inten                           |                                |                                                                                                                          | r 500-v | r 2-yr | 5-yr         |      | ak Flow, Q (o<br>25-yr |               | 100-yr     | 500-vr |
|                     |                            | Soll Group                       | 5                        | 0.09 |                                                                  | 0.11                                |                                        |                                              | 0.25   | 0.37        | L <sub>i</sub> (ft)     | (ft)<br>(Optional)                                                               | (ft)<br>(Optional) | S <sub>i</sub> (ft/ft)           | t <sub>i</sub> (min)<br>26.55     | L, (ft)                    | (ft)<br>(Optional) | (ff)<br>(Optional) | S <sub>t</sub> (ft/ft)                    | Factor K | Velocity<br>V <sub>t</sub> (ft/sec) | t, (min)                 | t <sub>c</sub> (min)<br>33.33 | t <sub>c</sub> (min)      | t <sub>e</sub> (min)<br>31.77     | 130          | -                          | 2.14 2.8                                 |                                | 3.38 4.03                                                                                                                |         | -      | -            | 1.23 | -                      |               |            | 11.73  |
| EX CULV 1           | 5.46                       | A                                | 18.0                     | 0.00 | 0.10                                                             |                                     |                                        |                                              |        |             | 300.00                  |                                                                                  |                    | 0.017                            |                                   | 708.95                     |                    |                    | 0.014                                     | 15       | 1.74                                | 6.78                     |                               | 31.77                     |                                   | 1.00         |                            |                                          |                                |                                                                                                                          |         |        | 0.51         |      |                        |               |            |        |
| P CULV 1            | 7.73                       | A                                | 22.1                     | 0.12 | 0.13                                                             | 0.14                                | 0.16                                   | 0.21                                         | 0.28   | 0.40        | 300.00                  |                                                                                  |                    | 0.038                            | 19.62                             | 1022.00                    |                    |                    | 0.017                                     | 15       | 1.93                                | 8.81                     | 28.43                         | 33.18                     | 28.43                             | 1.39         | 1.85                       | 2.28 3.0                                 | 0 3                            | 3.61 4.31                                                                                                                | 6.20    | 1.27   | 1.79         | 2.40 | 3.75                   | 5.96          | 9.39       | 19.01  |
| CI A.00             | 0.93                       | A                                | 31.7                     | 0.19 | 0.20                                                             | 0.21                                | 0.24                                   | 0.30                                         | 0.36   | 0.46        | 17.30                   |                                                                                  |                    | 0.023                            | 5.14                              | 318.50                     |                    |                    | 0.039                                     | 20       | 3.94                                | 1.35                     | 6.49                          | 22.61                     | 6.49                              | 2.71         | 3.59                       | 4.44 5.8                                 | 3 7                            | 7.02 8.38                                                                                                                | 12.06   | 3 0.47 | 0.66         | 0.88 | 1.32                   | 1.93          | 2.78       | 5.14   |
| CI A.01             | 0.64                       | A                                | 42.9                     | 0.28 | 0.29                                                             | 0.31                                | 0.34                                   | 0.39                                         | 0.44   | 0.53        | 49.30                   |                                                                                  |                    | 0.019                            | 8.26                              | 274.50                     |                    |                    | 0.039                                     | 20       | 3.94                                | 1.16                     | 9.42                          | 20.26                     | 9.42                              | 2.38         | 3.16                       | 3.90 5.1                                 | 2 6                            | 6.17 7.37                                                                                                                | 10.61   | 1 0.43 | 0.59         | 0.77 | 1.12                   | 1.55          | 2.09       | 3.60   |
|                     |                            |                                  |                          |      |                                                                  |                                     |                                        |                                              |        |             |                         |                                                                                  |                    |                                  |                                   | -                          |                    |                    |                                           |          |                                     |                          |                               |                           |                                   |              |                            |                                          | -                              | =                                                                                                                        | +       | -      |              |      |                        | $\rightarrow$ |            |        |


#### **Plan View**

Stormwater Studio 2021 v 3.0.0.24



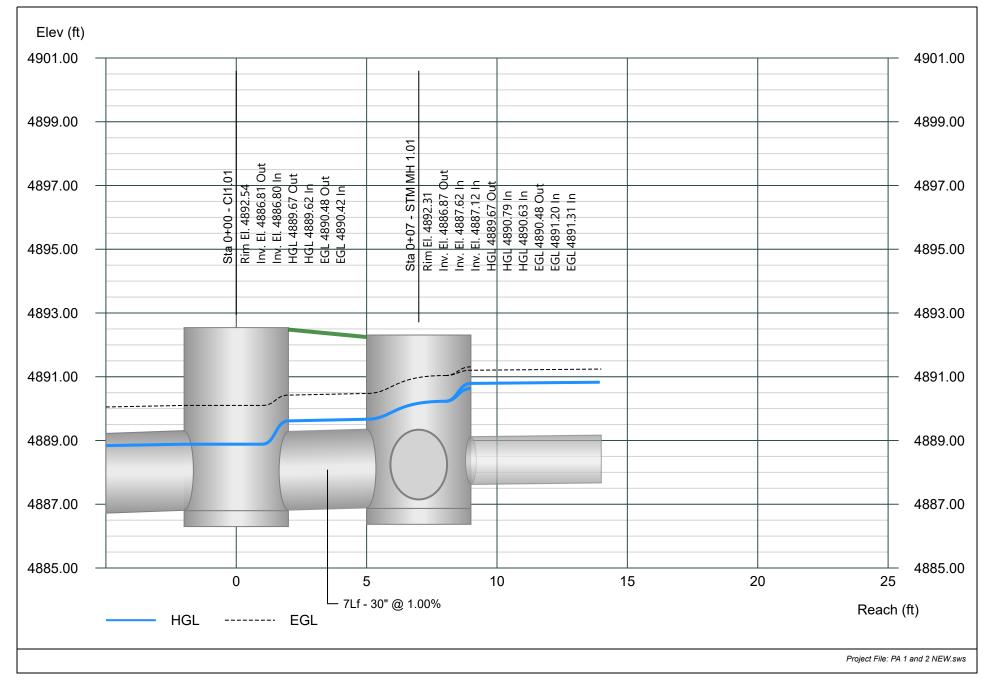
# Line 1 - Pipe - (110) (1) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

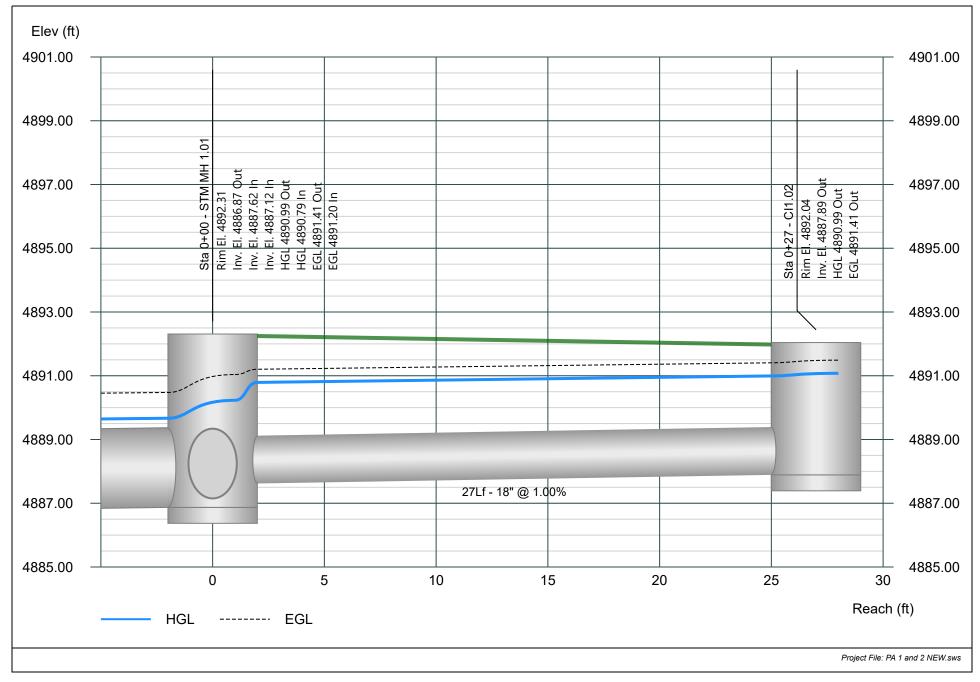
# Line 2 - Pipe - (362) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

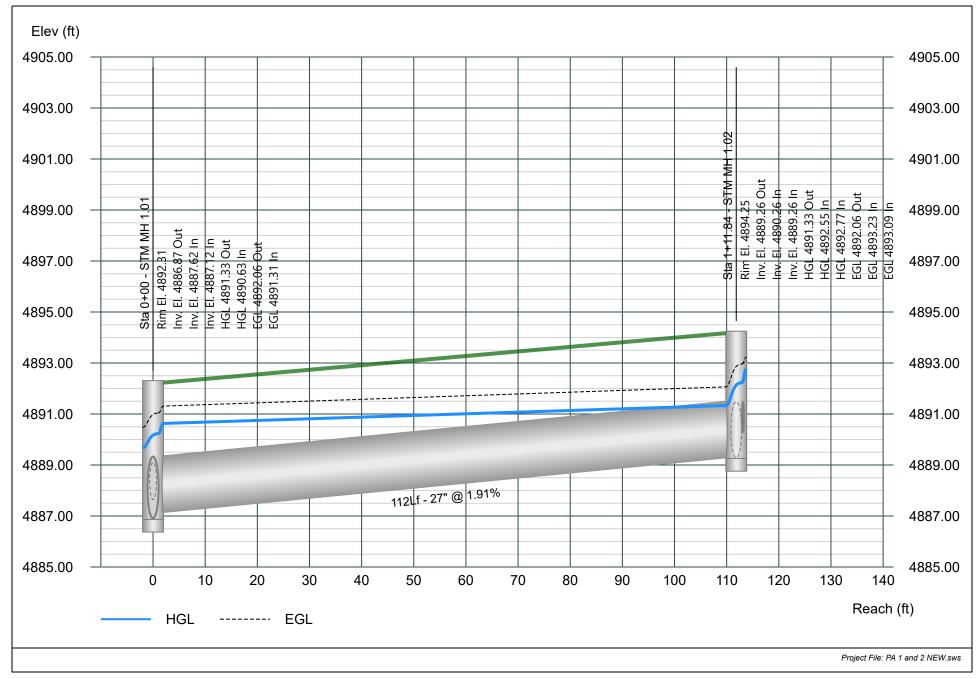
### Line 3 - Pipe - (361) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

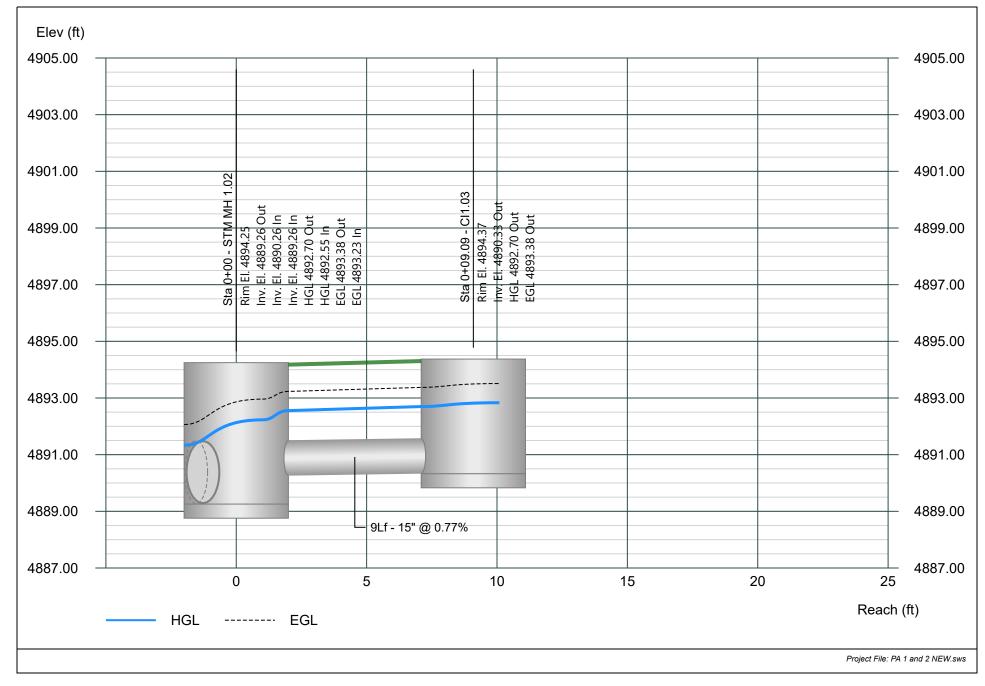
# Line 4 - Pipe - (364) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

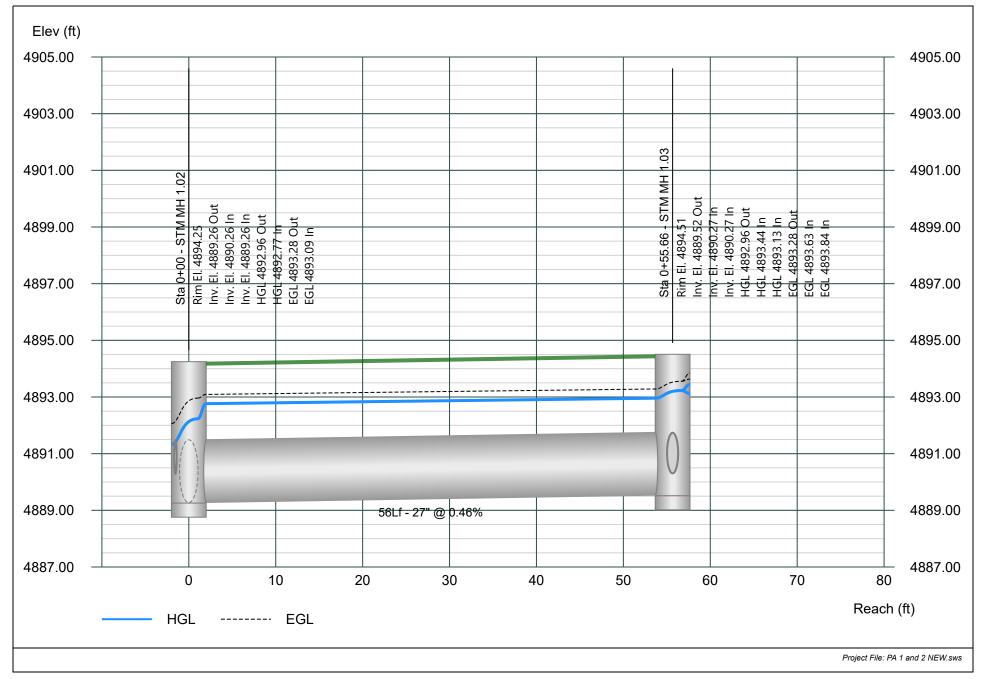
# Line 5 - Pipe - (360) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

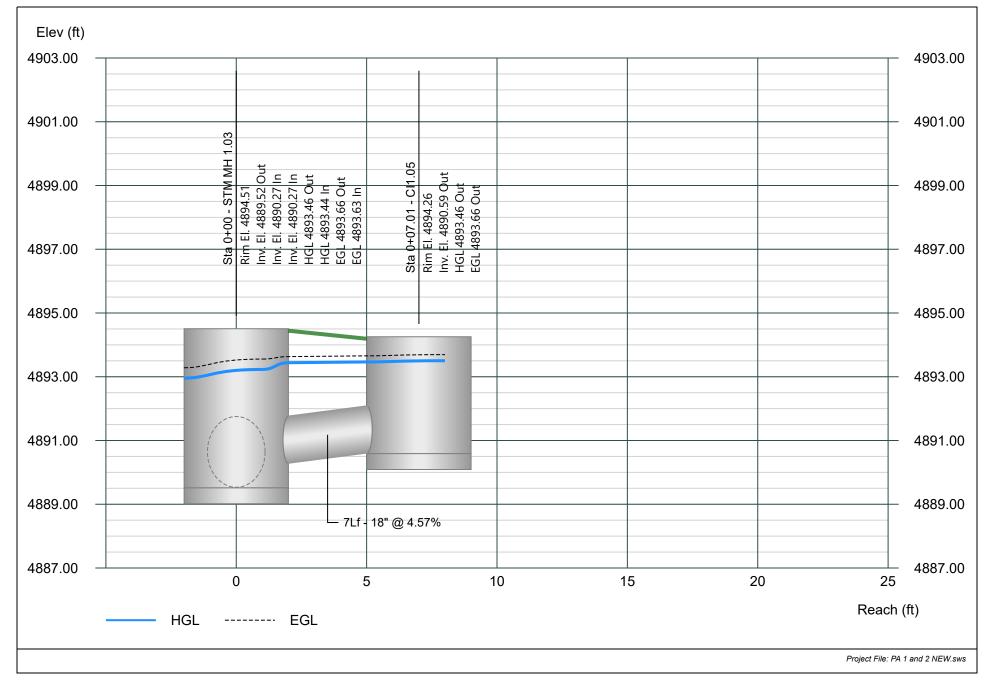
### Line 6 - Pipe - (363) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

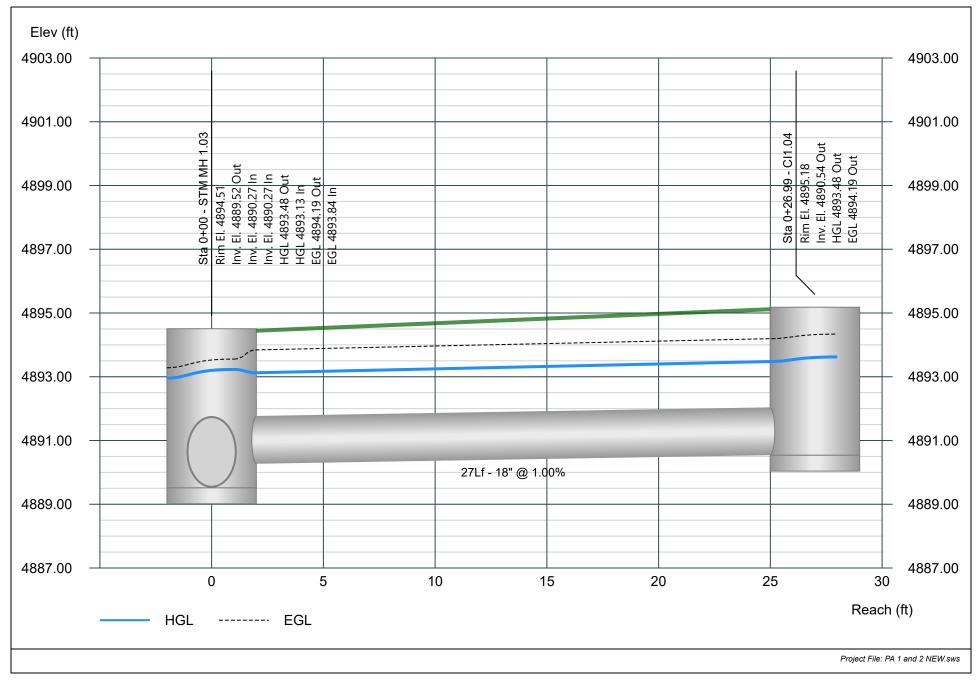
# Line 7 - Pipe - (359) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

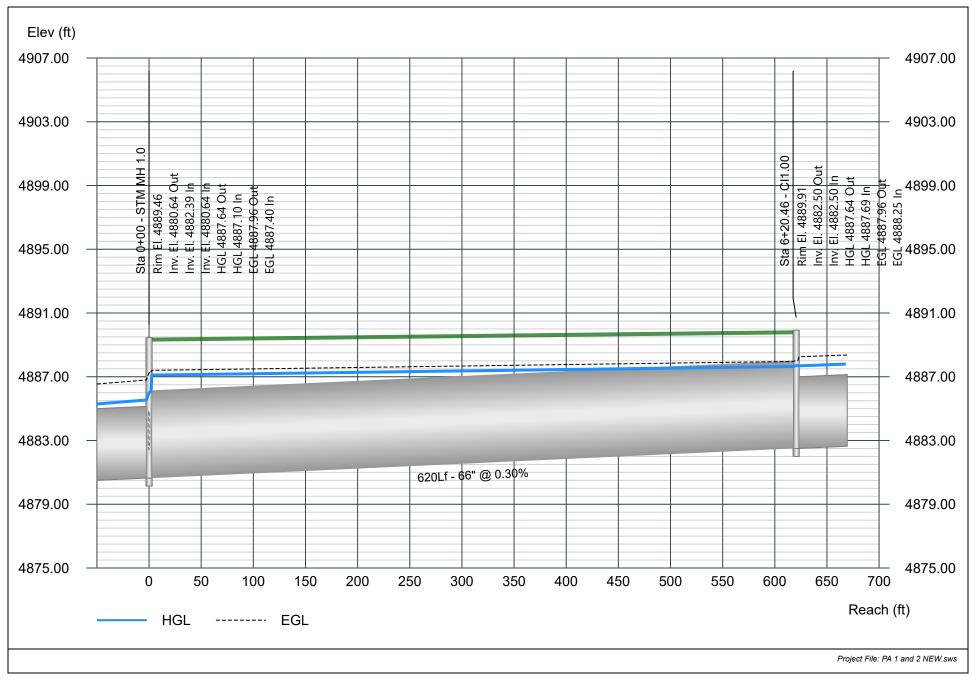
# Line 8 - Pipe - (578) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



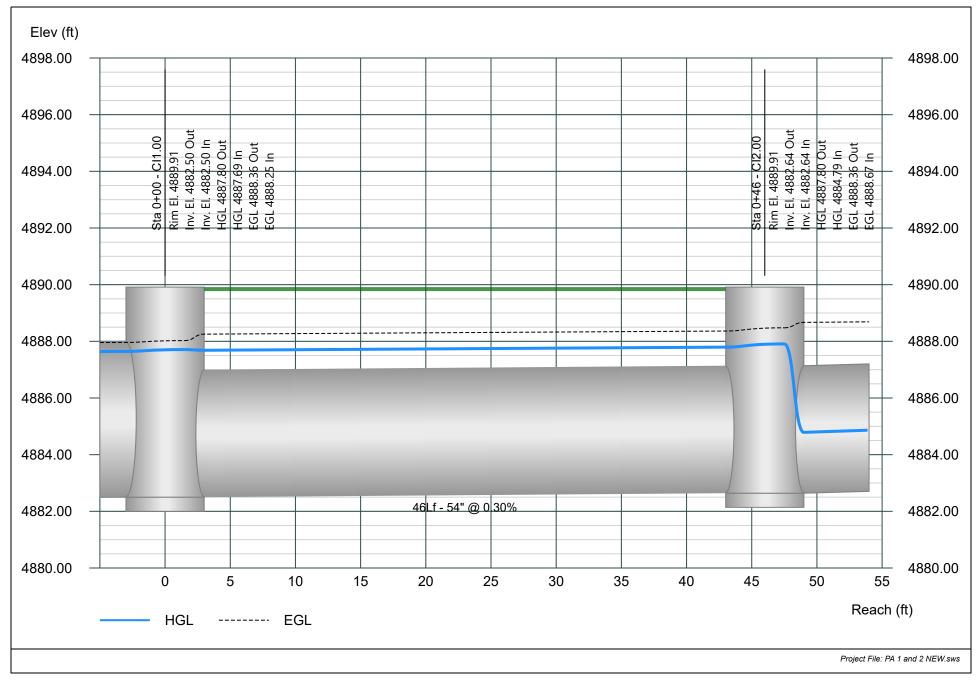
Project Name: Pioneer Village- PA 1 and 2

# Line 9 - Pipe - (358) (Storm Sewer PAs 1 and 2)

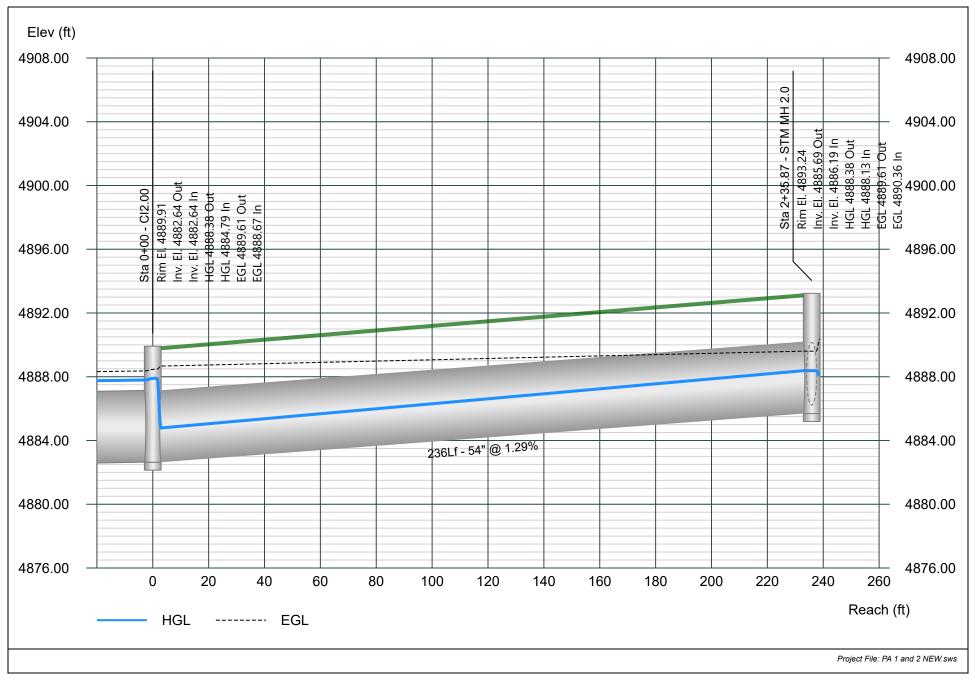

Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

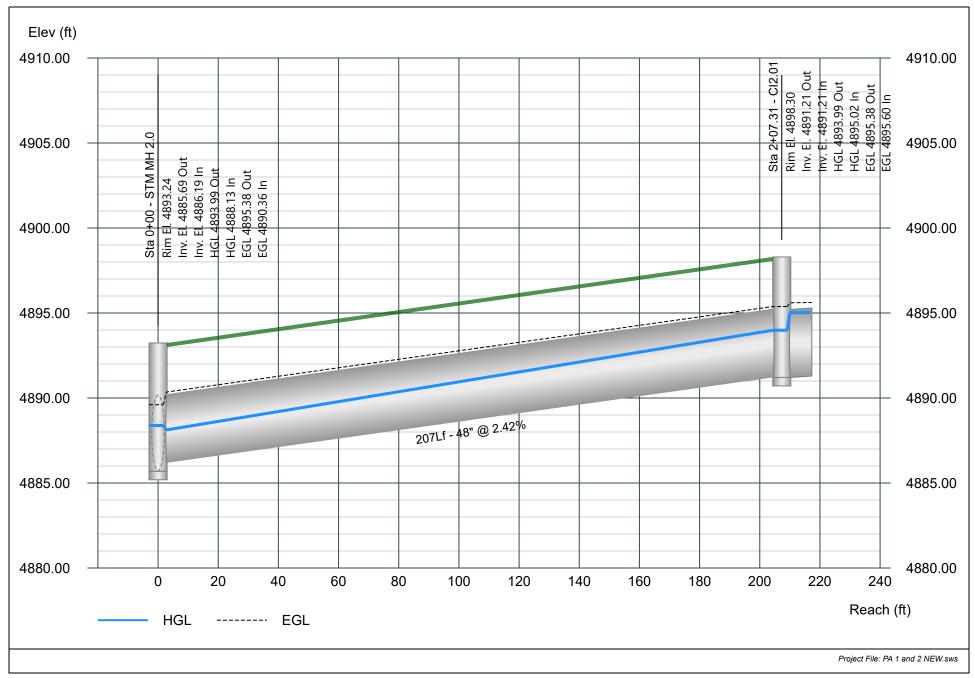

### Line 10 - Pipe - (110) (Storm Sewer PAs 1 and 2)

Stormwater Studio 2021 v 3.0.0.24




Project Name: Pioneer Village- PA 1 and 2

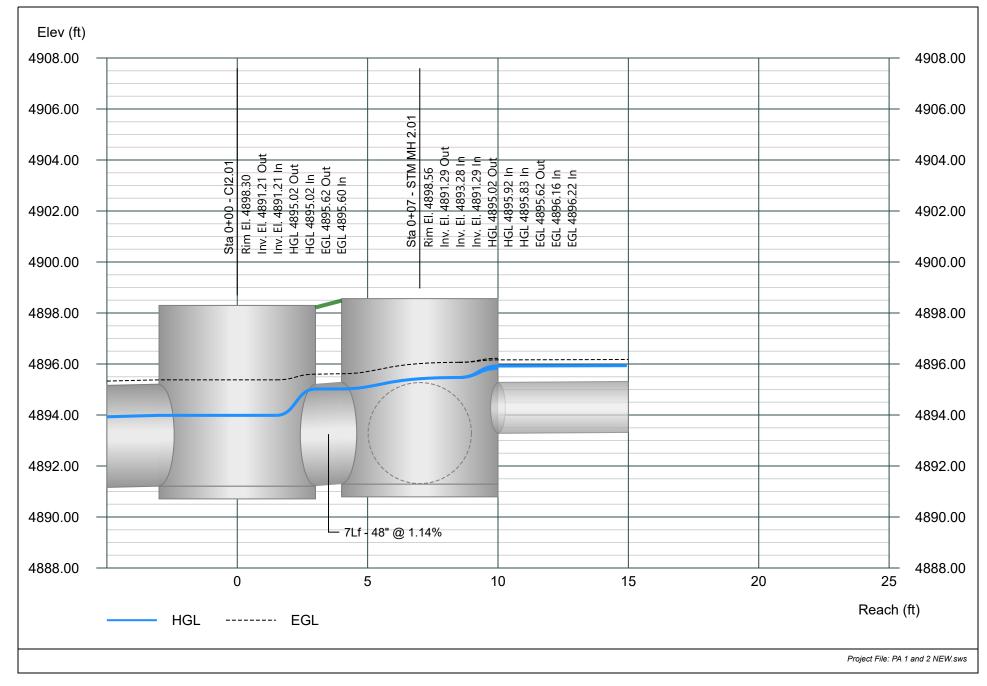
# Line 11 - Pipe - (109) (Storm Sewer PAs 1 and 2)



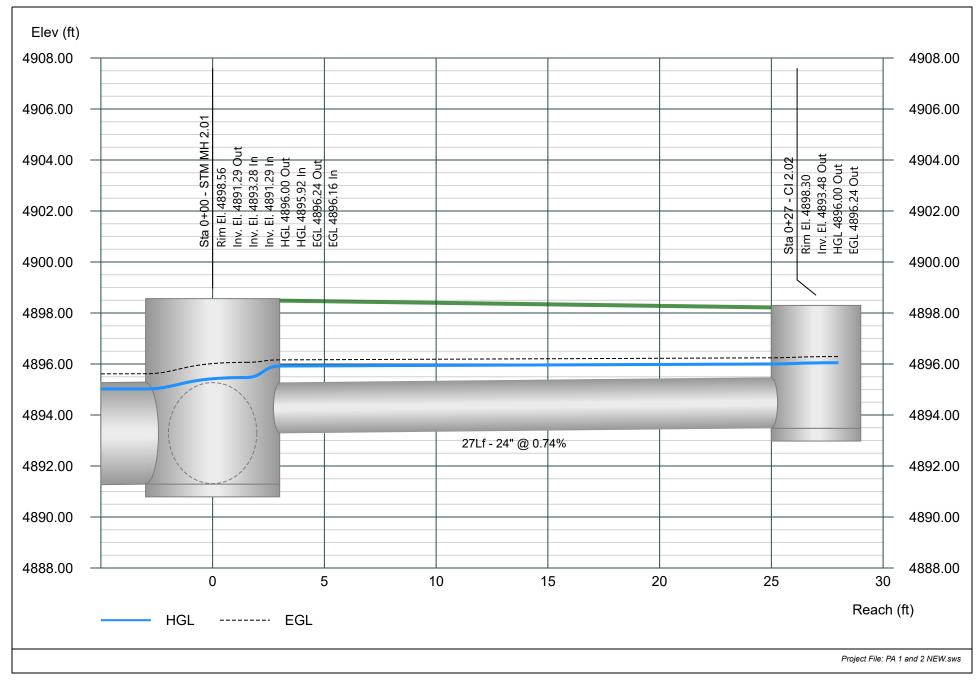

# Line 12 - Pipe - (108) (Storm Sewer PAs 1 and 2)



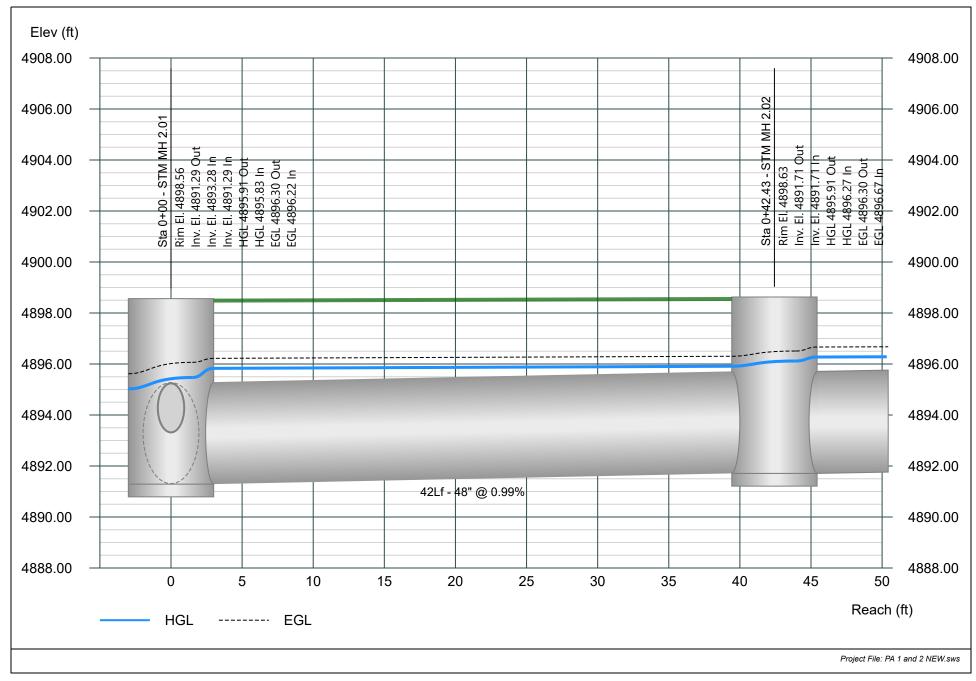
# Line 13 - Pipe - (107) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



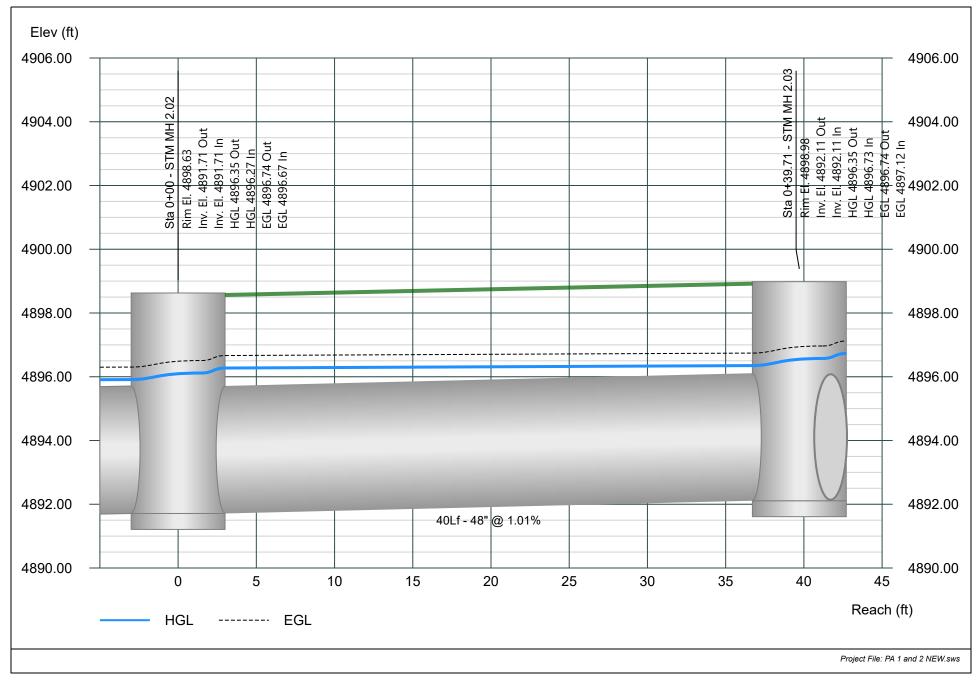

Project Name: Pioneer Village- PA 1 and 2

# Line 14 - Pipe - (106) (Storm Sewer PAs 1 and 2)


Stormwater Studio 2021 v 3.0.0.24



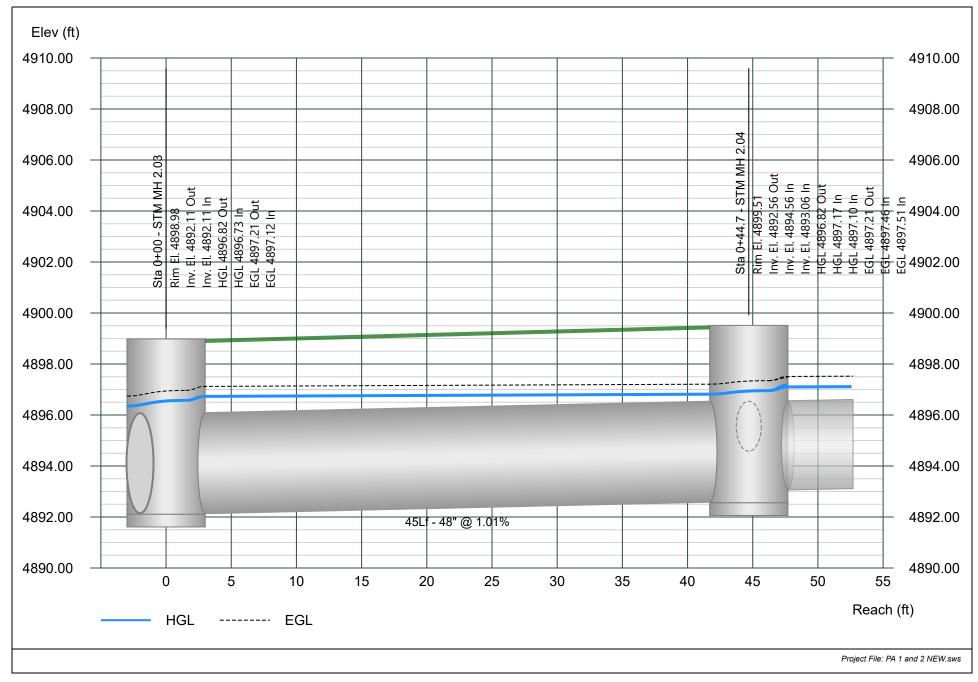
# Line 15 - Pipe - (354) (Storm Sewer PAs 1 and 2)




# Line 16 - Pipe - (105) (Storm Sewer PAs 1 and 2)

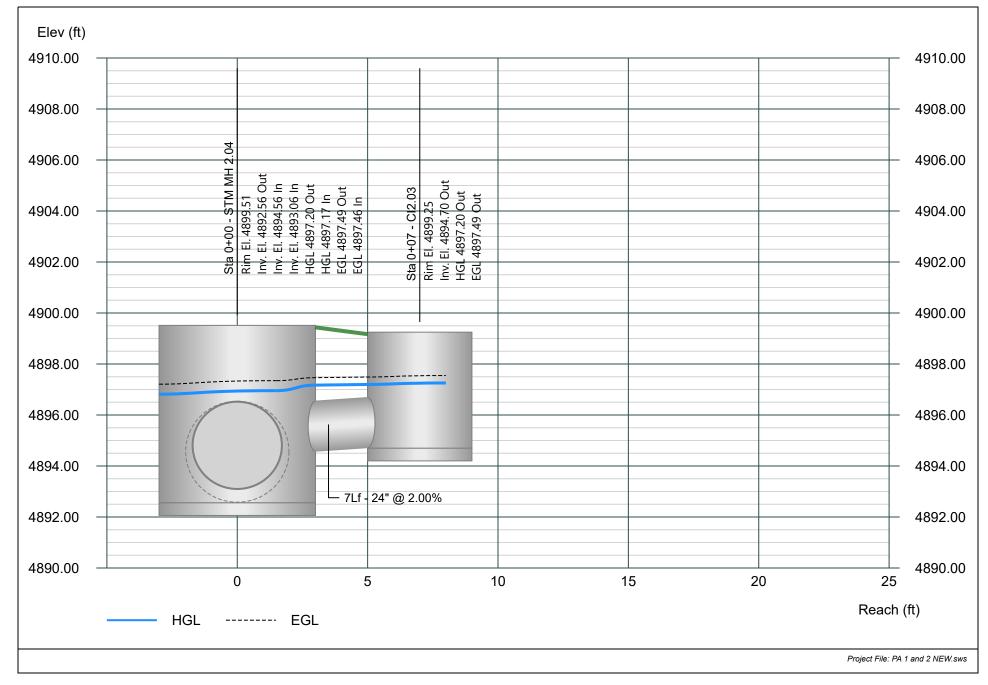


# Line 17 - Pipe - (104) (Storm Sewer PAs 1 and 2)

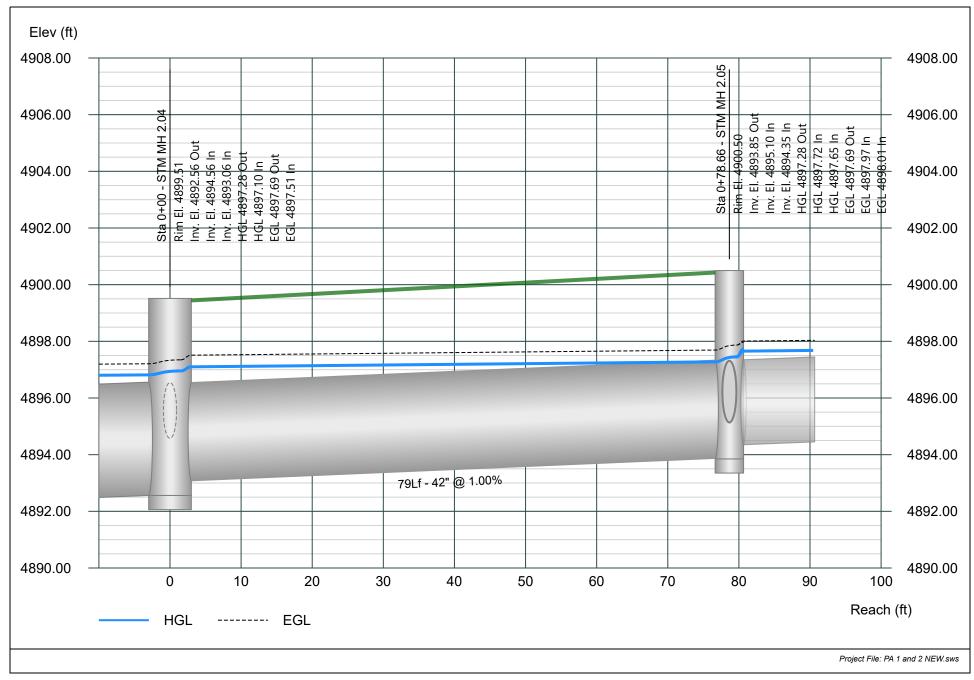

Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

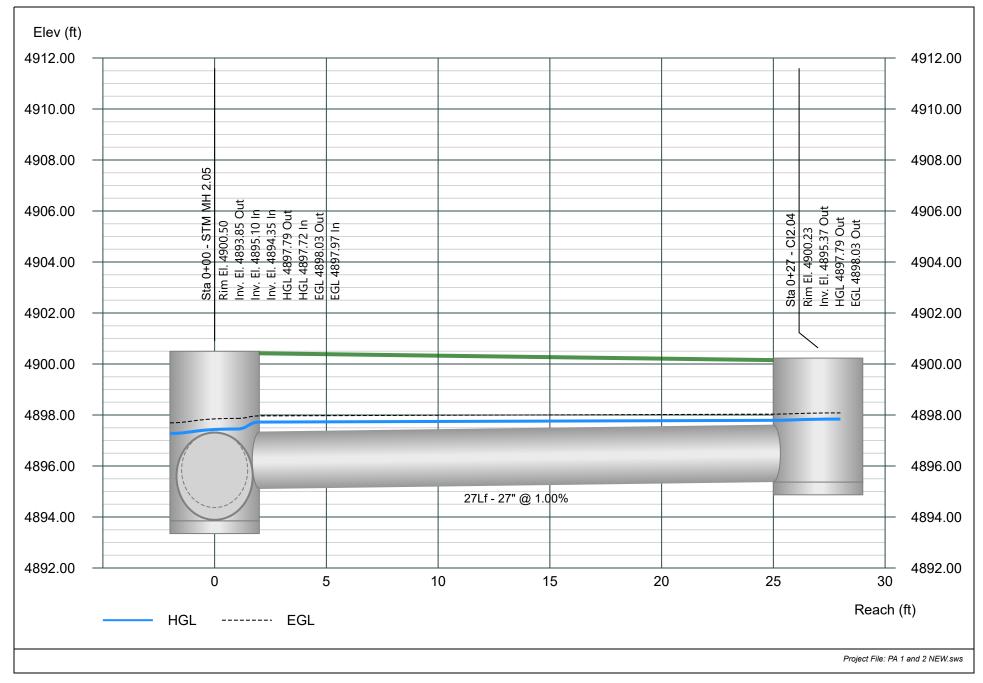

# Line 18 - Pipe - (103) (Storm Sewer PAs 1 and 2)

Stormwater Studio 2021 v 3.0.0.24

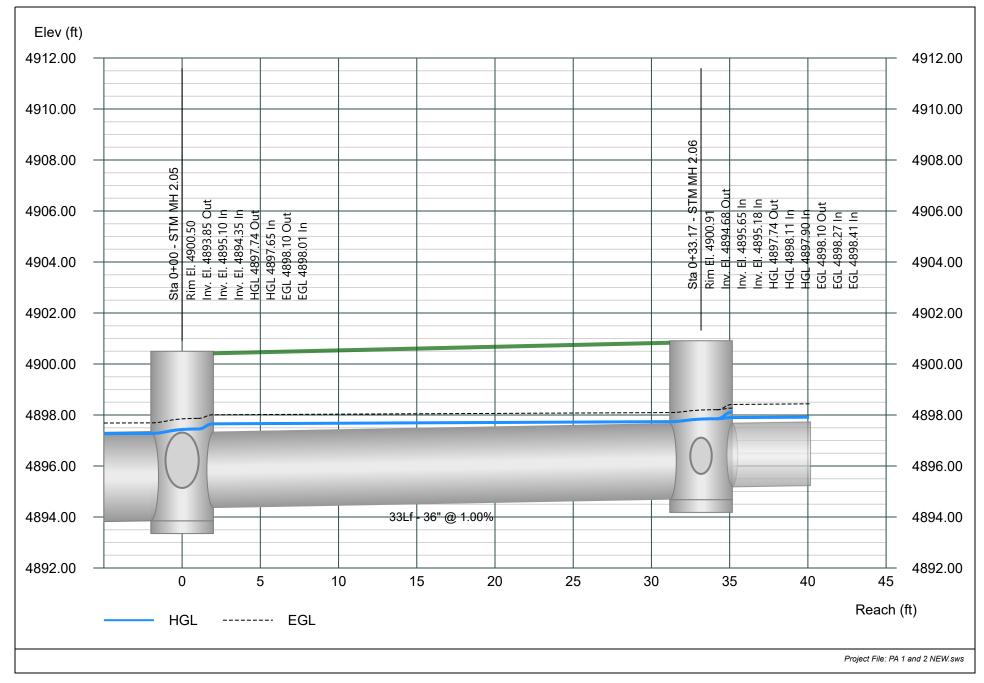



Project Name: Pioneer Village- PA 1 and 2

### Line 19 - Pipe - (366) (Storm Sewer PAs 1 and 2)

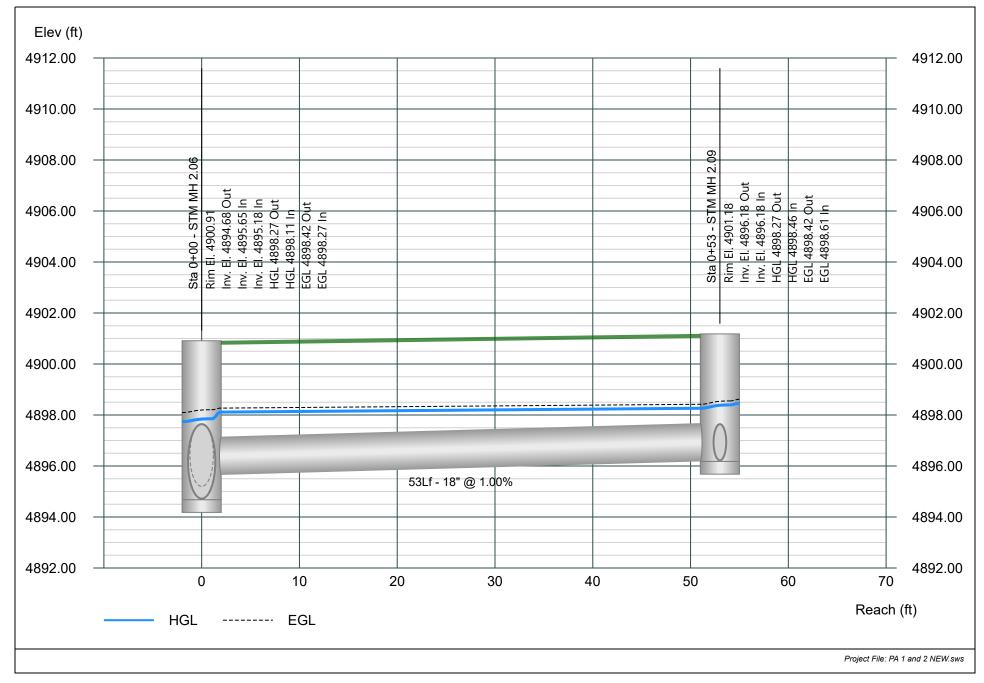



# Line 20 - Pipe - (102) (Storm Sewer PAs 1 and 2)



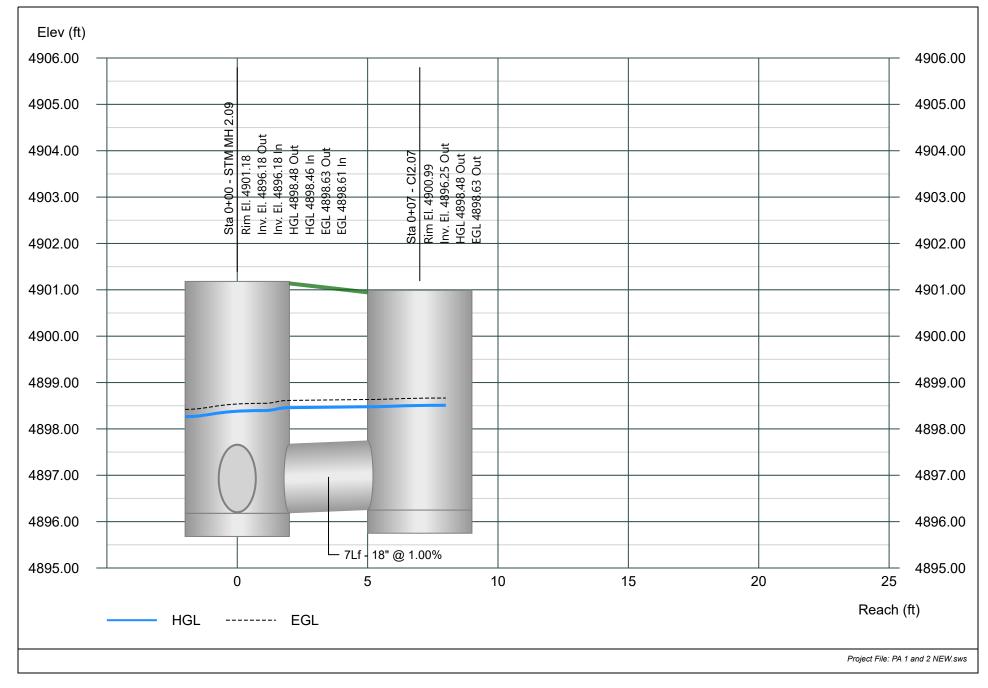

# Line 21 - Pipe - (101) (Storm Sewer PAs 1 and 2)

Stormwater Studio 2021 v 3.0.0.24



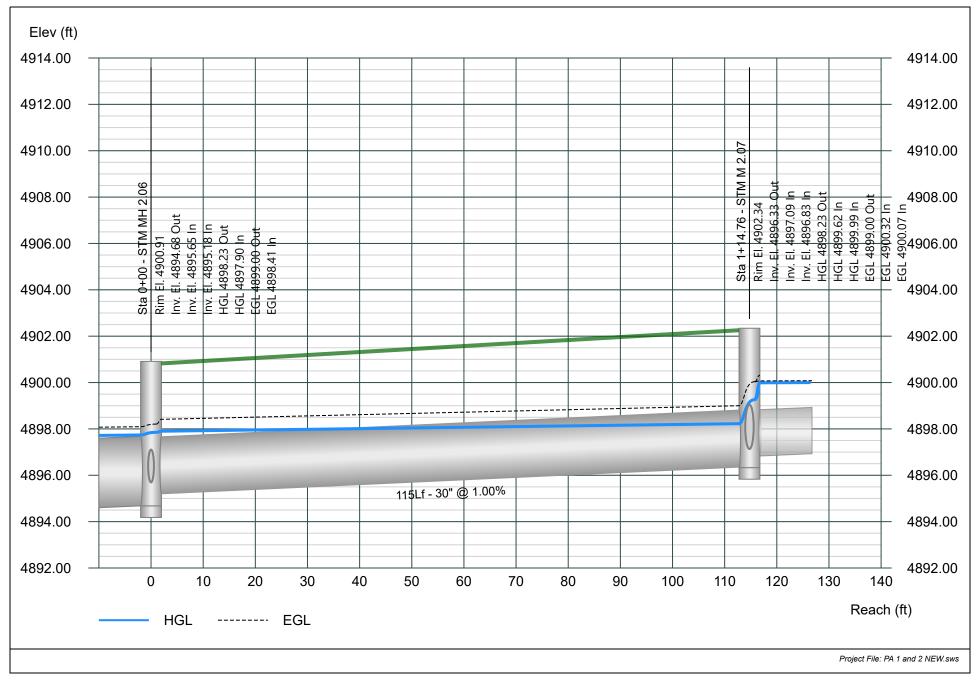

# Line 22 - Pipe - (576) (1) (Storm Sewer PAs 1 and 2)



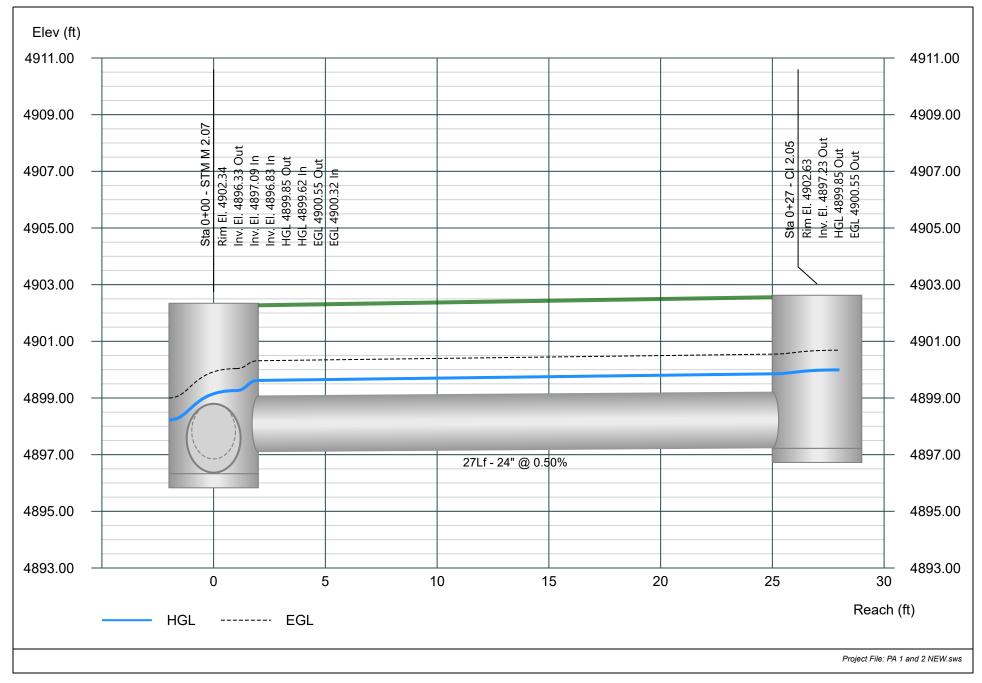

# Line 23 - Pipe - (580) (Storm Sewer PAs 1 and 2)

Stormwater Studio 2021 v 3.0.0.24




# Line 24 - Pipe - (579) (Storm Sewer PAs 1 and 2)

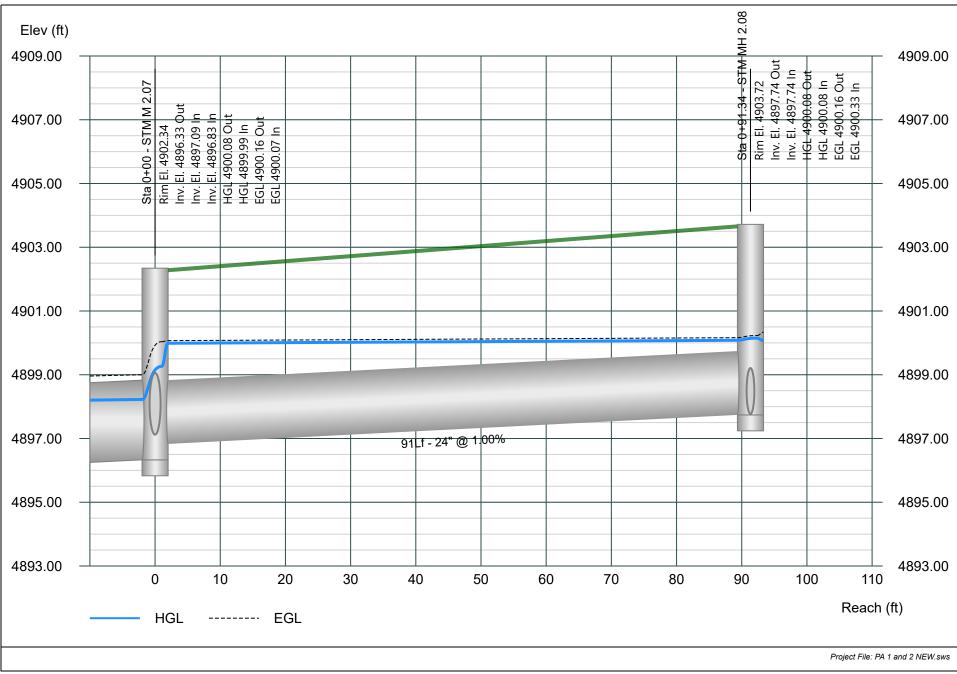
Stormwater Studio 2021 v 3.0.0.24




Project Name: Pioneer Village- PA 1 and 2

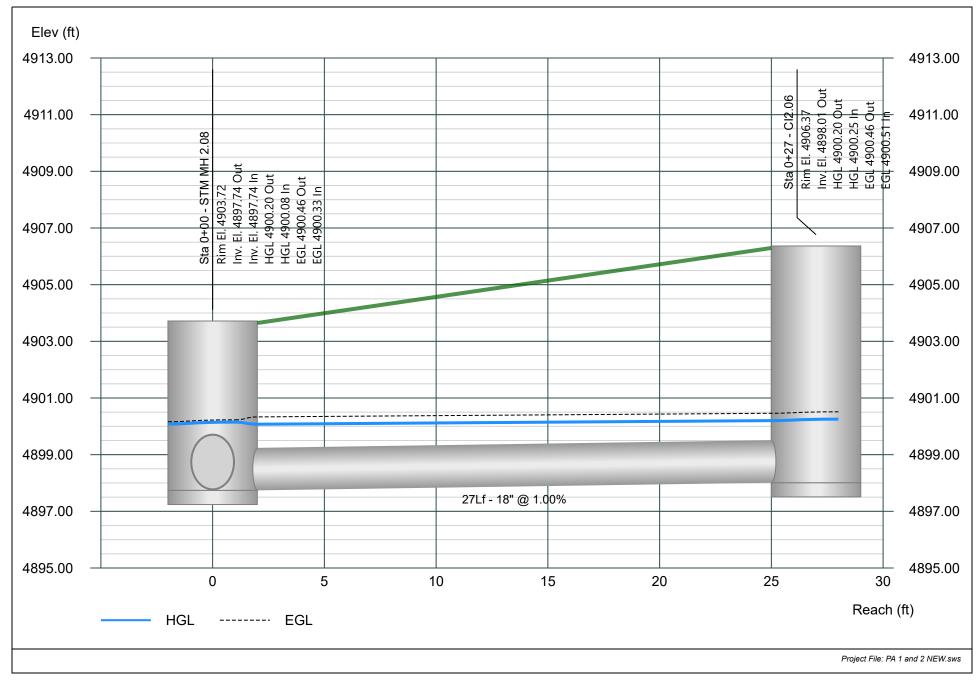
#### Line 25 - Pipe - (576) (Storm Sewer PAs 1 and 2)




#### Line 26 - Pipe - (577) (Storm Sewer PAs 1 and 2)



## Line 27 - Pipe - (575) (Storm Sewer PAs 1 and 2)


Project Name: Pioneer Village- PA 1 and 2

03-24-2021



## Line 28 - Pipe - (574) (Storm Sewer PAs 1 and 2)

Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village- PA 1 and 2

03-24-2021

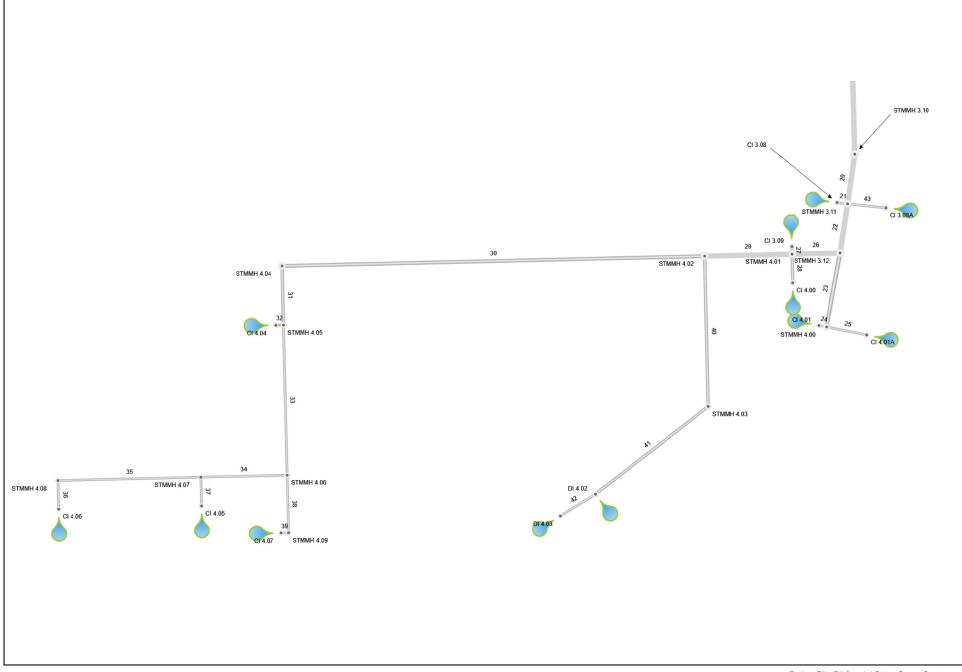
## Energy Grade Line Calculations

Stormwater Studio 2021 v 3.0.0.24

| Line   | Line                      |                       |                |                   | Do        | ownstrea    | m      |             |             | Length |                |       | ι      | Jpstream    | ı      |             |             | Pi         | ре            |              | Junction       | 1             |
|--------|---------------------------|-----------------------|----------------|-------------------|-----------|-------------|--------|-------------|-------------|--------|----------------|-------|--------|-------------|--------|-------------|-------------|------------|---------------|--------------|----------------|---------------|
| No     | Size                      | Q                     | Invert<br>Elev | Depth             | Area      | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | Len    | Invert<br>Elev | Depth | Area   | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | n<br>Value | Enrgy<br>Loss | HGLa<br>Elev | EGLa<br>Elev   | Enrgy<br>Loss |
|        | (in)                      | (cfs)                 | (ft)           | (ft)              | (sqft)    | (ft)        | (ft/s) | (ft)        | (ft)        | (ft)   | (ft)           | (ft)  | (sqft) | (ft)        | (ft/s) | (ft)        | (ft)        |            | (ft)          | (ft)         | (ft)           | (ft)          |
| 1      | 54                        | 142.80                | 4880.11        | 4.50 <sup>3</sup> | 15.90     | 4884.61     | 8.98   | 1.25        | 4885.86     | 176.33 | 4880.64        | 4.50  | 15.90  | 4885.54     | 8.98   | 1.25        | 4886.79     | 0.013      | 0.930         | 4886.03      | 4887.28        | 0.49          |
| 2      | 30                        | 38.50                 | 4882.39        | 2.50              | 4.91      | 4886.71     | 7.84   | 0.96        | 4887.67     | 149.26 | 4886.81        | 2.07² | 4.35   | 4888.88     | 8.84   | 1.22        | 4890.10     | 0.013      | 2.435         | 4888.88      | 4890.10        | 0.00          |
| 3      | 30                        | 35.40                 | 4886.80        | 2.50              | 4.91      | 4889.62     | 7.21   | 0.81        | 4890.42     | 7.00   | 4886.87        | 2.50  | 4.91   | 4889.67     | 7.21   | 0.81        | 4890.48     | 0.013      | 0.052         | 4890.23      | 4891.04        | 0.56          |
| 4      | 18                        | 9.10                  | 4887.62        | 1.50              | 1.77      | 4890.79     | 5.15   | 0.41        | 4891.20     | 27.00  | 4887.89        | 1.50  | 1.77   | 4890.99     | 5.15   | 0.41        | 4891.41     | 0.013      | 0.203         | 4891.08      | 4891.49        | 0.08          |
| 5      | 27                        | 26.30                 | 4887.12        | 2.25              | 3.98      | 4890.63     | 6.62   | 0.68        | 4891.31     | 111.84 | 4889.26        | 2.08  | 3.83   | 4891.33     | 6.86   | 0.73        | 4892.06     | 0.013      | 0.753         | 4892.23      | 4892.96        | 0.90          |
| 6      | 15                        | 8.10                  | 4890.26        | 1.25 <sup>3</sup> | 1.23      | 4892.55     | 6.60   | 0.68        | 4893.23     | 9.09   | 4890.33        | 1.25  | 1.23   | 4892.70     | 6.60   | 0.68        | 4893.38     | 0.013      | 0.143         | 4892.83      | 4893.51        | 0.14          |
| 7      | 27                        | 18.20                 | 4889.26        | 2.25              | 3.98      | 4892.77     | 4.58   | 0.33        | 4893.09     | 55.66  | 4889.52        | 2.25  | 3.98   | 4892.96     | 4.58   | 0.33        | 4893.28     | 0.013      | 0.192         | 4893.23      | 4893.56        | 0.27          |
| 8      | 18                        | 6.20                  | 4890.27        | 1.50              | 1.77      | 4893.44     | 3.51   | 0.19        | 4893.63     | 7.01   | 4890.59        | 1.50  | 1.77   | 4893.46     | 3.51   | 0.19        | 4893.66     | 0.013      | 0.024         | 4893.50      | 4893.69        | 0.04          |
| 9      | 18                        | 12.00                 | 4890.27        | 1.50 <sup>3</sup> | 1.77      | 4893.13     | 6.79   | 0.72        | 4893.84     | 26.99  | 4890.54        | 1.50  | 1.77   | 4893.48     | 6.79   | 0.72        | 4894.19     | 0.013      | 0.353         | 4893.62      | 4894.34        | 0.14          |
| 10     | 66                        | 104.30                | 4880.64        | 5.50              | 23.75     | 4887.10     | 4.39   | 0.30        | 4887.40     | 620.46 | 4882.50        | 5.14  | 23.11  | 4887.64     | 4.51   | 0.32        | 4887.96     | 0.013      | 0.557         | 4887.71      | 4888.03        | 0.07          |
| 11     | 54                        | 96.20                 | 4882.50        | 4.50              | 15.90     | 4887.69     | 6.05   | 0.57        | 4888.25     | 46.00  | 4882.64        | 4.50  | 15.90  | 4887.80     | 6.05   | 0.57        | 4888.36     | 0.013      | 0.110         | 4887.91      | 4888.48        | 0.11          |
| 12     | 54                        | 88.10                 | 4882.64        | 2.15‡             | 7.49      | 4884.79     | 11.76  | 2.15        | 4888.67     | 235.87 | 4885.69        | 2.69² | 9.93   | 4888.38     | 8.87   | 1.22        | 4889.61     | 0.013      | 0.938         | 4888.38      | 4889.61        | 0.00          |
| 13     | 48                        | 88.10                 | 4886.19        | 1.94‡             | 6.04      | 4888.13     | 14.59  | 3.31        | 4890.36     | 207.31 | 4891.21        | 2.78² | 9.31   | 4893.99     | 9.46   | 1.39        | 4895.38     | 0.013      | 5.023         | 4893.99      | 4895.38        | 0.00          |
| 14     | 48                        | 75.50                 | 4891.21        | 3.81              | 12.35     | 4895.02     | 6.11   | 0.58        | 4895.60     | 7.00   | 4891.29        | 3.73  | 12.21  | 4895.02     | 6.18   | 0.59        | 4895.62     | 0.013      | 0.018         | 4895.47      | 4896.07        | 0.45          |
| 15     | 24                        | 12.40                 | 4893.28        | 2.00              | 3.14      | 4895.92     | 3.95   | 0.24        | 4896.16     | 27.00  | 4893.48        | 2.00  | 3.14   | 4896.00     | 3.95   | 0.24        | 4896.24     | 0.013      | 0.081         | 4896.05      | 4896.29        | 0.05          |
| 16     | 48                        | 63.10                 | 4891.29        | 4.00              | 12.56     | 4895.83     | 5.02   | 0.39        | 4896.22     | 42.43  | 4891.71        | 4.00  | 12.57  | 4895.91     | 5.02   | 0.39        | 4896.30     | 0.013      | 0.082         | 4896.12      | 4896.51        | 0.21          |
| 17     | 48                        | 63.10                 | 4891.71        | 4.00              | 12.56     | 4896.27     | 5.02   | 0.39        | 4896.67     | 39.71  | 4892.11        | 4.00  | 12.57  | 4896.35     | 5.02   | 0.39        | 4896.74     | 0.013      | 0.077         | 4896.57      | 4896.97        | 0.22          |
| 18     | 48                        | 63.10                 | 4892.11        | 4.00              | 12.56     | 4896.73     | 5.02   | 0.39        | 4897.12     | 44.70  | 4892.56        | 4.00  | 12.57  | 4896.82     | 5.02   | 0.39        | 4897.21     | 0.013      | 0.086         | 4896.96      | 4897.35        | 0.14          |
| 19     | 24                        | 13.60                 | 4894.56        | 2.00              | 3.14      | 4897.17     | 4.33   | 0.29        | 4897.46     | 7.00   | 4894.70        | 2.00  | 3.14   | 4897.20     | 4.33   | 0.29        | 4897.49     | 0.013      | 0.025         | 4897.26      | 4897.55        | 0.06          |
| 20     | 42                        | 49.50                 | 4893.06        | 3.50              | 9.62      | 4897.10     | 5.15   | 0.41        | 4897.51     | 78.66  | 4893.85        | 3.43  | 9.57   | 4897.28     | 5.17   | 0.42        | 4897.69     | 0.013      | 0.181         | 4897.45      | 4897.87        | 0.18          |
| 21     | 27                        | 15.70                 | 4895.10        | 2.25              | 3.98      | 4897.72     | 3.95   | 0.24        | 4897.97     | 27.00  | 4895.37        | 2.25  | 3.98   | 4897.79     | 3.95   | 0.24        | 4898.03     | 0.013      | 0.069         | 4897.84      | 4898.08        | 0.05          |
| 22     | 36                        | 33.80                 | 4894.35        | 3.00              | 7.07      | 4897.65     | 4.78   | 0.36        | 4898.01     | 33.17  | 4894.68        | 3.00  | 7.07   | 4897.74     | 4.78   | 0.36        | 4898.10     | 0.013      | 0.085         | 4897.85      | 4898.21        | 0.11          |
|        |                           |                       |                |                   |           |             |        |             |             |        |                |       |        |             |        |             |             |            |               |              |                |               |
| Notes: | <sup>2</sup> Critical dep | oth. <sup>3</sup> Nor | mal depth.     | ‡ Super           | critical. |             |        |             |             |        |                | •     |        |             |        |             |             |            |               | Project      | File: PA 1 and | 2 NEW.sws     |

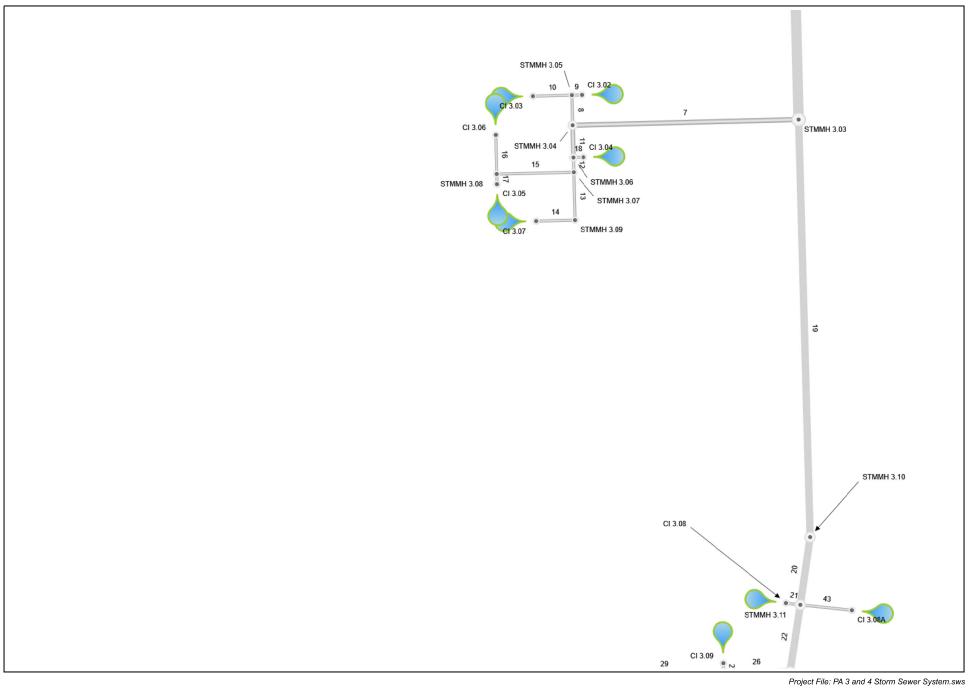
Project Name: Enter Project Name...

03-24-2021

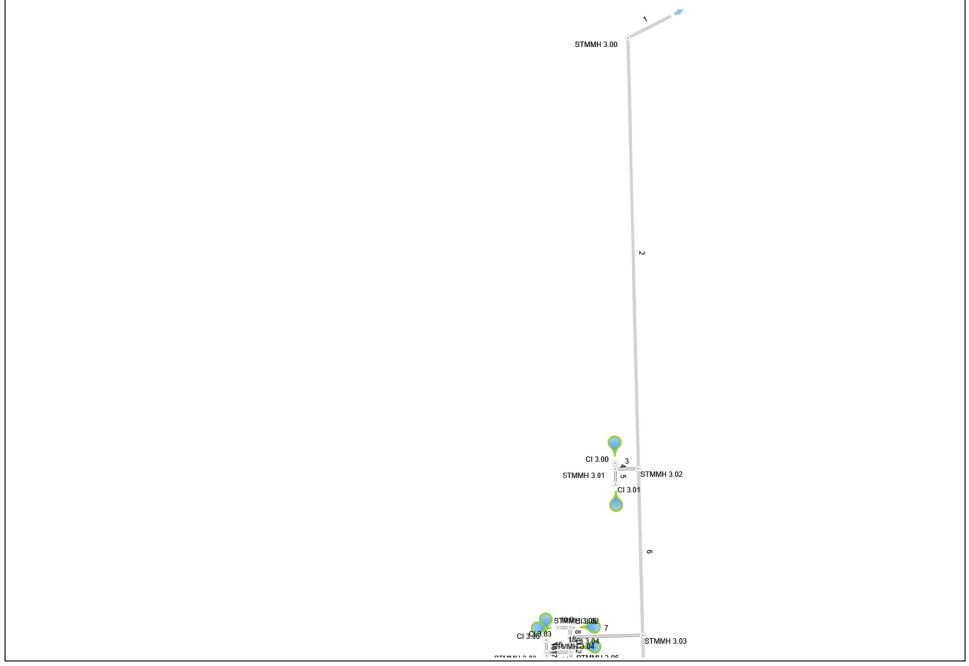

# Energy Grade Line Calculations

Stormwater Studio 2021 v 3.0.0.24

| Line | Line                   |       |                |                   | De     | ownstrea    | ım     |             |             | Length |                |       | ι      | Jpstrean    | ı      |             |             | Pi         | ре            |              | Junction       | l             |
|------|------------------------|-------|----------------|-------------------|--------|-------------|--------|-------------|-------------|--------|----------------|-------|--------|-------------|--------|-------------|-------------|------------|---------------|--------------|----------------|---------------|
| No   | Size                   | Q     | Invert<br>Elev | Depth             | Area   | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | Len    | Invert<br>Elev | Depth | Area   | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | n<br>Value | Enrgy<br>Loss | HGLa<br>Elev | EGLa<br>Elev   | Enrgy<br>Loss |
|      | (in)                   | (cfs) | (ft)           | (ft)              | (sqft) | (ft)        | (ft/s) | (ft)        | (ft)        | (ft)   | (ft)           | (ft)  | (sqft) | (ft)        | (ft/s) | (ft)        | (ft)        |            | (ft)          | (ft)         | (ft)           | (ft)          |
| 23   | 18                     | 5.60  | 4895.65        | 1.50              | 1.77   | 4898.11     | 3.17   | 0.16        | 4898.27     | 53.00  | 4896.18        | 1.50  | 1.77   | 4898.27     | 3.17   | 0.16        | 4898.42     | 0.013      | 0.151         | 4898.40      | 4898.55        | 0.13          |
| 24   | 18                     | 5.60  | 4896.18        | 1.50              | 1.77   | 4898.46     | 3.17   | 0.16        | 4898.61     | 7.00   | 4896.25        | 1.50  | 1.77   | 4898.48     | 3.17   | 0.16        | 4898.63     | 0.013      | 0.020         | 4898.51      | 4898.67        | 0.03          |
| 25   | 30                     | 28.20 | 4895.18        | 2.50              | 4.91   | 4897.90     | 5.75   | 0.51        | 4898.41     | 114.76 | 4896.33        | 1.90  | 3.99   | 4898.23     | 7.06   | 0.77        | 4899.00     | 0.013      | 0.588         | 4899.26      | 4900.04        | 1.04          |
| 26   | 24                     | 21.00 | 4897.09        | 2.00 <sup>3</sup> | 3.14   | 4899.62     | 6.69   | 0.69        | 4900.32     | 27.00  | 4897.23        | 2.00  | 3.14   | 4899.85     | 6.68   | 0.69        | 4900.55     | 0.013      | 0.233         | 4899.99      | 4900.69        | 0.14          |
| 27   | 24                     | 7.20  | 4896.83        | 2.00              | 3.14   | 4899.99     | 2.29   | 0.08        | 4900.07     | 91.34  | 4897.74        | 2.00  | 3.14   | 4900.08     | 2.29   | 0.08        | 4900.16     | 0.013      | 0.093         | 4900.15      | 4900.23        | 0.07          |
| 28   | 18                     | 7.20  | 4897.74        | 1.50              | 1.77   | 4900.08     | 4.08   | 0.26        | 4900.33     | 27.00  | 4898.01        | 1.50  | 1.77   | 4900.20     | 4.07   | 0.26        | 4900.46     | 0.013      | 0.127         | 4900.25      | 4900.51        | 0.05          |
|      | <sup>3</sup> Normal de |       |                |                   |        |             |        |             |             |        |                |       |        |             |        |             |             |            |               |              | File: PA 1 and |               |

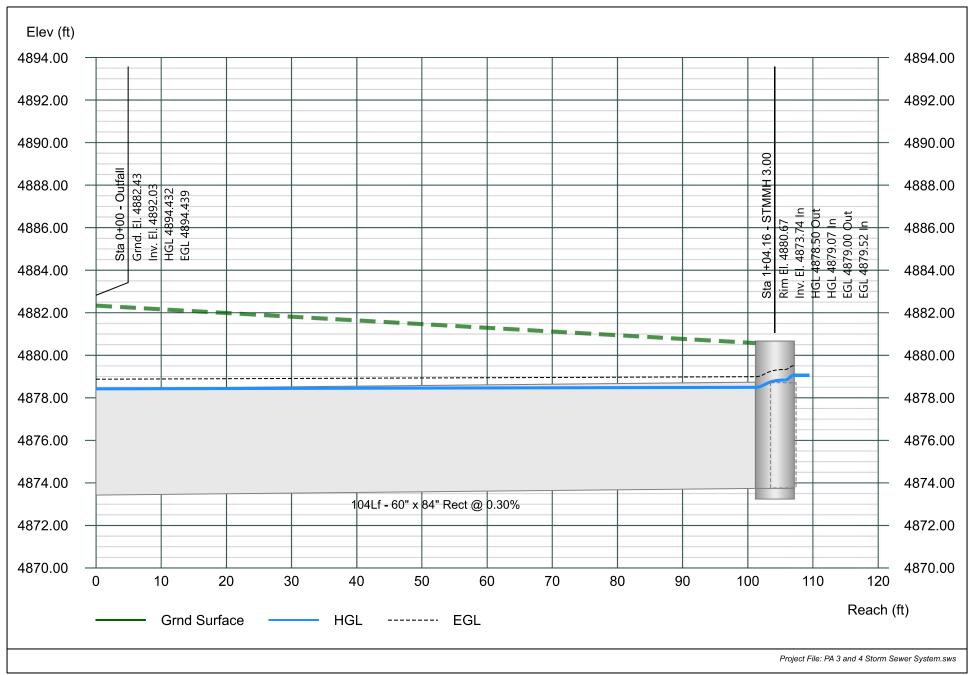

Project Name: Enter Project Name...

03-24-2021

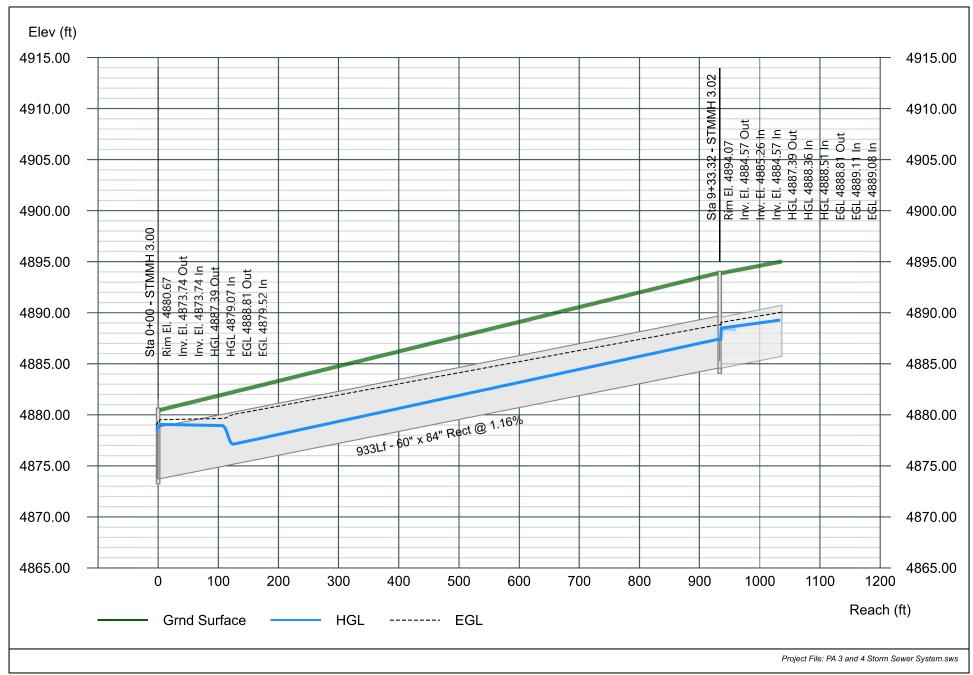



#### Plan View

Stormwater Studio 2021 v 3.0.0.24

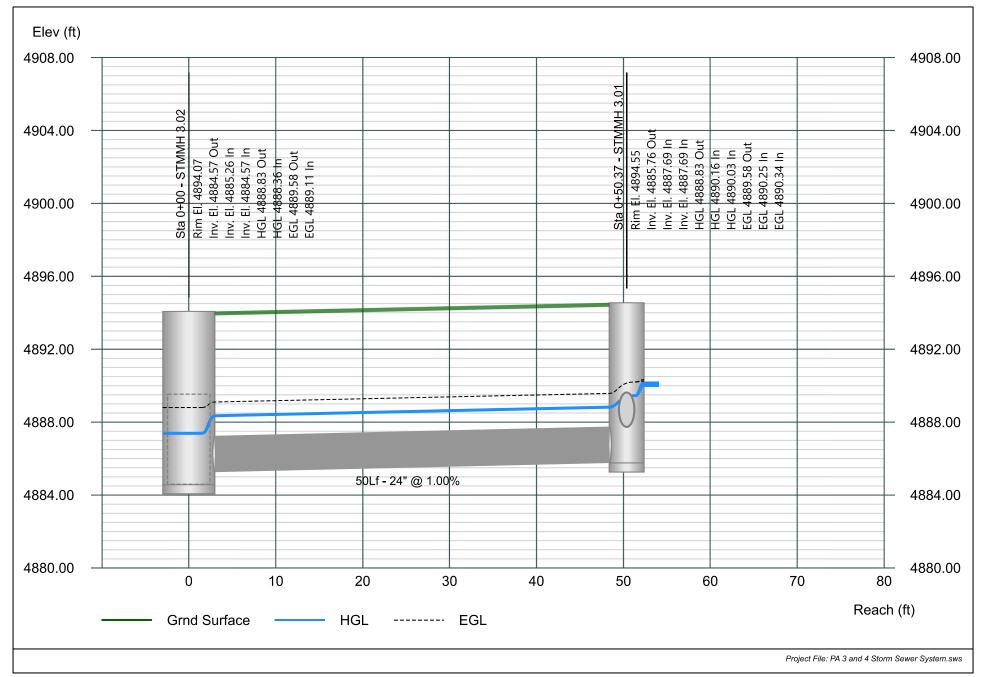



Stormwater Studio 2021 v 3.0.0.24



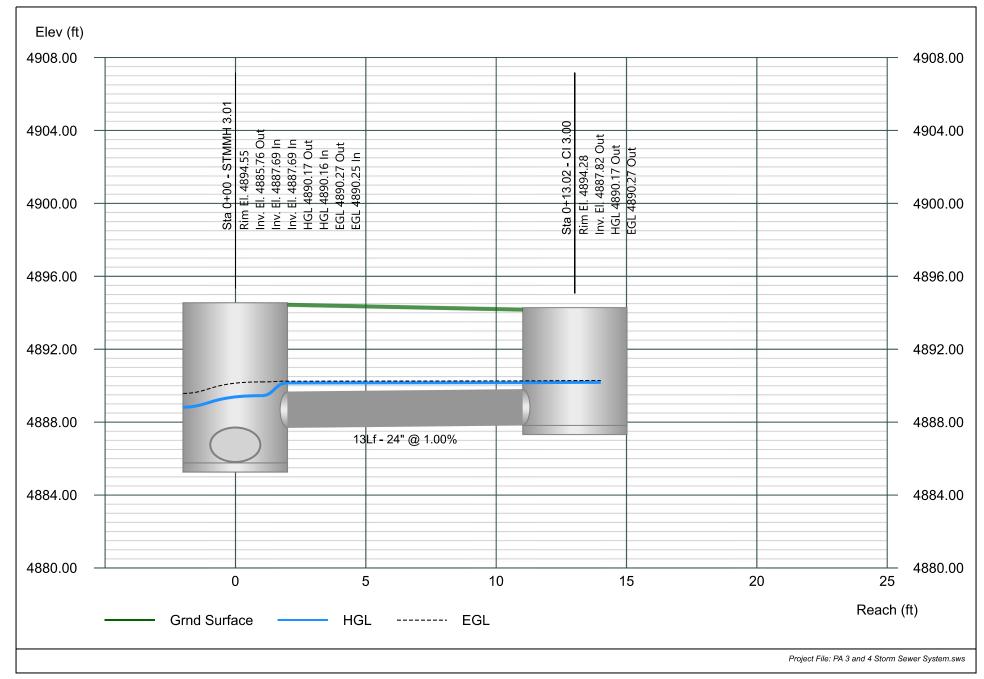

## Line 1 - Pipe - (121) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24



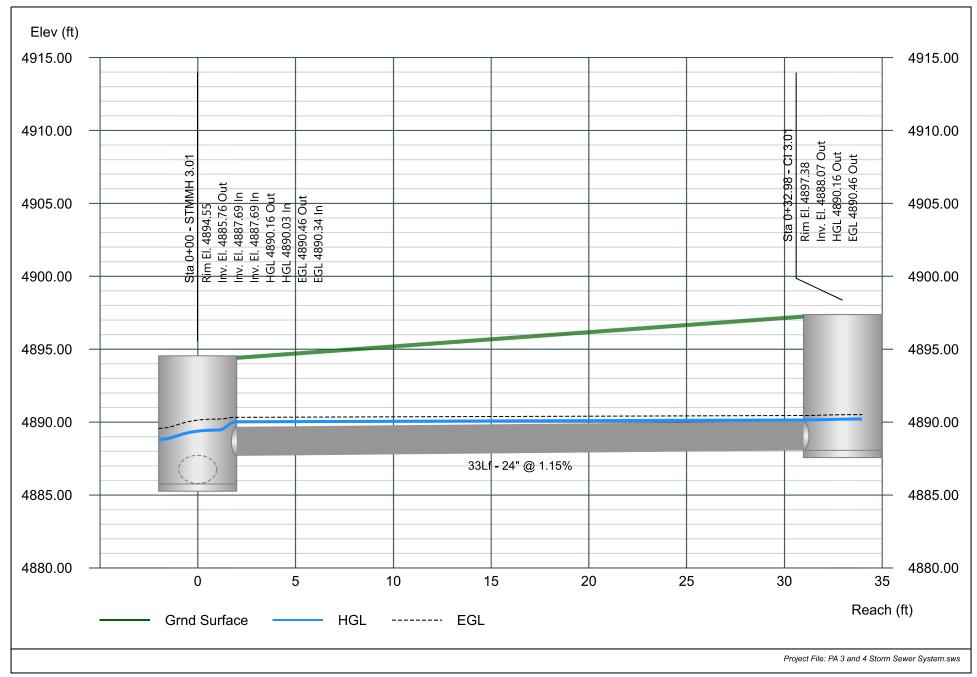

## Line 2 - Pipe - (588) (PA 3 and 4 Storm Sewer Network)



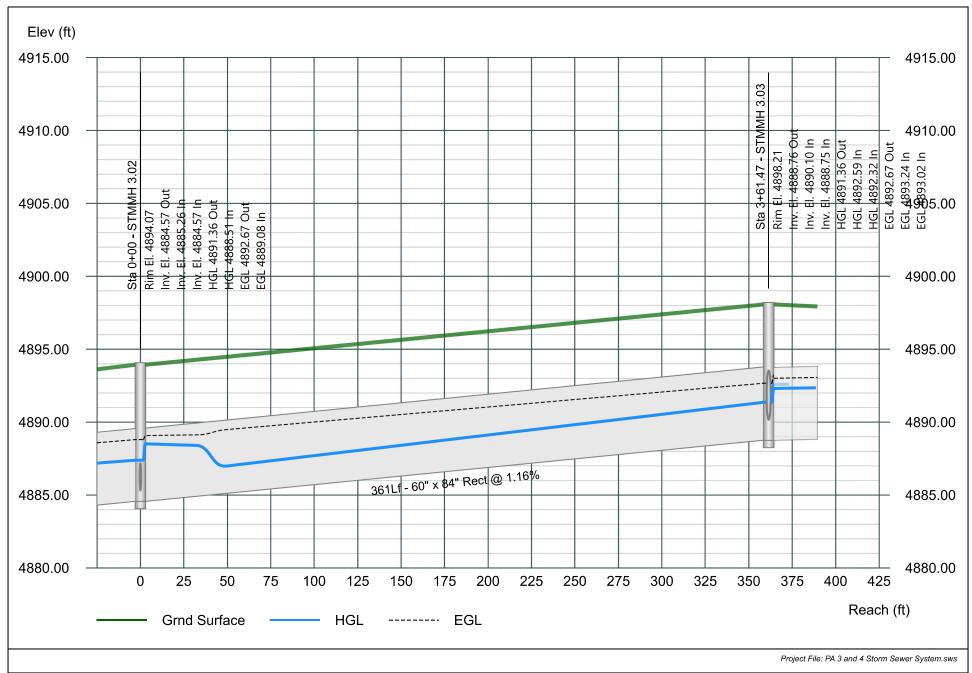

## Line 3 - Pipe - (581) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24



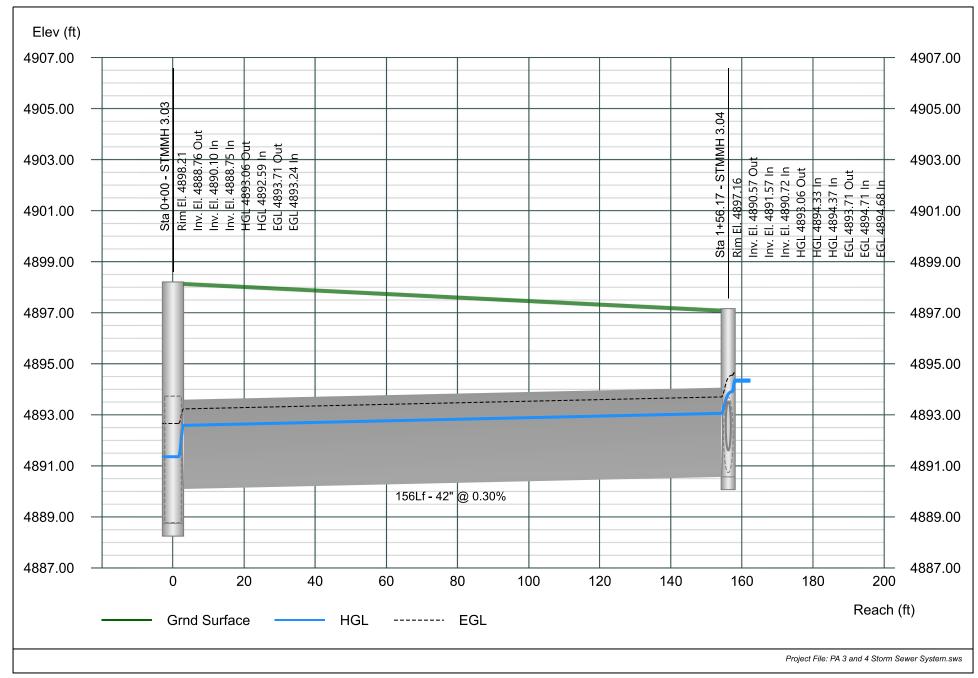

# Line 4 - Pipe - (567) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24



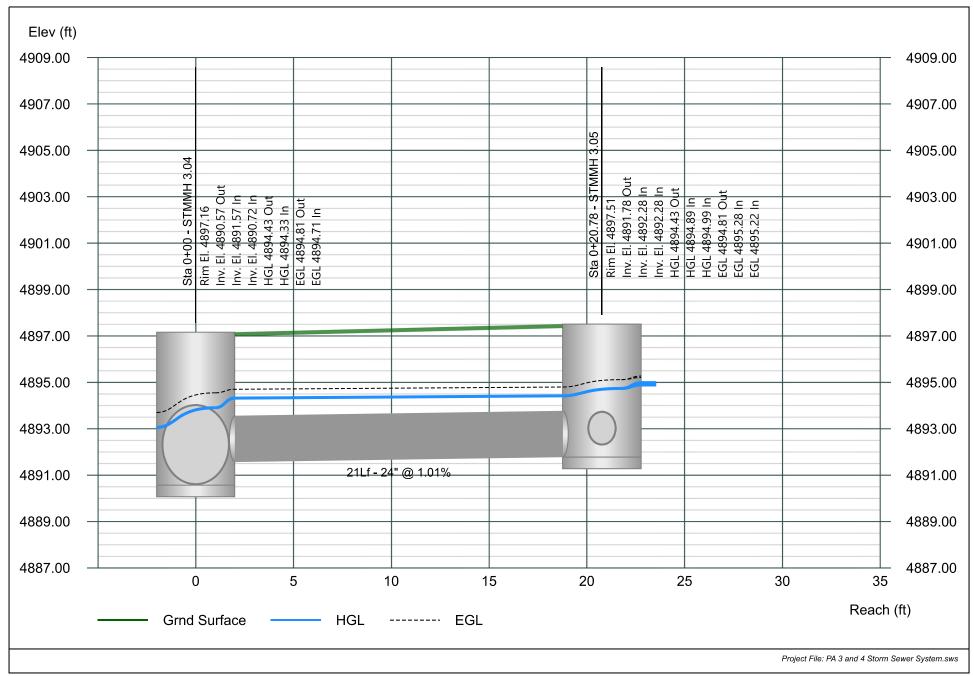

## Line 5 - Pipe - (589) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24




## Line 6 - Pipe - (590) (PA 3 and 4 Storm Sewer Network)



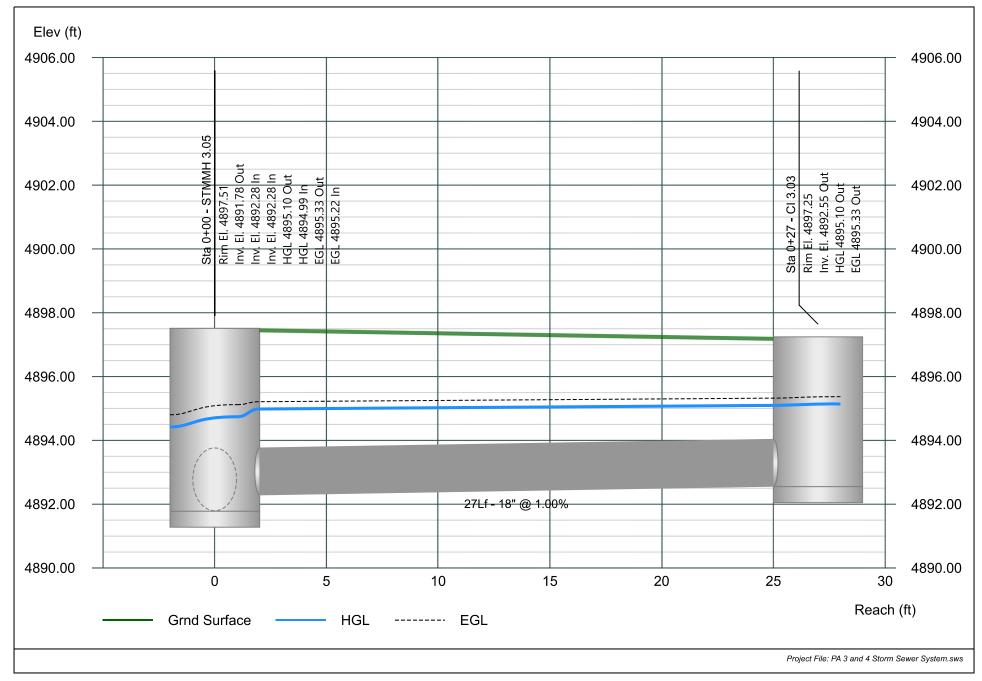

## Line 7 - Pipe - (372) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24



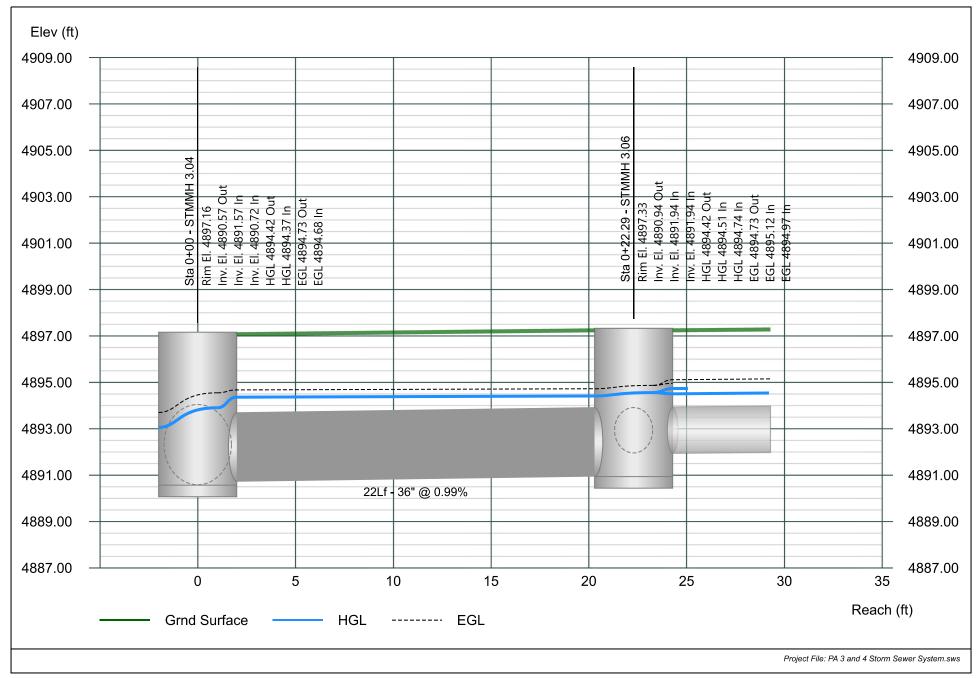

## Line 8 - Pipe - (378) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24




# Line 9 - Pipe - (379) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24



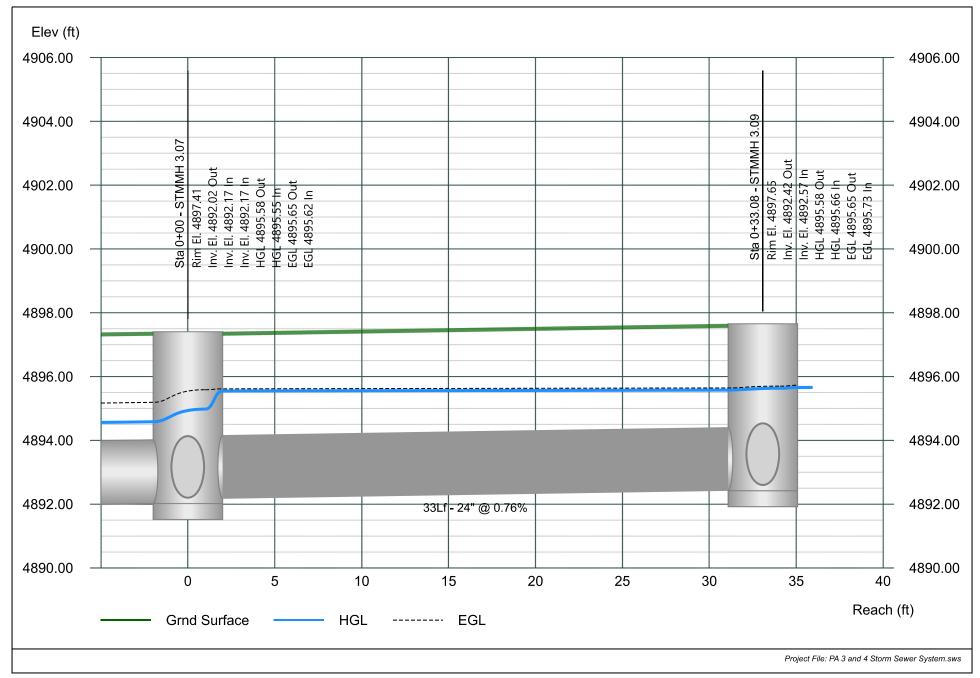

### Line 10 - Pipe - (377) (PA 3 and 4 Storm Sewer Network)



## Line 11 - Pipe - (371) (PA 3 and 4 Storm Sewer Network)

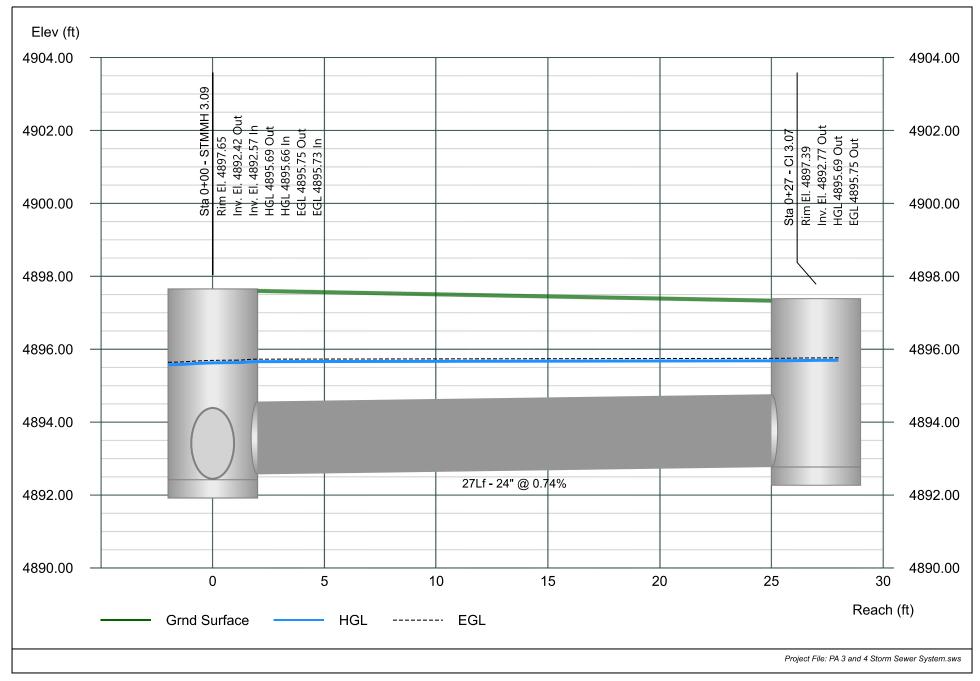
Stormwater Studio 2021 v 3.0.0.24



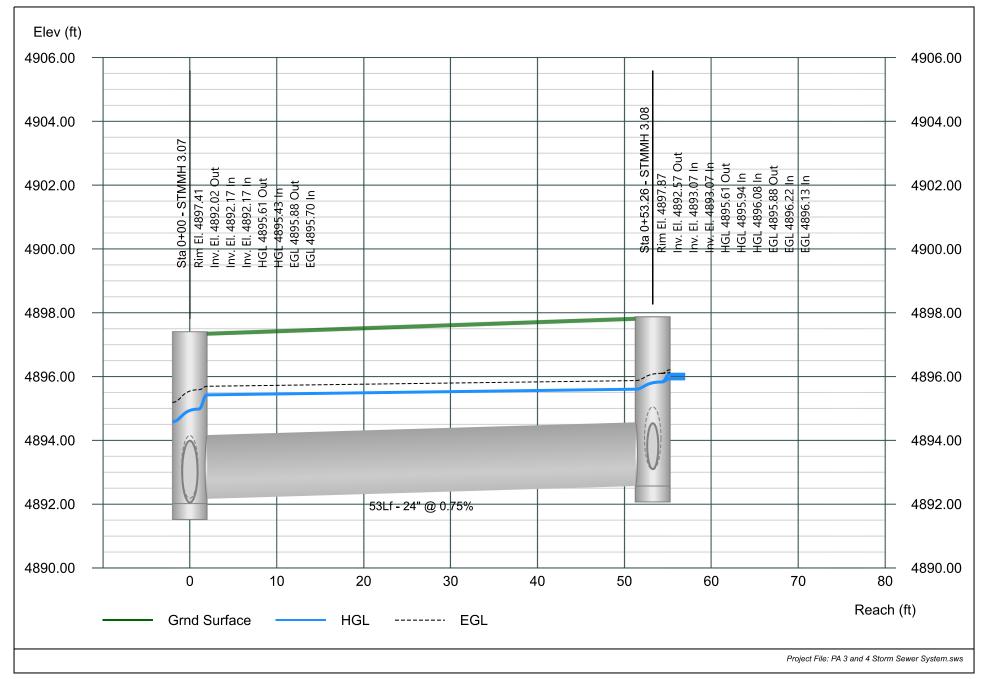

#### Line 12 - Pipe - (370) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24



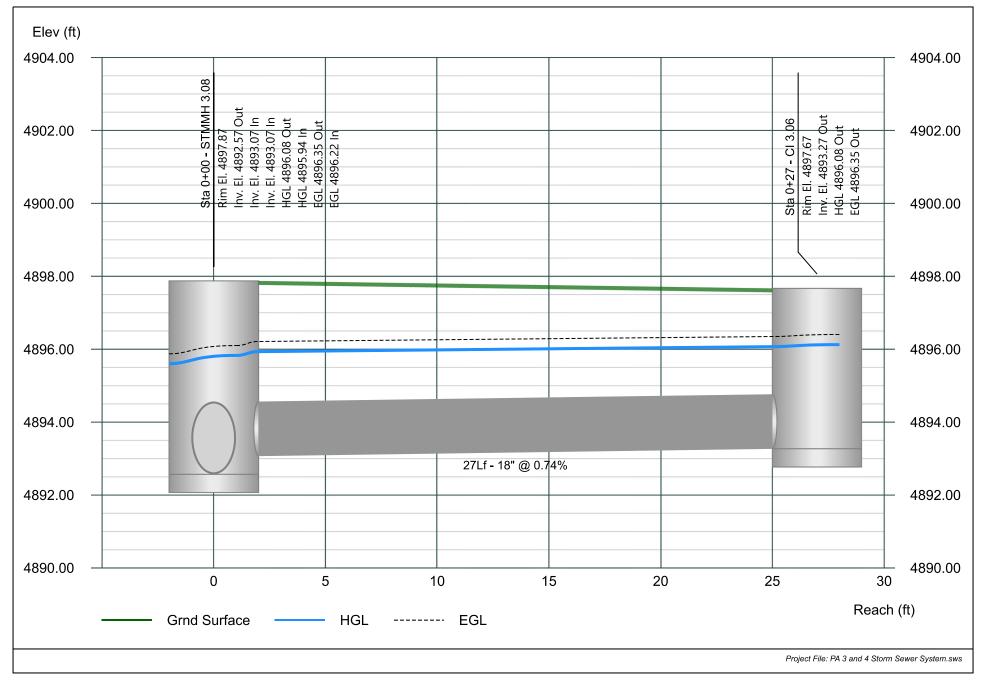

#### Line 13 - Pipe - (369) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24



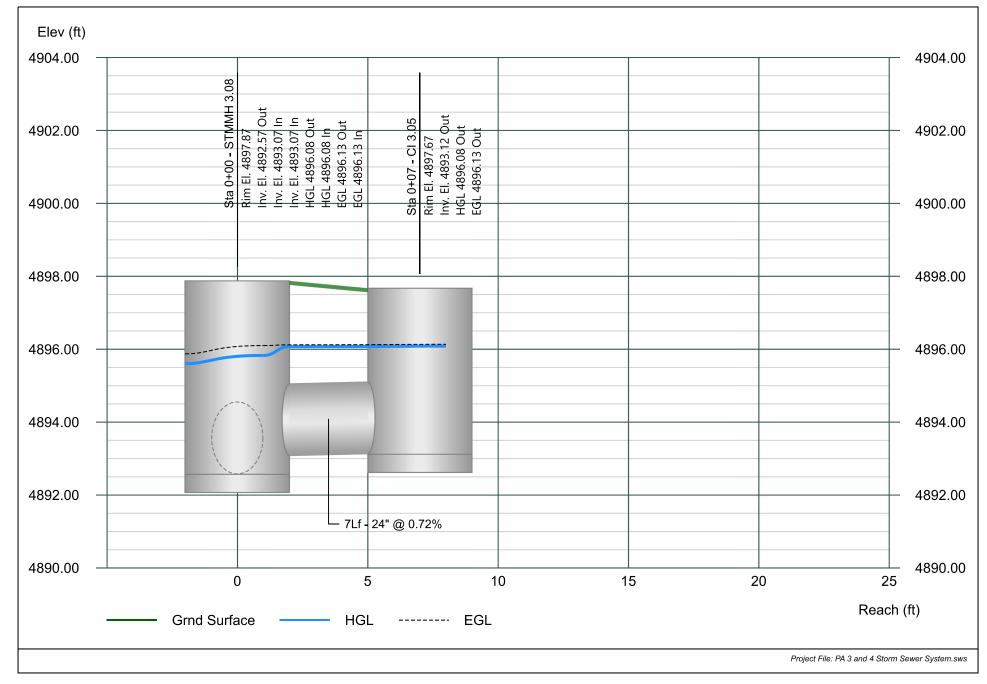

## Line 14 - Pipe - (373) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24




### Line 15 - Pipe - (375) (PA 3 and 4 Storm Sewer Network)




### Line 16 - Pipe - (374) (PA 3 and 4 Storm Sewer Network)

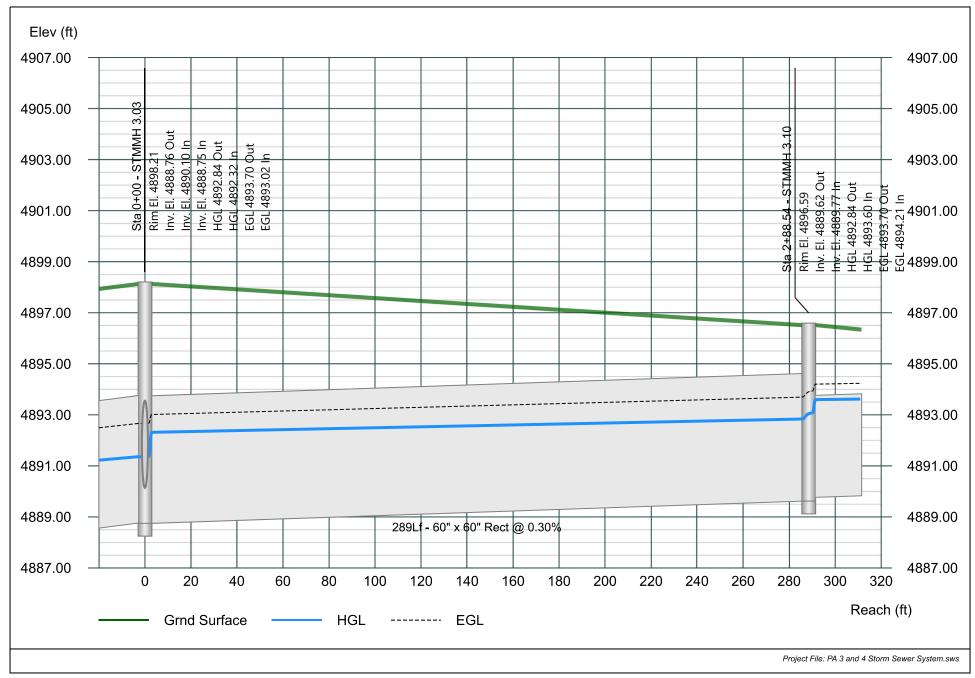
Stormwater Studio 2021 v 3.0.0.24



## Line 17 - Pipe - (376) (PA 3 and 4 Storm Sewer Network)

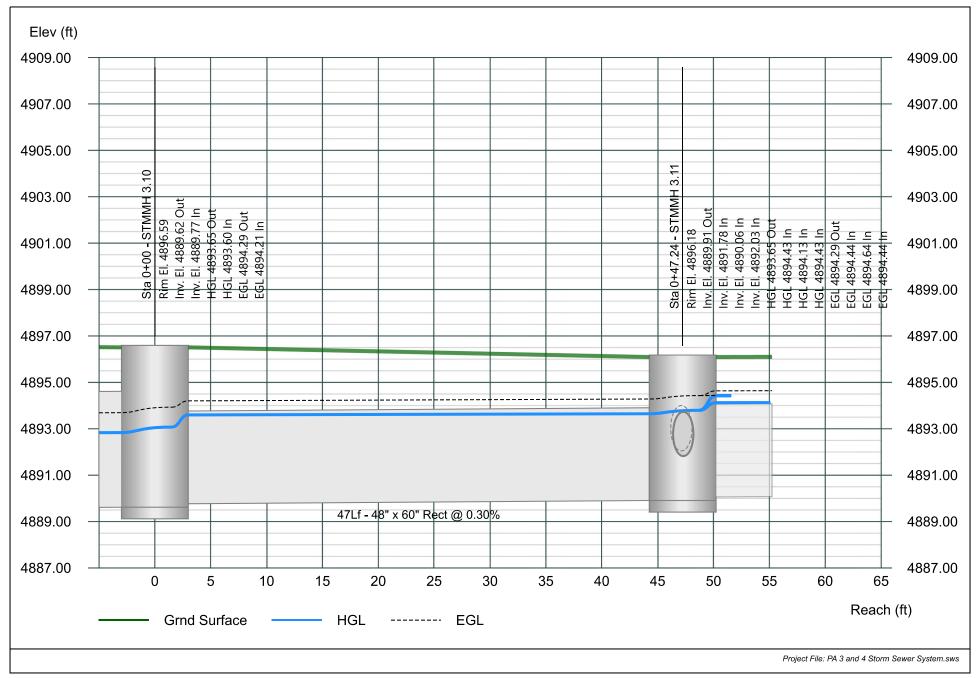
Stormwater Studio 2021 v 3.0.0.24



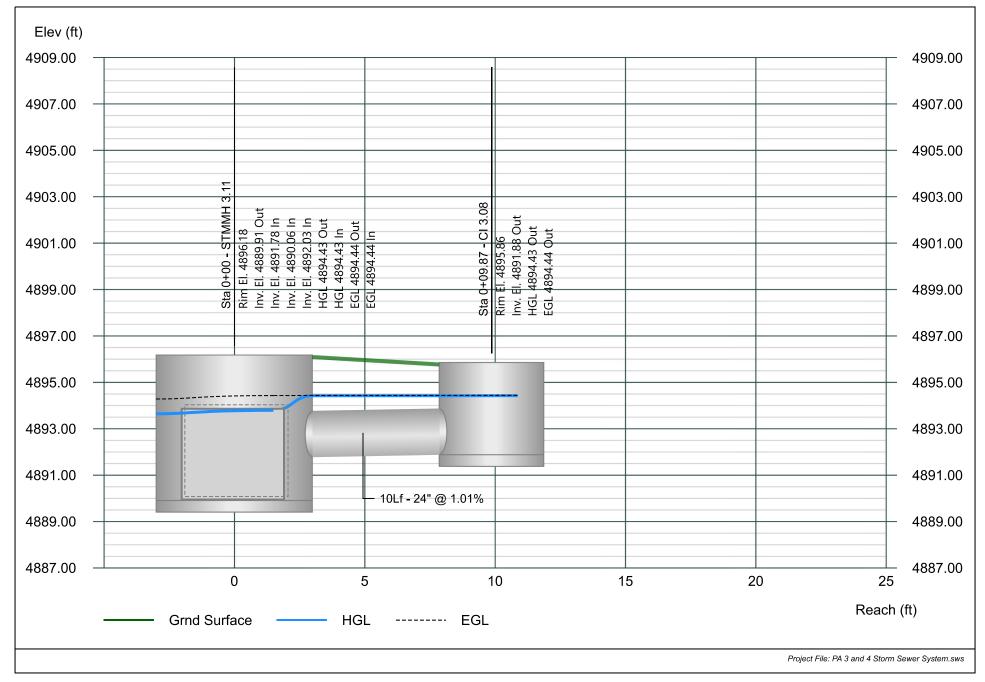

## Line 18 - Pipe - (380) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24

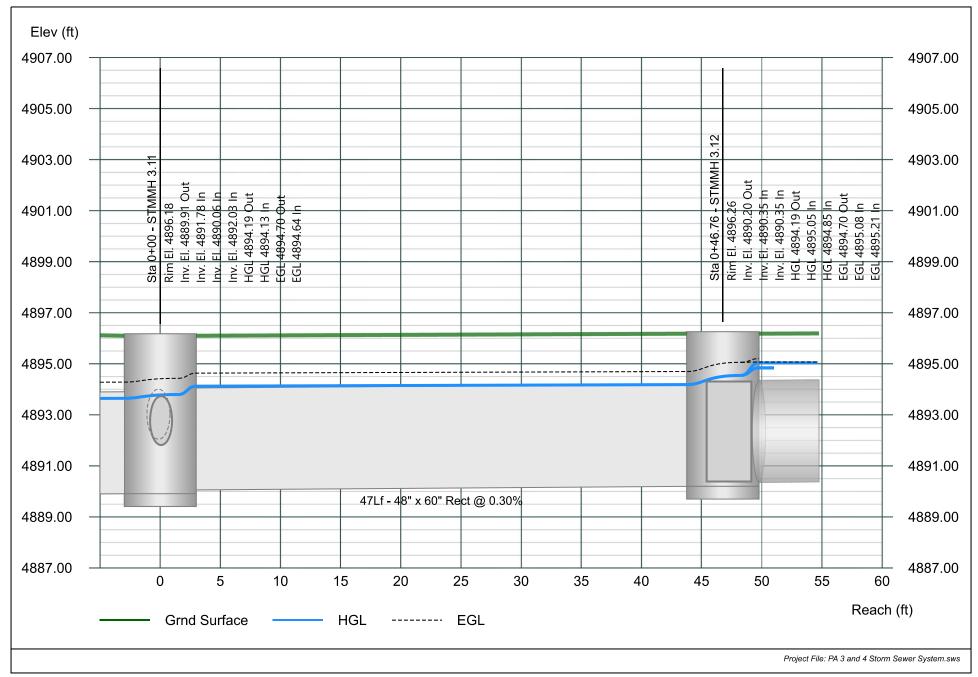
| 899.00 |               | Sta 0+07 - Cl 3.04<br>Rim El. 4897.06<br>Inv. El. 4892.01 Out<br>HGL 4894.76 Out<br>EGL 4894.99 Out |                     |                     | 4899.0              |
|--------|---------------|-----------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|
| 897.00 |               |                                                                                                     |                     |                     | 4897.0              |
| 895.00 |               |                                                                                                     |                     |                     | 4895.0              |
| 893.00 |               |                                                                                                     |                     |                     | 4893.0              |
| 801.00 |               |                                                                                                     |                     |                     | 4901                |
| 891.00 |               | @ 1 00%                                                                                             |                     |                     | 4891.0              |
|        |               | 7Lf - 24"                                                                                           | - 7Lf - 24" @ 1.00% | - 7Lf - 24" @ 1.00% | - 7Lf - 24" @ 1.00% |
|        | └── 7Lf - 24" | @ 1.00%                                                                                             |                     |                     | 48                  |
| 39.00  |               |                                                                                                     |                     |                     | 488                 |


### Line 19 - Pipe - (117) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24

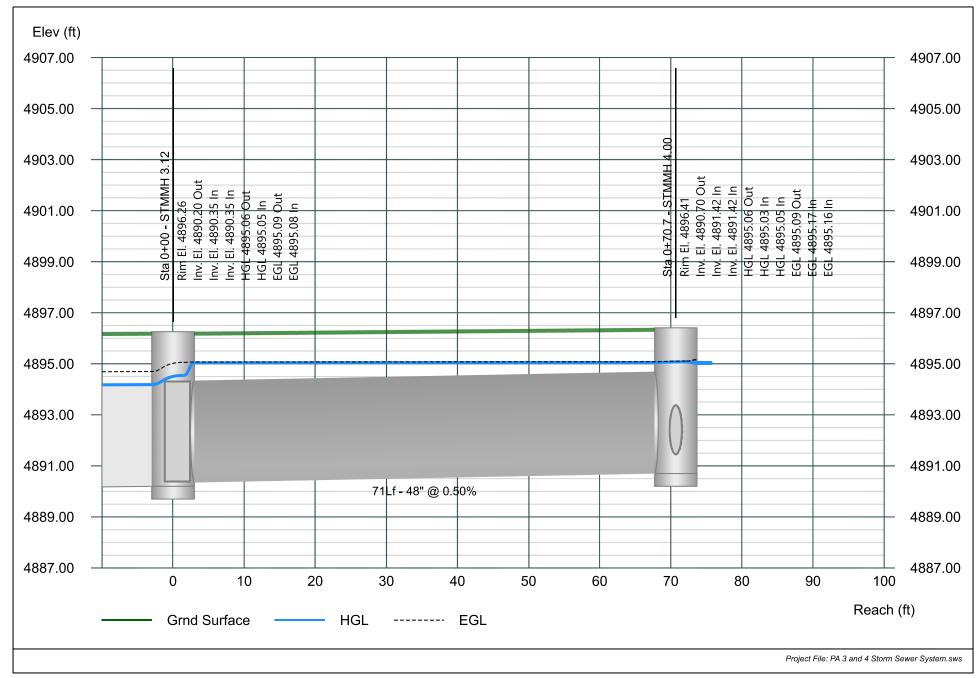



## Line 20 - Pipe - (116) (1) (PA 3 and 4 Storm Sewer Network)


Stormwater Studio 2021 v 3.0.0.24



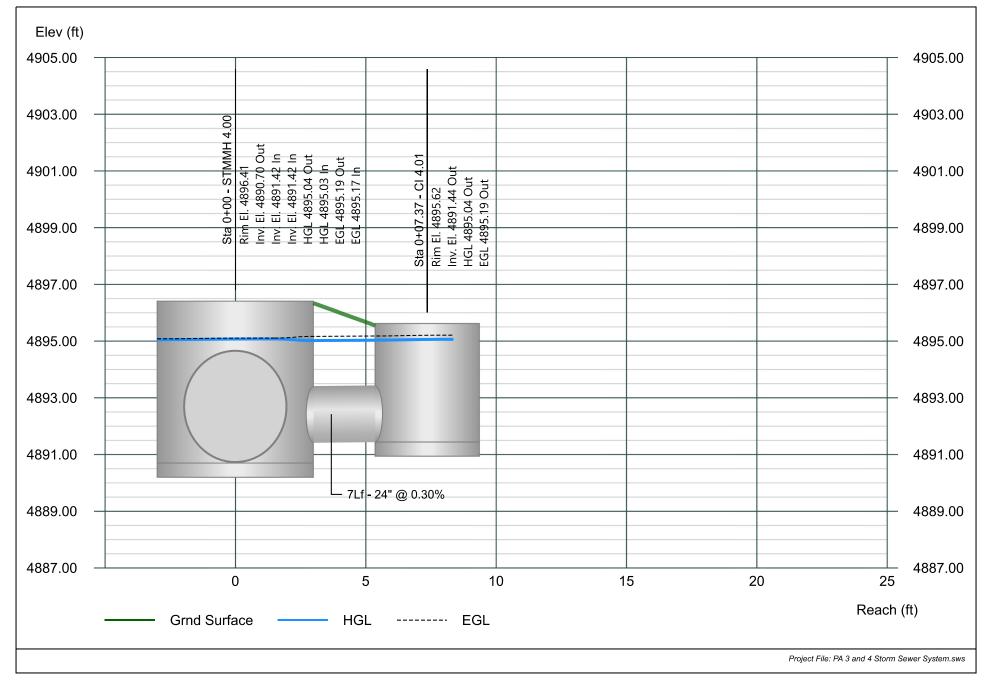
### Line 21 - Pipe - (410) (PA 3 and 4 Storm Sewer Network)




## Line 22 - Pipe - (116) (PA 3 and 4 Storm Sewer Network)

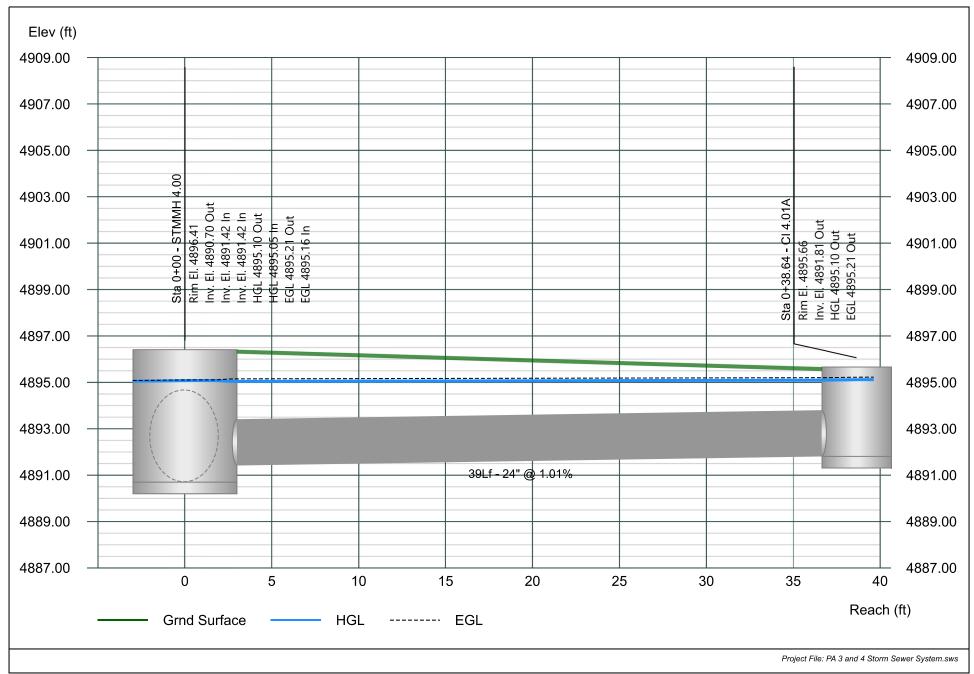


#### Line 23 - Pipe - (413) (PA 3 and 4 Storm Sewer Network)


Stormwater Studio 2021 v 3.0.0.24

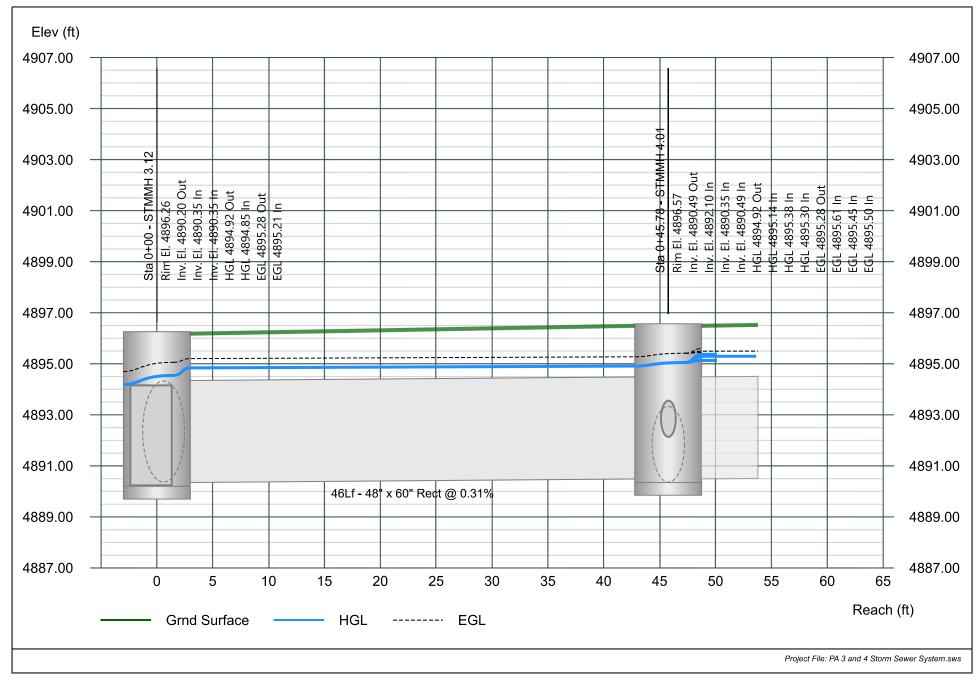


Project Name: Pioneer Village ~ PA 3 and 4


## Line 24 - Pipe - (412) (PA 3 and 4 Storm Sewer Network)

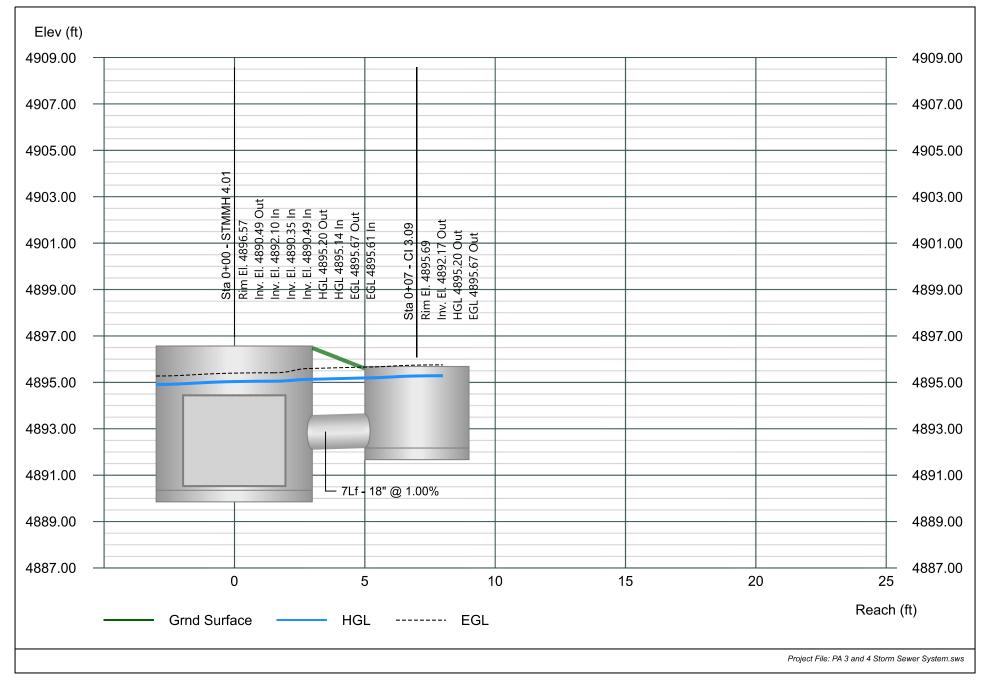
Stormwater Studio 2021 v 3.0.0.24




#### Line 25 - Pipe - (598) (PA 3 and 4 Storm Sewer Network)

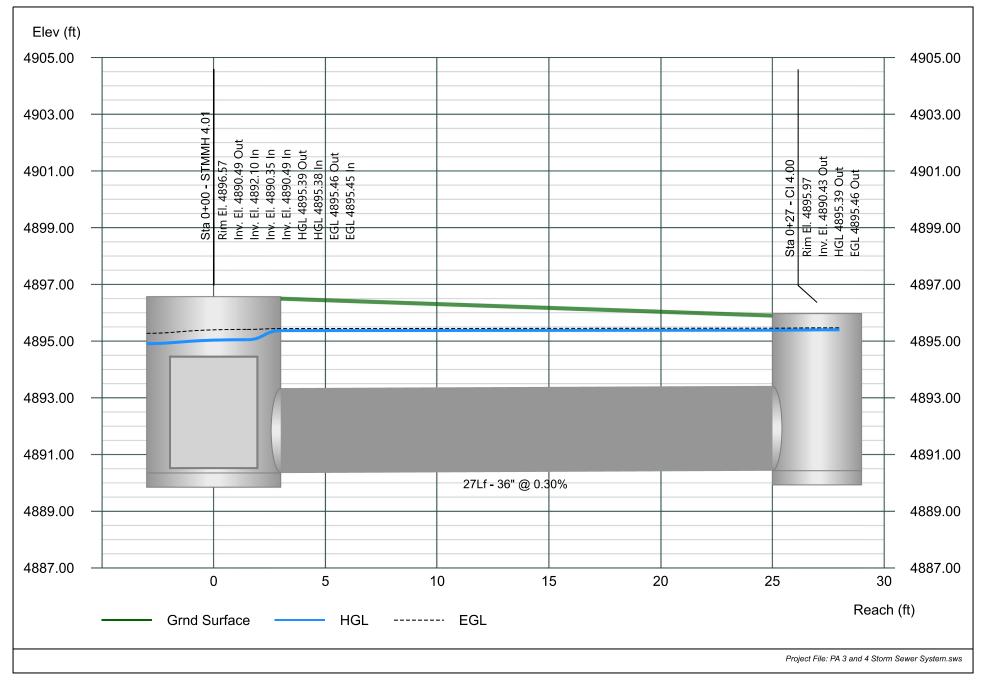
Stormwater Studio 2021 v 3.0.0.24



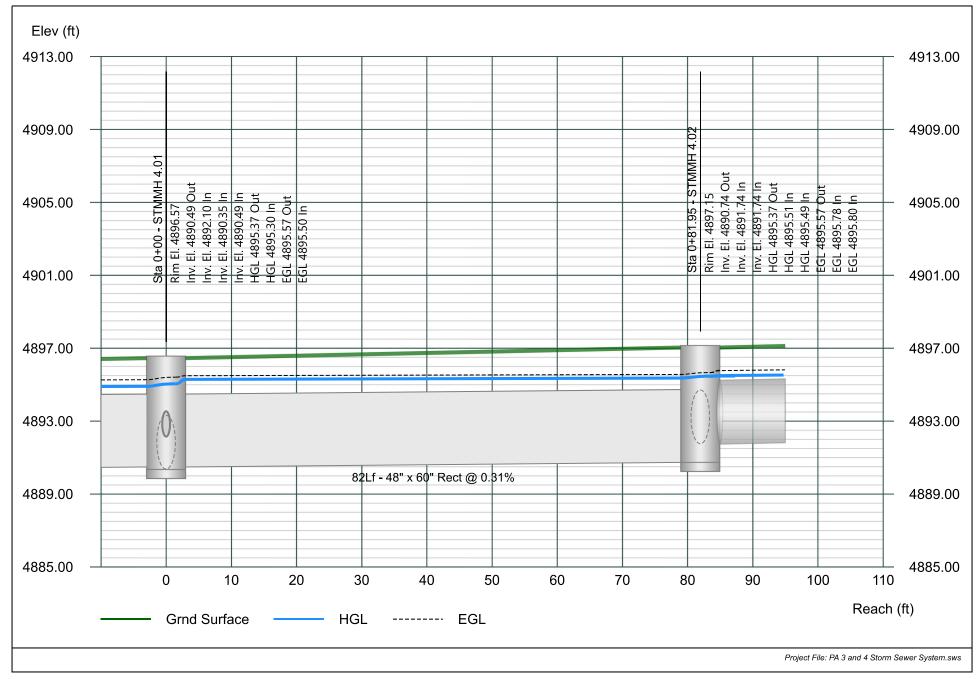

# Line 26 - Pipe - (115) (1) (1) (1) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24

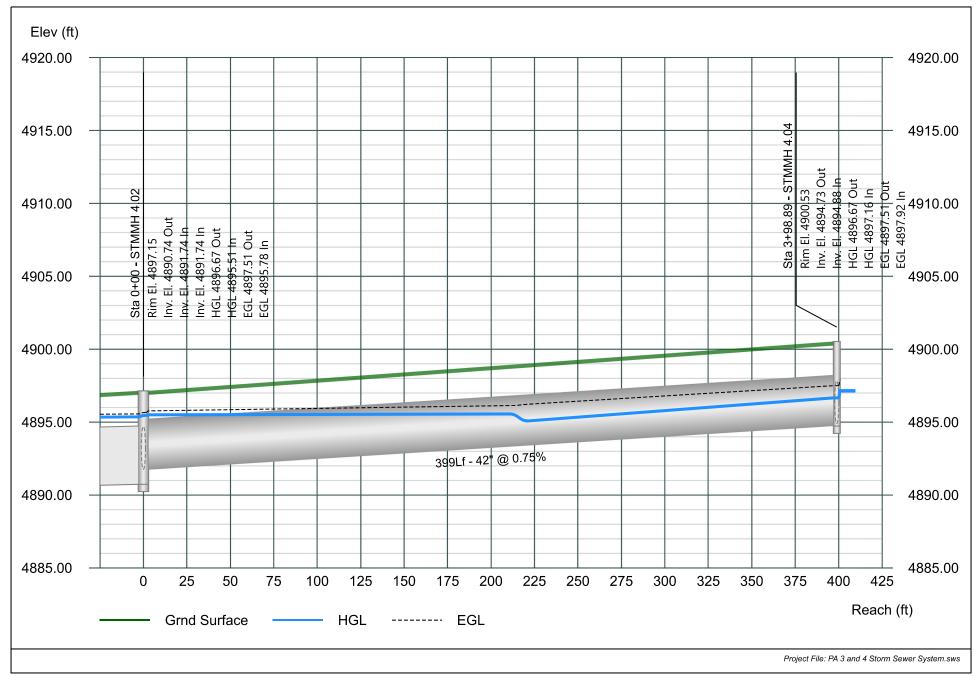



### Line 27 - Pipe - (394) (PA 3 and 4 Storm Sewer Network)

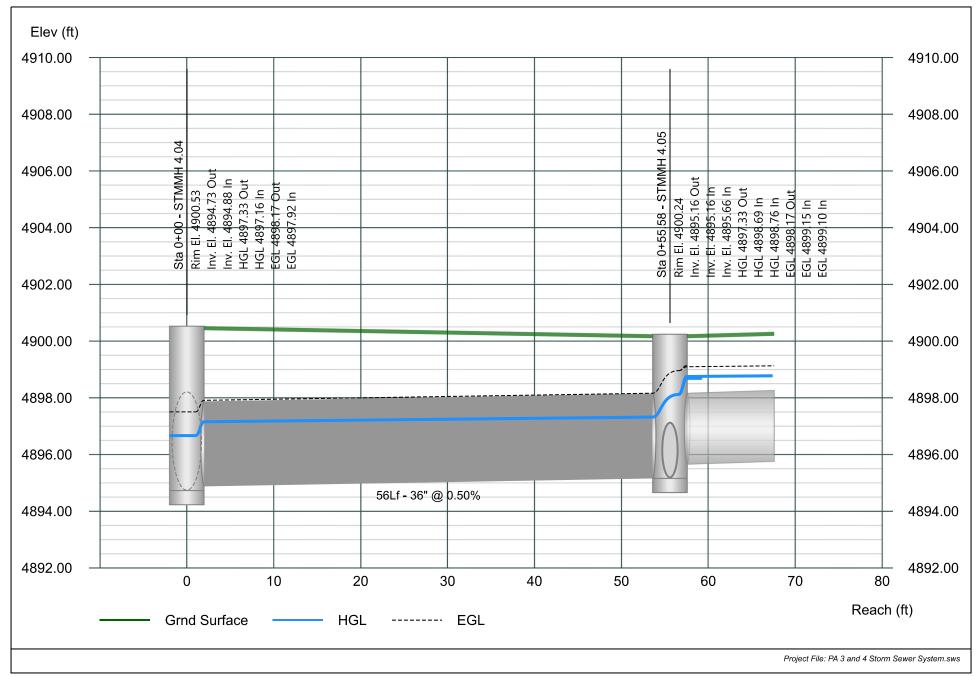
Stormwater Studio 2021 v 3.0.0.24



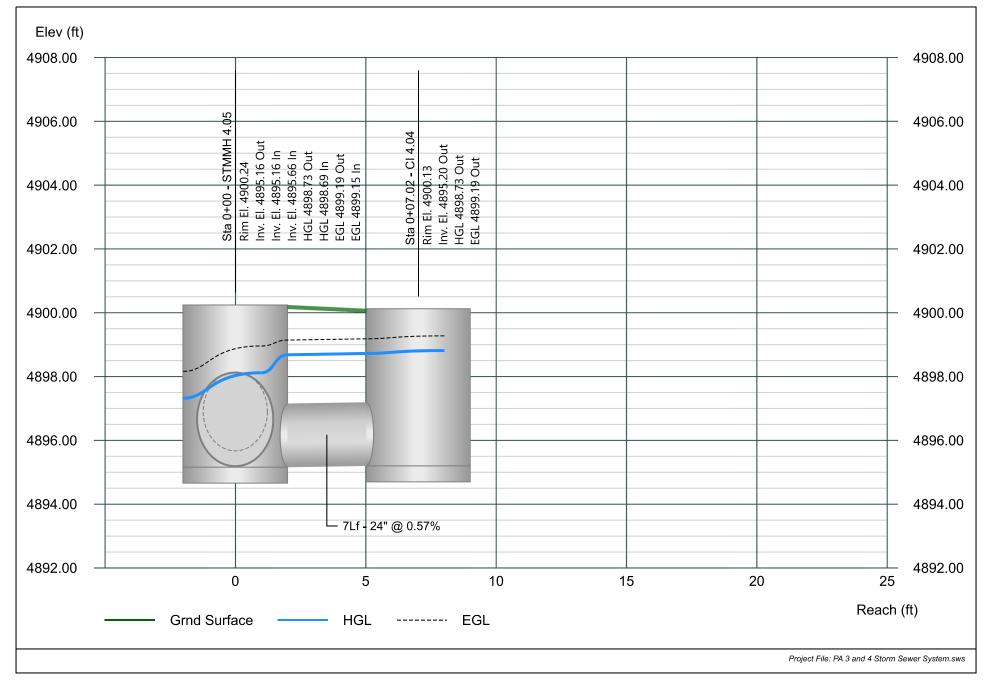

## Line 28 - Pipe - (115) (1) (1) (PA 3 and 4 Storm Sewer Network)


Stormwater Studio 2021 v 3.0.0.24

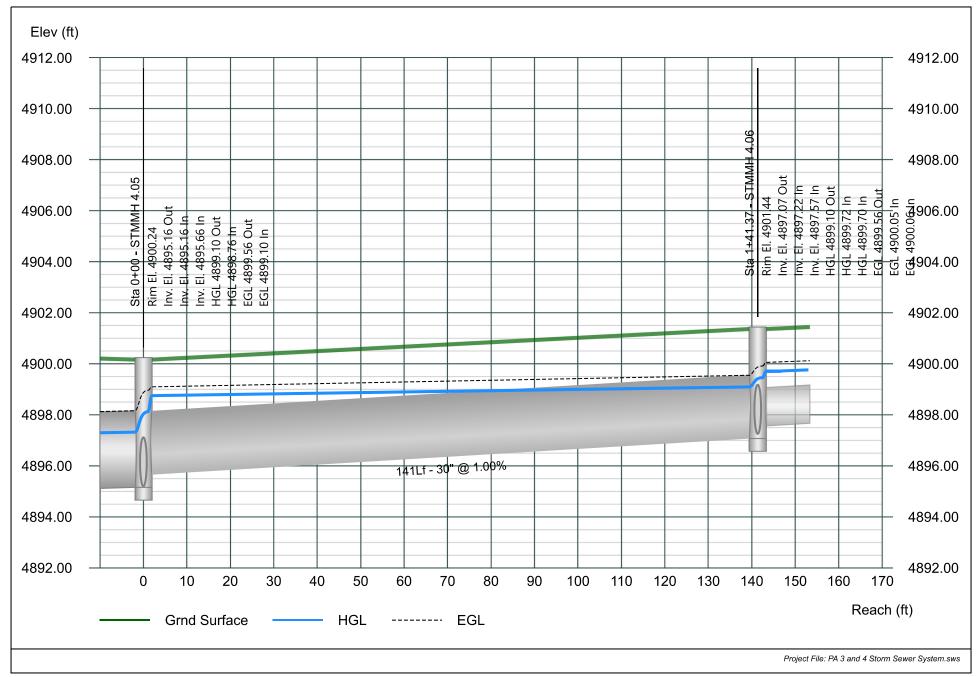



# Line 29 - Pipe - (584) (1) (PA 3 and 4 Storm Sewer Network)

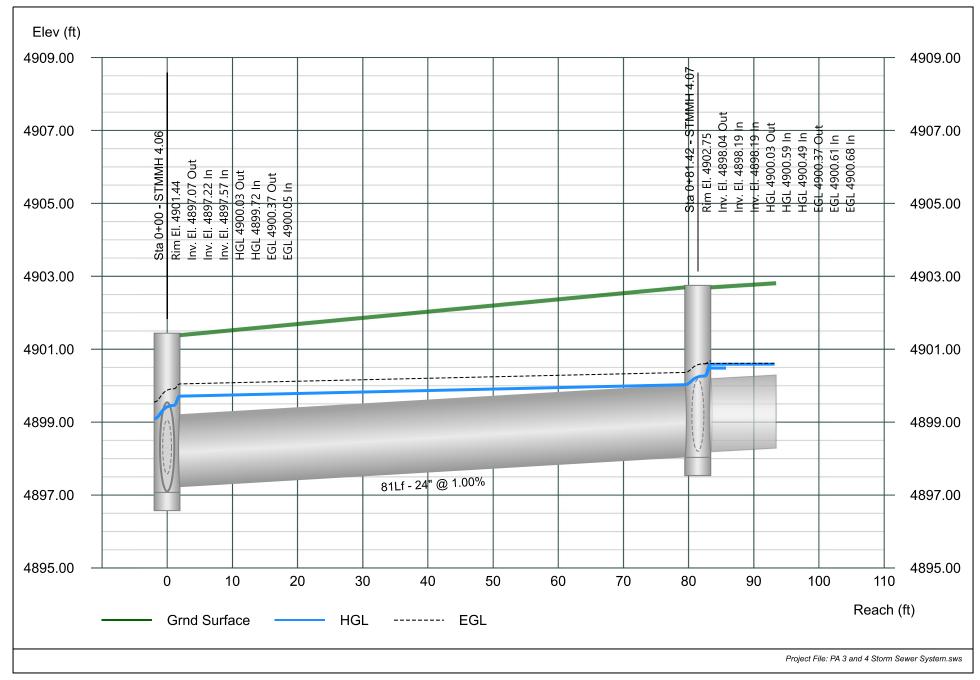



#### Line 30 - Pipe - (584) (PA 3 and 4 Storm Sewer Network)

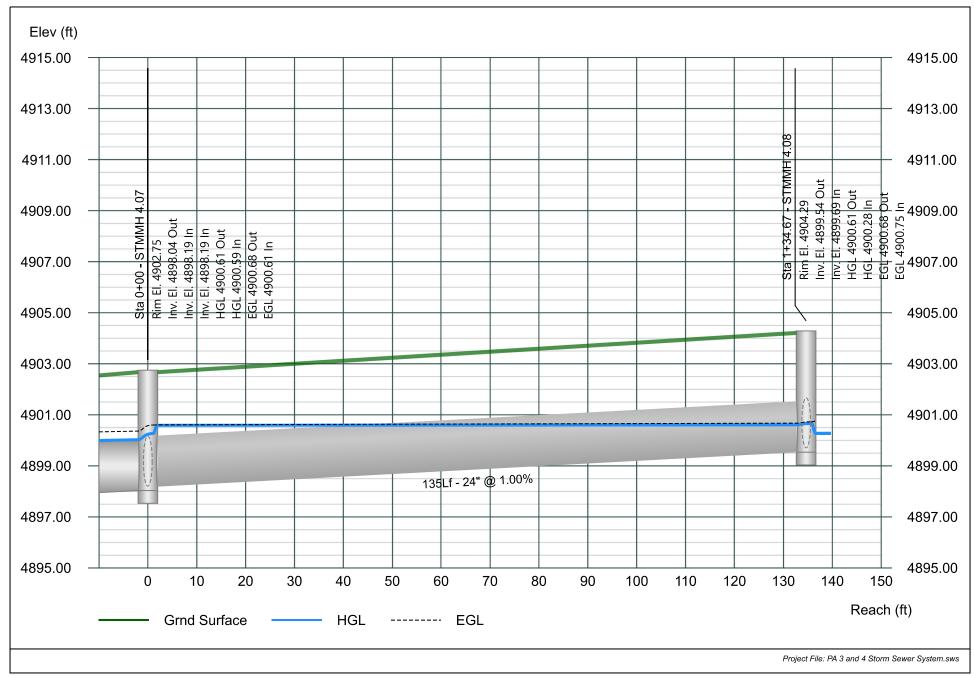



#### Line 31 - Pipe - (583) (PA 3 and 4 Storm Sewer Network)

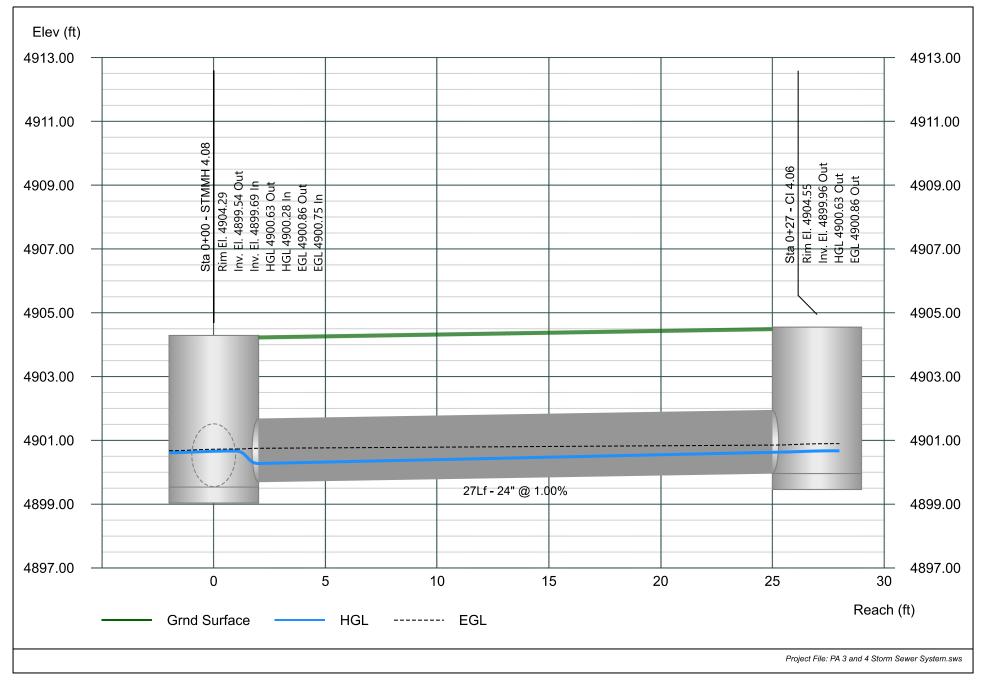



## Line 32 - Pipe - (582) (PA 3 and 4 Storm Sewer Network)

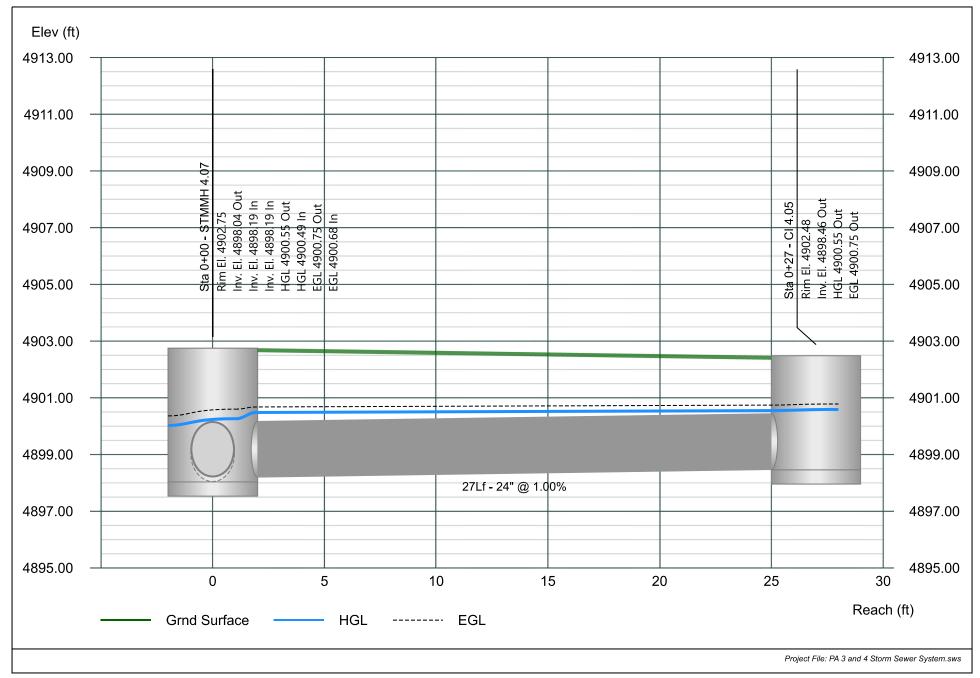



#### Line 33 - Pipe - (594) (PA 3 and 4 Storm Sewer Network)

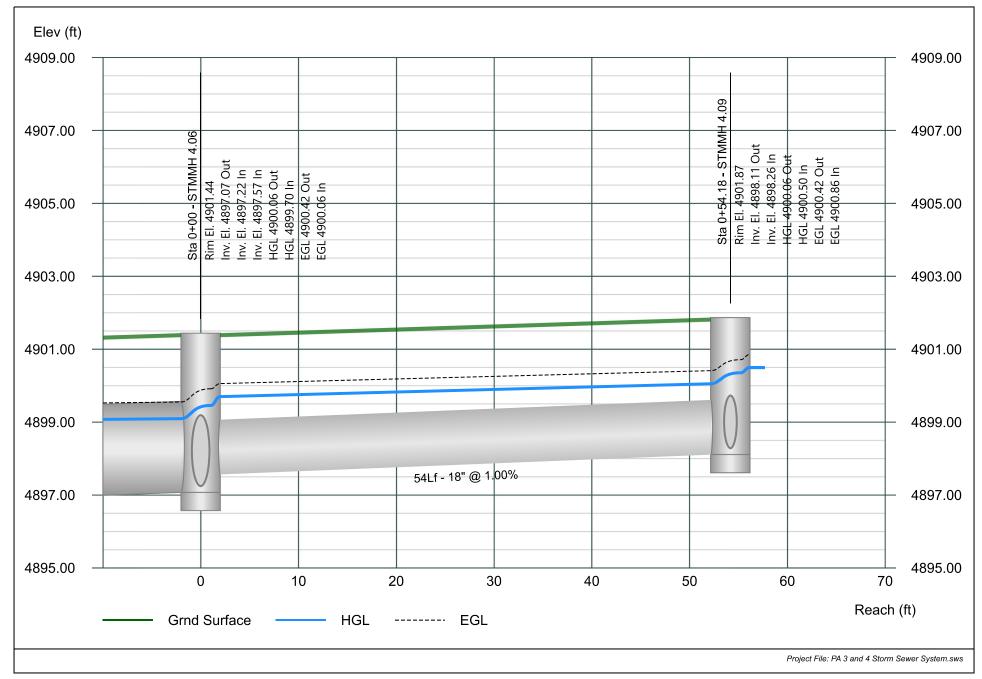



## Line 34 - Pipe - (593) (PA 3 and 4 Storm Sewer Network)




#### Line 35 - Pipe - (592) (PA 3 and 4 Storm Sewer Network)




#### Line 36 - Pipe - (591) (PA 3 and 4 Storm Sewer Network)

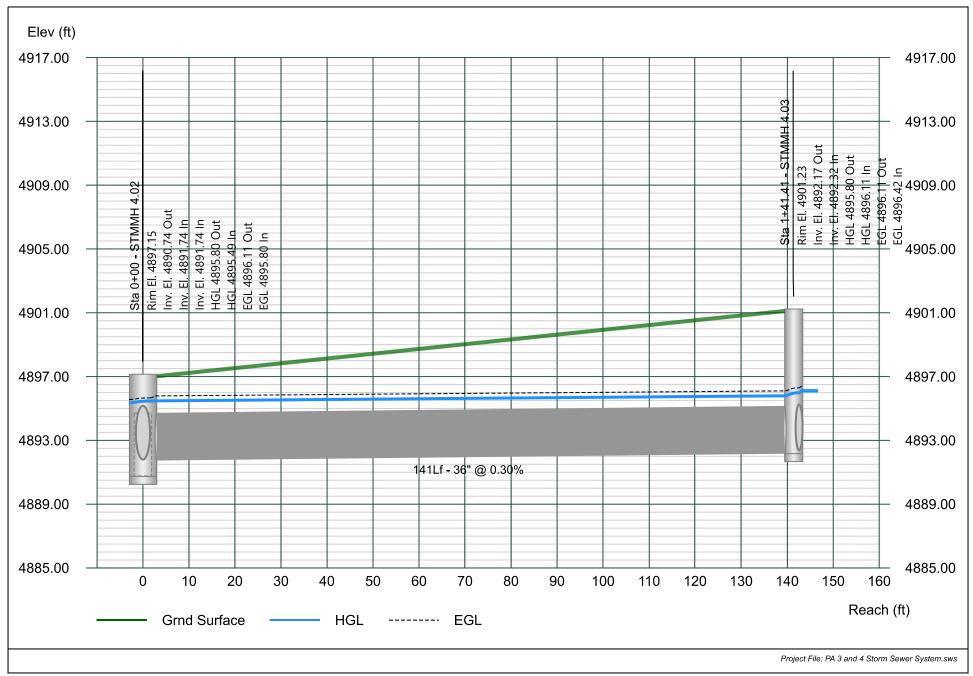


#### Line 37 - Pipe - (595) (PA 3 and 4 Storm Sewer Network)



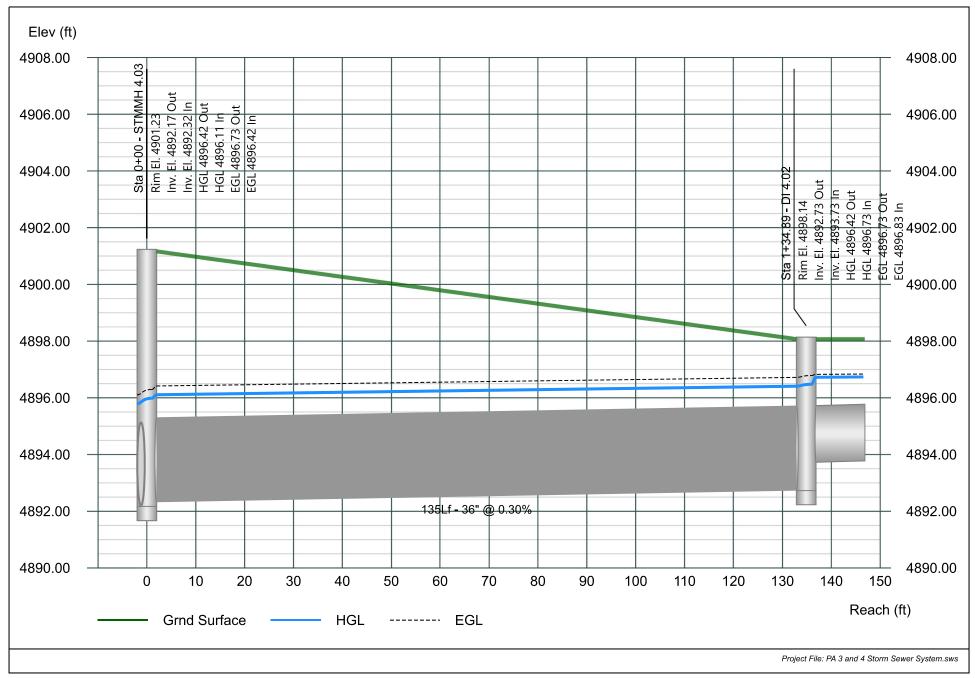
## Line 38 - Pipe - (597) (PA 3 and 4 Storm Sewer Network)




#### Line 39 - Pipe - (596) (PA 3 and 4 Storm Sewer Network)

Stormwater Studio 2021 v 3.0.0.24

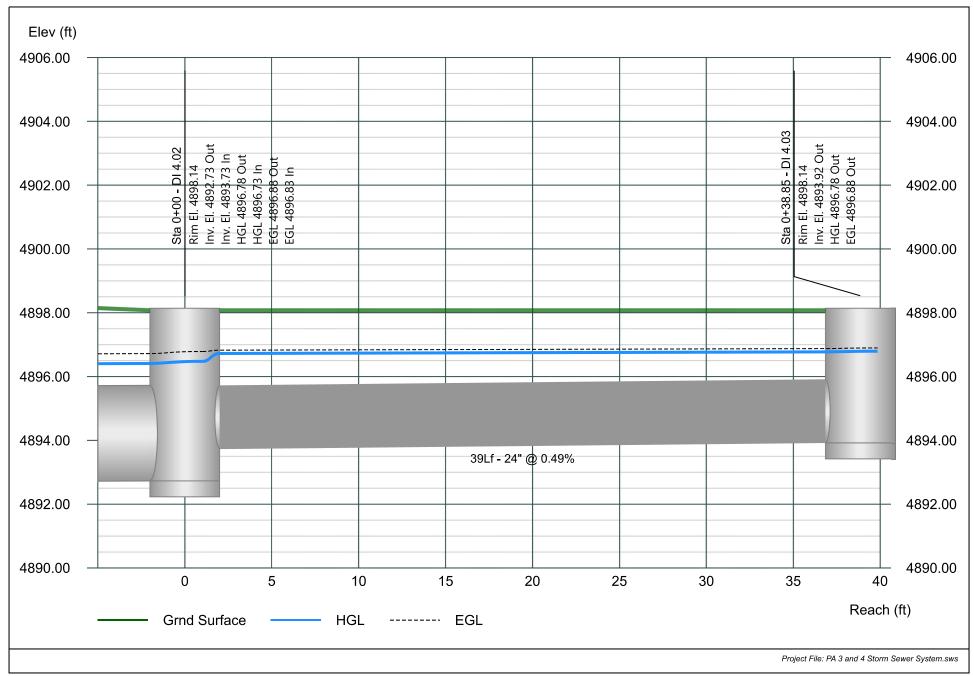



03-18-2021

#### Line 40 - Pipe - (585) (PA 3 and 4 Storm Sewer Network)



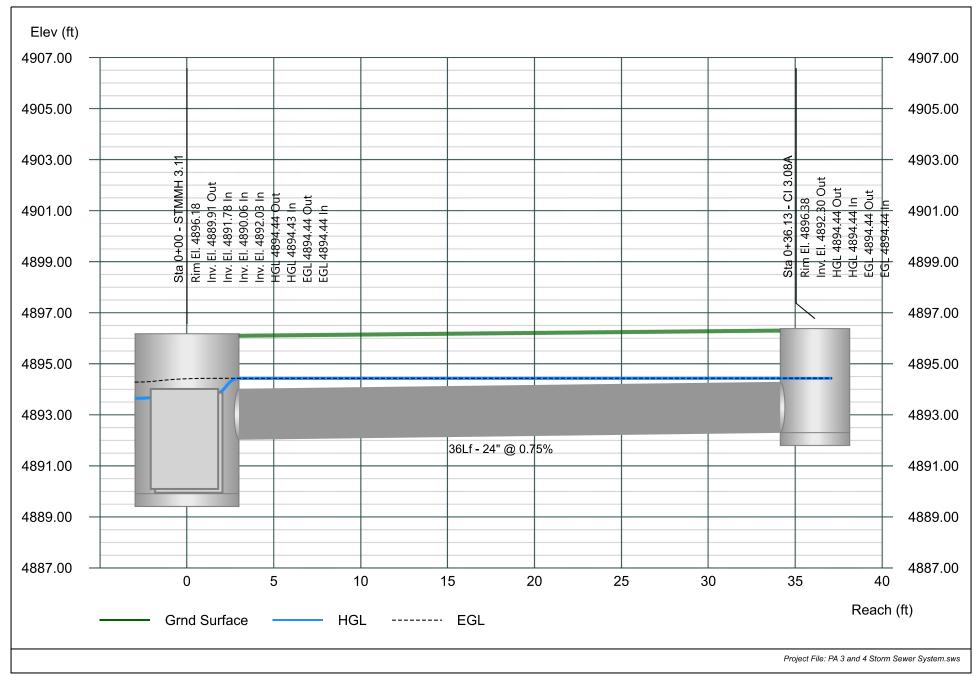
## Line 41 - Pipe - (114) (1) (PA 3 and 4 Storm Sewer Network)


Stormwater Studio 2021 v 3.0.0.24



03-18-2021

## Line 42 - Pipe - (114) (PA 3 and 4 Storm Sewer Network)


Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village ~ PA 3 and 4

03-18-2021

## Line 43 - Pipe - (600) (PA 3 and 4 Storm Sewer Network)



# **Energy Grade Line Calculations**

Stormwater Studio 2021 v 3.0.0.24

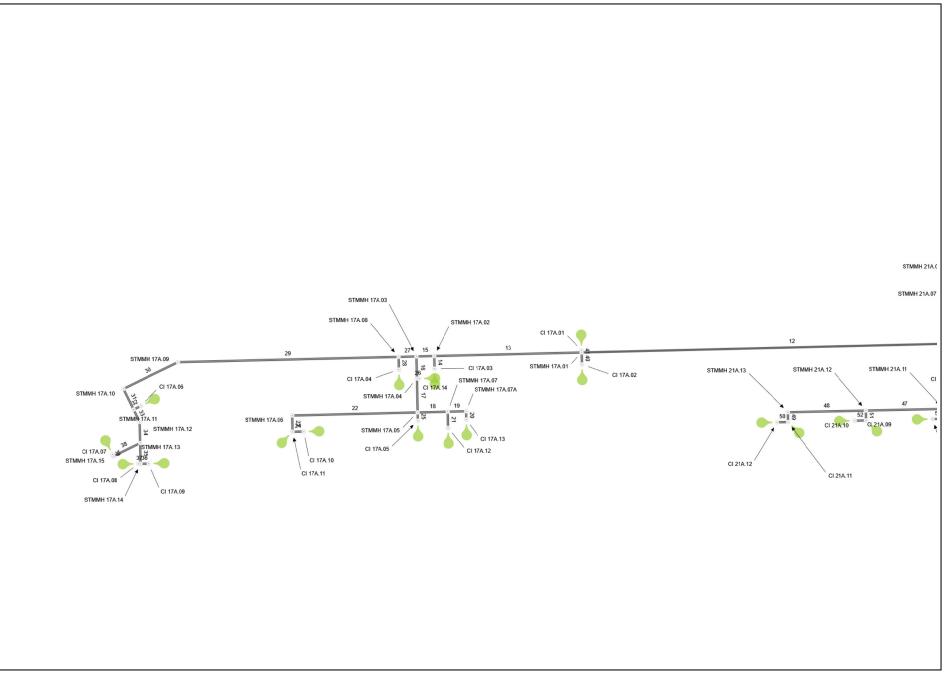
| Line    | Line<br>Size | Ø         | Downstream               |           |                      |                   |           |             |               | Length    | Upstream       |       |        |             |        |             |             |            | Pipe          |               | Junction     |               |  |
|---------|--------------|-----------|--------------------------|-----------|----------------------|-------------------|-----------|-------------|---------------|-----------|----------------|-------|--------|-------------|--------|-------------|-------------|------------|---------------|---------------|--------------|---------------|--|
| No      |              |           | Invert<br>Elev           | Depth     | Area                 | HGL<br>Elev       | Vel       | Vel<br>Head | EGL<br>Elev   | Len       | Invert<br>Elev | Depth | Area   | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | n<br>Value | Enrgy<br>Loss | HGLa<br>Elev  | EGLa<br>Elev | Enrgy<br>Loss |  |
|         | (in)         | (cfs)     | (ft)                     | (ft)      | (sqft)               | (ft)              | (ft/s)    | (ft)        | (ft)          | (ft)      | (ft)           | (ft)  | (sqft) | (ft)        | (ft/s) | (ft)        | (ft)        |            | (ft)          | (ft)          | (ft)         | (ft)          |  |
| 1       | 60x84r       | 188.77    | 4873.43                  | 5.00      | 35.00                | 4878.43           | 5.39      | 0.45        | 4878.88       | 104.16    | 4873.74        | 4.76  | 33.31  | 4878.50     | 5.67   | 0.50        | 4879.00     | 0.013      | 0.118         | 4878.84       | 4879.34      | 0.34          |  |
| 2       | 60x84r       | 188.77    | 4873.74                  | 5.00      | 35.00                | 4879.07           | 5.39      | 0.45        | 4879.52       | 933.32    | 4884.57        | 2.82² | 19.77  | 4887.39     | 9.55   | 1.42        | 4888.81     | 0.013      | 9.288         | 4887.39       | 4888.81      | 0.00          |  |
| 3       | 24           | 21.90     | 4885.26                  | 2.00      | 3.14                 | 4888.36           | 6.97      | 0.76        | 4889.11       | 50.37     | 4885.76        | 2.00  | 3.14   | 4888.83     | 6.97   | 0.76        | 4889.58     | 0.013      | 0.472         | 4889.46       | 4890.21      | 0.63          |  |
| 4       | 24           | 7.96      | 4887.69                  | 2.00      | 3.14                 | 4890.16           | 2.53      | 0.10        | 4890.25       | 13.02     | 4887.82        | 2.00  | 3.14   | 4890.17     | 2.53   | 0.10        | 4890.27     | 0.013      | 0.016         | 4890.19       | 4890.29      | 0.02          |  |
| 5       | 24           | 13.94     | 4887.69                  | 2.00      | 3.14                 | 4890.03           | 4.44      | 0.31        | 4890.34       | 32.98     | 4888.07        | 2.00  | 3.14   | 4890.16     | 4.44   | 0.31        | 4890.46     | 0.013      | 0.125         | 4890.22       | 4890.52      | 0.06          |  |
| 6       | 60x84r       | 166.87    | 4884.57                  | 3.94      | 27.61                | 4888.51           | 6.04      | 0.57        | 4889.08       | 361.47    | 4888.76        | 2.60² | 18.21  | 4891.36     | 9.16   | 1.30        | 4892.67     | 0.013      | 3.585         | 4891.36       | 4892.67      | 0.00          |  |
| 7       | 42           | 47.21     | 4890.10                  | 2.49³     | 7.33                 | 4892.59           | 6.44      | 0.65        | 4893.24       | 156.17    | 4890.57        | 2.49  | 7.33   | 4893.06     | 6.44   | 0.64        | 4893.71     | 0.013      | 0.470         | 4893.91       | 4894.56      | 0.85          |  |
| 8       | 24           | 15.55     | 4891.57                  | 2.00      | 3.14                 | 4894.33           | 4.95      | 0.38        | 4894.71       | 20.78     | 4891.78        | 2.00  | 3.14   | 4894.43     | 4.95   | 0.38        | 4894.81     | 0.013      | 0.098         | 4894.74       | 4895.12      | 0.32          |  |
| 9       | 18           | 8.78      | 4892.28                  | 1.50      | 1.77                 | 4894.89           | 4.97      | 0.38        | 4895.28       | 7.00      | 4892.33        | 1.50  | 1.77   | 4894.94     | 4.97   | 0.38        | 4895.33     | 0.013      | 0.049         | 4895.02       | 4895.40      | 0.08          |  |
| 10      | 18           | 6.77      | 4892.28                  | 1.50      | 1.77                 | 4894.99           | 3.83      | 0.23        | 4895.22       | 27.00     | 4892.55        | 1.50  | 1.77   | 4895.10     | 3.83   | 0.23        | 4895.33     | 0.013      | 0.112         | 4895.15       | 4895.37      | 0.05          |  |
| 11      | 36           | 31.66     | 4890.72                  | 3.00      | 7.07                 | 4894.37           | 4.48      | 0.31        | 4894.68       | 22.29     | 4890.94        | 3.00  | 7.07   | 4894.42     | 4.48   | 0.31        | 4894.73     | 0.013      | 0.050         | 4894.56       | 4894.88      | 0.15          |  |
| 12      | 24           | 19.66     | 4891.94                  | 2.00      | 3.14                 | 4894.51           | 6.26      | 0.61        | 4895.12       | 10.20     | 4892.02        | 2.00  | 3.14   | 4894.59     | 6.26   | 0.61        | 4895.20     | 0.013      | 0.077         | 4894.98       | 4895.59      | 0.40          |  |
| 13      | 24           | 6.56      | 4892.17                  | 2.00      | 3.14                 | 4895.55           | 2.09      | 0.07        | 4895.62       | 33.08     | 4892.42        | 2.00  | 3.14   | 4895.58     | 2.09   | 0.07        | 4895.65     | 0.013      | 0.028         | 4895.64       | 4895.70      | 0.06          |  |
| 14      | 24           | 6.56      | 4892.57                  | 2.00      | 3.14                 | 4895.66           | 2.09      | 0.07        | 4895.73       | 27.00     | 4892.77        | 2.00  | 3.14   | 4895.69     | 2.09   | 0.07        | 4895.75     | 0.013      | 0.023         | 4895.70       | 4895.77      | 0.01          |  |
| 15      | 24           | 13.10     | 4892.17                  | 2.00      | 3.14                 | 4895.43           | 4.17      | 0.27        | 4895.70       | 53.26     | 4892.57        | 2.00  | 3.14   | 4895.61     | 4.17   | 0.27        | 4895.88     | 0.013      | 0.179         | 4895.83       | 4896.11      | 0.23          |  |
| 16      | 18           | 7.47      | 4893.07                  | 1.50      | 1.77                 | 4895.94           | 4.23      | 0.28        | 4896.22       | 27.00     | 4893.27        | 1.50  | 1.77   | 4896.08     | 4.23   | 0.28        | 4896.35     | 0.013      | 0.137         | 4896.13       | 4896.41      | 0.06          |  |
| 17      | 24           | 5.63      | 4893.07                  | 2.00      | 3.14                 | 4896.08           | 1.79      | 0.05        | 4896.13       | 7.00      | 4893.12        | 2.00  | 3.14   | 4896.08     | 1.79   | 0.05        | 4896.13     | 0.013      | 0.004         | 4896.09       | 4896.14      | 0.01          |  |
| 18      | 24           | 12.00     | 4891.94                  | 2.00      | 3.14                 | 4894.74           | 3.82      | 0.23        | 4894.97       | 7.00      | 4892.01        | 2.00  | 3.14   | 4894.76     | 3.82   | 0.23        | 4894.99     | 0.013      | 0.020         | 4894.81       | 4895.03      | 0.05          |  |
| 19      | 60x60r       | 119.66    | 4888.75                  | 3.57      | 17.84                | 4892.32           | 6.71      | 0.70        | 4893.02       | 288.54    | 4889.62        | 3.22  | 16.10  | 4892.84     | 7.43   | 0.86        | 4893.70     | 0.013      | 0.681         | 4893.08       | 4893.94      | 0.24          |  |
| 20      | 48x60r       | 119.66    | 4889.77                  | 3.83      | 19.16                | 4893.60           | 6.25      | 0.61        | 4894.21       | 47.24     | 4889.91        | 3.74  | 18.71  | 4893.65     | 6.40   | 0.64        | 4894.29     | 0.013      | 0.080         | 4893.80       | 4894.44      | 0.15          |  |
| 21      | 24           | 2.89      | 4891.78                  | 2.00      | 3.14                 | 4894.43           | 0.92      | 0.01        | 4894.44       | 9.87      | 4891.88        | 2.00  | 3.14   | 4894.43     | 0.92   | 0.04        | 4894.44     | 0.010      | 0.000         | 4894.43       | 4894.45      | 0.00          |  |
| 22      | 48x60r       | 114.64    | 4890.06                  | 4.00      | 20.00                | 4894.13           | 5.73      | 0.51        | 4894.64       | 46.76     | 4890.20        | 3.99  | 19.95  | 4894.19     | 5.75   | 0.51        | 4894.70     | 0.013      | 0.063         | 4894.55       | 4895.06      | 0.36          |  |
| 22      | 407001       | 114.04    | +030.00                  | 4.00      | 20.00                | -034.13           | 5.15      | 0.01        | -034.04       | 40.70     | 4030.20        | 5.55  | 19.95  | -034.19     | 5.75   | 0.01        | -034.70     | 0.013      | 0.003         | -034.33       | +035.00      | 0.50          |  |
|         | Datum Du i   | - 102     |                          |           | 3 1                  | - 1 - 1 - 1 - 41- |           |             |               |           | -              |       |        |             |        |             |             |            |               |               | <u> </u>     |               |  |
| inotes: | Return Perio | a = 100-j | yrs. <sup>2</sup> Critic | cal depth | i. <sup>°</sup> Norm | iai depth.        | r = recta | angular     | e = elliptica | i a = arc | n              |       |        |             |        |             |             |            | Project File  | e: PA 3 and 4 | Storm Sewer  | System.sws    |  |

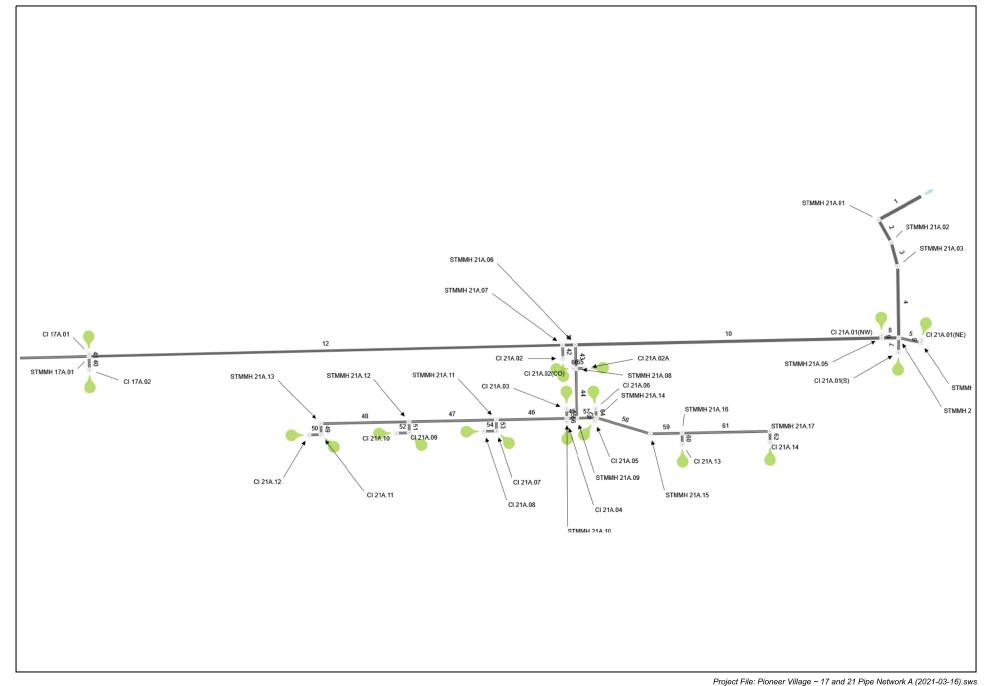
03-18-2021

#### **Energy Grade Line Calculations**

Stormwater Studio 2021 v 3.0.0.24

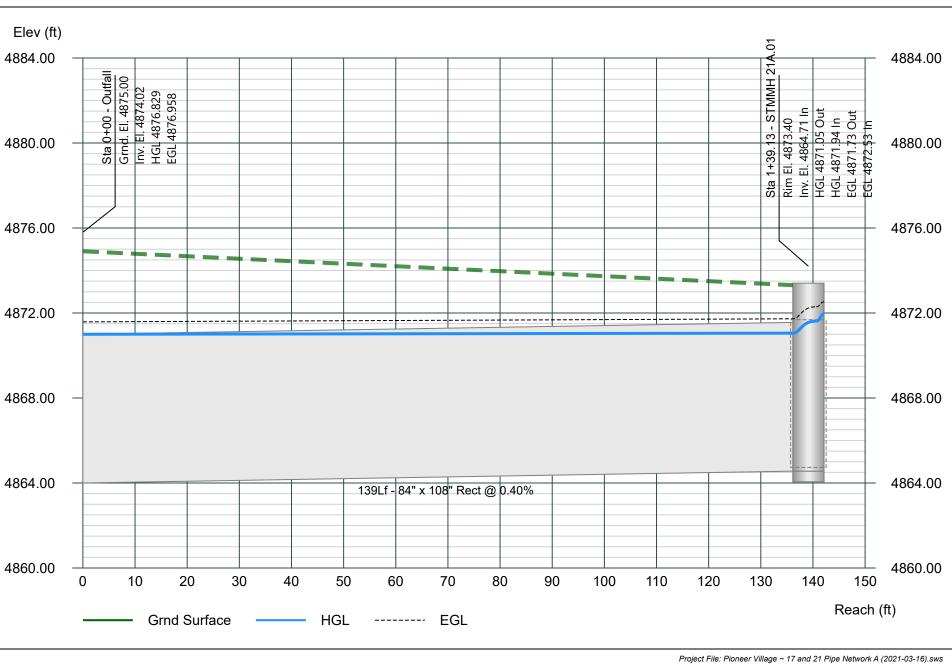
| Line | Line         | Q<br>(cfs)     | Downstream             |               |                 |                     |               |                     |                     | Length          | Upstream               |               |                          |                     |               |                     |                     |            | ре                    | Junction             |                      |                       |
|------|--------------|----------------|------------------------|---------------|-----------------|---------------------|---------------|---------------------|---------------------|-----------------|------------------------|---------------|--------------------------|---------------------|---------------|---------------------|---------------------|------------|-----------------------|----------------------|----------------------|-----------------------|
| No   | Size<br>(in) |                | Invert<br>Elev<br>(ft) | Depth<br>(ft) | Area<br>(sqft)  | HGL<br>Elev<br>(ft) | Vel<br>(ft/s) | Vel<br>Head<br>(ft) | EGL<br>Elev<br>(ft) | Le<br>L<br>(ft) | Invert<br>Elev<br>(ft) | Depth<br>(ft) | Area<br>(sqft)           | HGL<br>Elev<br>(ft) | Vel<br>(ft/s) | Vel<br>Head<br>(ft) | EGL<br>Elev<br>(ft) | n<br>Value | Enrgy<br>Loss<br>(ft) | HGLa<br>Elev<br>(ft) | EGLa<br>Elev<br>(ft) | Enrgy<br>Loss<br>(ft) |
| 23   | 48           | (CIS)<br>17.90 | 4890.35                | 4.00          | ( <b>Sqlt</b> ) | 4895.05             | 1.42          | 0.03                | 4895.08             | 70.70           | 4890.70                | 4.00          | ( <b>Sqit</b> )<br>12.57 | 4895.06             | 1.42          | 0.03                | 4895.09             | 0.013      | 0.011                 | 4895.08              | 4895.11              | 0.03                  |
| 24   | 24           | 9.66           | 4891.42                | 2.00          | 3.14            | 4895.03             | 3.08          | 0.15                | 4895.17             | 7.37            | 4891.44                | 2.00          | 3.14                     | 4895.04             | 3.07          | 0.15                | 4895.19             | 0.013      | 0.014                 | 4895.07              | 4895.22              | 0.03                  |
| 25   | 24           | 8.24           | 4891.42                | 2.00          | 3.14            | 4895.05             | 2.62          | 0.11                | 4895.16             | 38.64           | 4891.81                | 2.00          | 3.14                     | 4895.10             | 2.62          | 0.11                | 4895.21             | 0.013      | 0.051                 | 4895.12              | 4895.23              | 0.02                  |
| 26   | 48x60r       | 96.74          | 4890.35                | 4.00          | 20.00           | 4894.85             | 4.84          | 0.36                | 4895.21             | 45.78           | 4890.49                | 4.00          | 20.00                    | 4894.92             | 4.84          | 0.36                | 4895.28             | 0.013      | 0.071                 | 4895.06              | 4895.42              | 0.14                  |
| 27   | 18           | 9.70           | 4892.10                | 1.50          | 1.77            | 4895.14             | 5.49          | 0.47                | 4895.61             | 7.00            | 4892.17                | 1.50          | 1.77                     | 4895.20             | 5.49          | 0.47                | 4895.67             | 0.013      | 0.060                 | 4895.29              | 4895.76              | 0.09                  |
| 28   | 36           | 15.27          | 4890.35                | 3.00          | 7.07            | 4895.38             | 2.16          | 0.07                | 4895.45             | 27.00           | 4890.43                | 3.00          | 7.07                     | 4895.39             | 2.16          | 0.07                | 4895.46             | 0.013      | 0.014                 | 4895.40              | 4895.48              | 0.01                  |
| 29   | 48x60r       | 71.77          | 4890.49                | 4.00          | 20.00           | 4895.30             | 3.59          | 0.20                | 4895.50             | 81.95           | 4890.74                | 4.00          | 20.00                    | 4895.37             | 3.59          | 0.20                | 4895.57             | 0.013      | 0.070                 | 4895.47              | 4895.67              | 0.10                  |
| 30   | 42           | 40.21          | 4891.74                | 3.50          | 9.62            | 4895.51             | 4.18          | 0.27                | 4895.78             | 398.89          | 4894.73                | 1.94²         | 5.48                     | 4896.67             | 7.34          | 0.84                | 4897.51             | 0.013      | 1.729                 | 4896.67              | 4897.51              | 0.00                  |
| 31   | 36           | 40.21          | 4894.88                | 2.28          | 5.76            | 4897.16             | 6.98          | 0.76                | 4897.92             | 55.58           | 4895.16                | 2.17          | 5.46                     | 4897.33             | 7.36          | 0.84                | 4898.17             | 0.013      | 0.251                 | 4898.12              | 4898.96              | 0.80                  |
| 32   | 24           | 17.10          | 4895.16                | 2.00          | 3.14            | 4898.69             | 5.44          | 0.46                | 4899.15             | 7.02            | 4895.20                | 2.00          | 3.14                     | 4898.73             | 5.44          | 0.46                | 4899.19             | 0.013      | 0.040                 | 4898.82              | 4899.28              | 0.09                  |
| 33   | 30           | 23.11          | 4895.66                | 2.50          | 4.91            | 4898.76             | 4.71          | 0.34                | 4899.10             | 141.37          | 4897.07                | 2.03          | 4.26                     | 4899.10             | 5.42          | 0.46                | 4899.56             | 0.013      | 0.455                 | 4899.46              | 4899.92              | 0.36                  |
| 34   | 24           | 14.62          | 4897.22                | 2.00          | 3.14            | 4899.72             | 4.65          | 0.34                | 4900.05             | 81.42           | 4898.04                | 2.00          | 3.14                     | 4900.03             | 4.65          | 0.34                | 4900.37             | 0.013      | 0.314                 | 4900.27              | 4900.61              | 0.24                  |
| 35   | 24           | 3.51           | 4898.19                | 2.00          | 3.14            | 4900.59             | 1.12          | 0.02                | 4900.61             | 134.67          | 4899.54                | 1.08          | 1.72                     | 4900.61             | 2.04          | 0.06                | 4900.68             | 0.013      | 0.065                 | 4900.67              | 4900.73              | 0.05                  |
| 36   | 24           | 3.51           | 4899.69                | 0.59‡         | 0.77            | 4900.28             | 4.57          | 0.32                | 4900.75             | 27.00           | 4899.96                | 0.67          | 0.92                     | 4900.63             | 3.82          | 0.23                | 4900.86             | 0.013      | 0.101                 | 4900.67              | 4900.90              | 0.05                  |
| 37   | 24           | 11.11          | 4898.19                | 2.00          | 3.14            | 4900.49             | 3.54          | 0.19                | 4900.68             | 27.00           | 4898.46                | 2.00          | 3.14                     | 4900.55             | 3.54          | 0.19                | 4900.75             | 0.013      | 0.065                 | 4900.59              | 4900.79              | 0.04                  |
| 38   | 18           | 8.49           | 4897.57                | 1.50          | 1.77            | 4899.70             | 4.81          | 0.36                | 4900.06             | 54.18           | 4898.11                | 1.50          | 1.77                     | 4900.06             | 4.80          | 0.36                | 4900.42             | 0.013      | 0.354                 | 4900.36              | 4900.72              | 0.30                  |
| 39   | 18           | 8.49           | 4898.26                | 1.50          | 1.77            | 4900.50             | 4.81          | 0.36                | 4900.86             | 7.00            | 4898.33                | 1.50          | 1.77                     | 4900.55             | 4.80          | 0.36                | 4900.91             | 0.013      | 0.046                 | 4900.62              | 4900.98              | 0.07                  |
| 40   | 36           | 31.56          | 4891.74                | 3.00          | 7.07            | 4895.49             | 4.47          | 0.31                | 4895.80             | 141.41          | 4892.17                | 3.00          | 7.07                     | 4895.80             | 4.46          | 0.31                | 4896.11             | 0.013      | 0.317                 | 4895.99              | 4896.30              | 0.19                  |
| 41   | 36           | 31.56          | 4892.32                | 3.00          | 7.07            | 4896.11             | 4.47          | 0.31                | 4896.42             | 134.89          | 4892.73                | 3.00          | 7.07                     | 4896.42             | 4.46          | 0.31                | 4896.73             | 0.013      | 0.302                 | 4896.48              | 4896.79              | 0.07                  |
| 42   | 24           | 8.09           | 4893.73                | 2.00          | 3.14            | 4896.73             | 2.58          | 0.10                | 4896.83             | 38.85           | 4893.92                | 2.00          | 3.14                     | 4896.78             | 2.58          | 0.10                | 4896.88             | 0.013      | 0.050                 | 4896.80              | 4896.90              | 0.02                  |
| 43   | 24           | 2.13           | 4892.03                | 2.00          | 3.14            | 4894.43             | 0.68          | 0.01                | 4894.44             | 36.13           | 4892.30                | 2.00          | 3.14                     | 4894.44             | 0.68          | 0.01                | 4894.44             | 0.013      | 0.003                 | 4894.44              | 4894.44              | 0.00                  |
|      |              |                |                        |               |                 |                     |               |                     |                     |                 |                        |               |                          |                     |               |                     |                     |            |                       |                      |                      |                       |
|      |              |                |                        |               |                 |                     |               |                     |                     |                 |                        |               |                          |                     |               |                     |                     |            |                       |                      |                      |                       |


Notes: Return Period = 100-yrs. <sup>2</sup> Critical depth. <sup>‡</sup> Supercritical. r = rectangular e = elliptical a = arch


Project File: PA 3 and 4 Storm Sewer System.sws

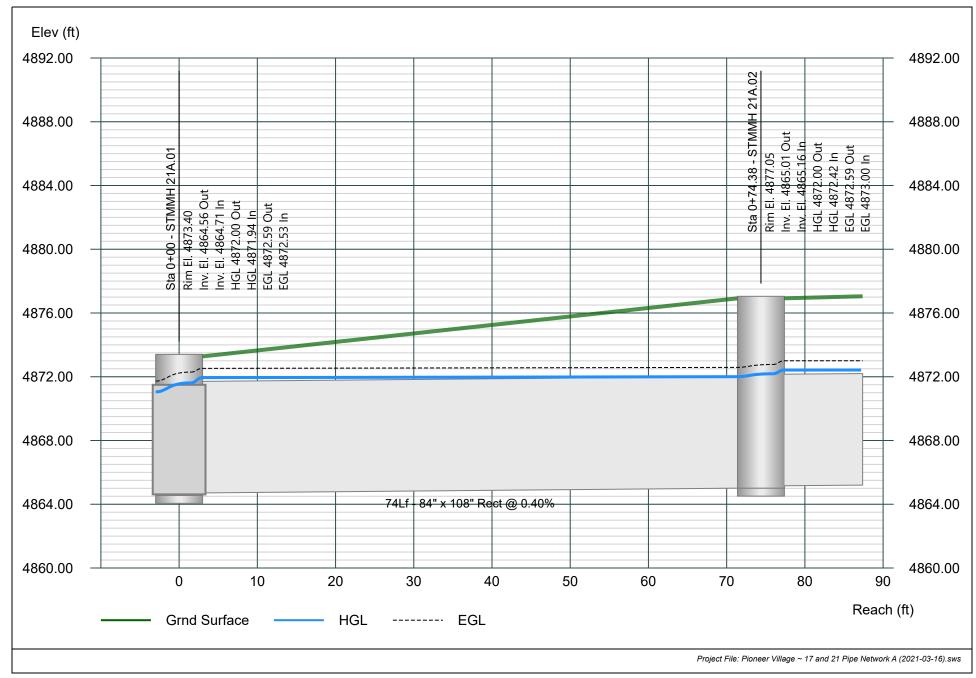
Project Name: Pioneer Village ~ PA 3 and 4

03-18-2021


04-09-2021

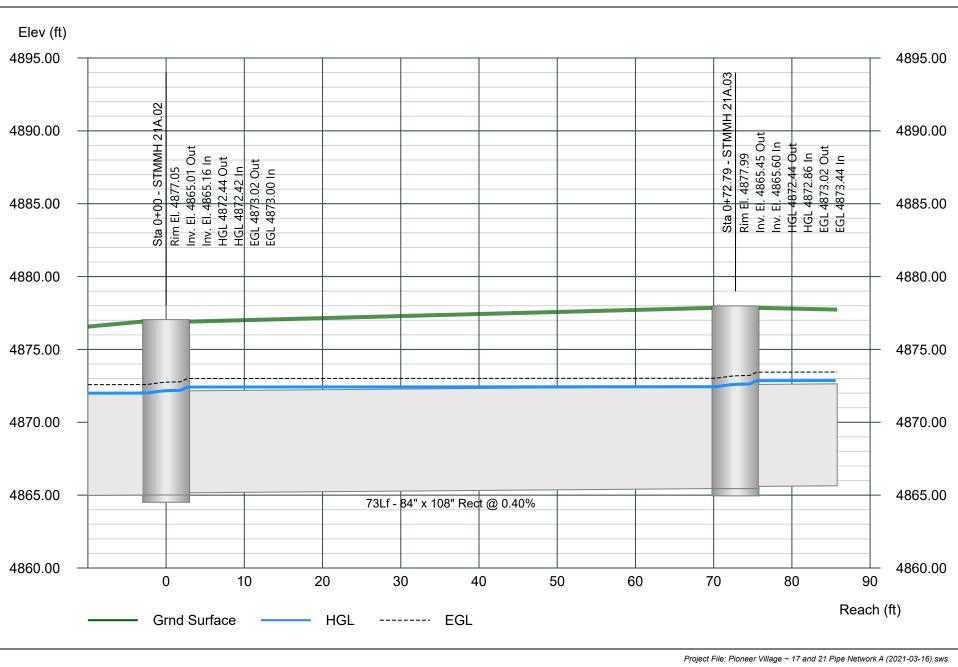





#### Line 1 - Pipe - (136) (PA 21A NETWORK)

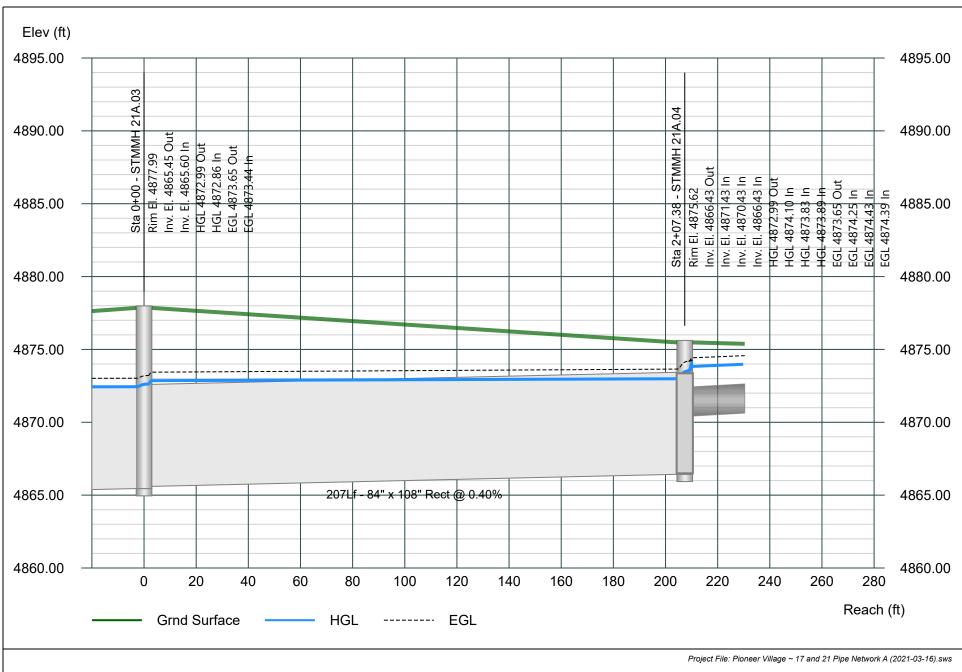
Stormwater Studio 2021 v 3.0.0.24




#### Line 2 - Pipe - (135) (PA 21A NETWORK)

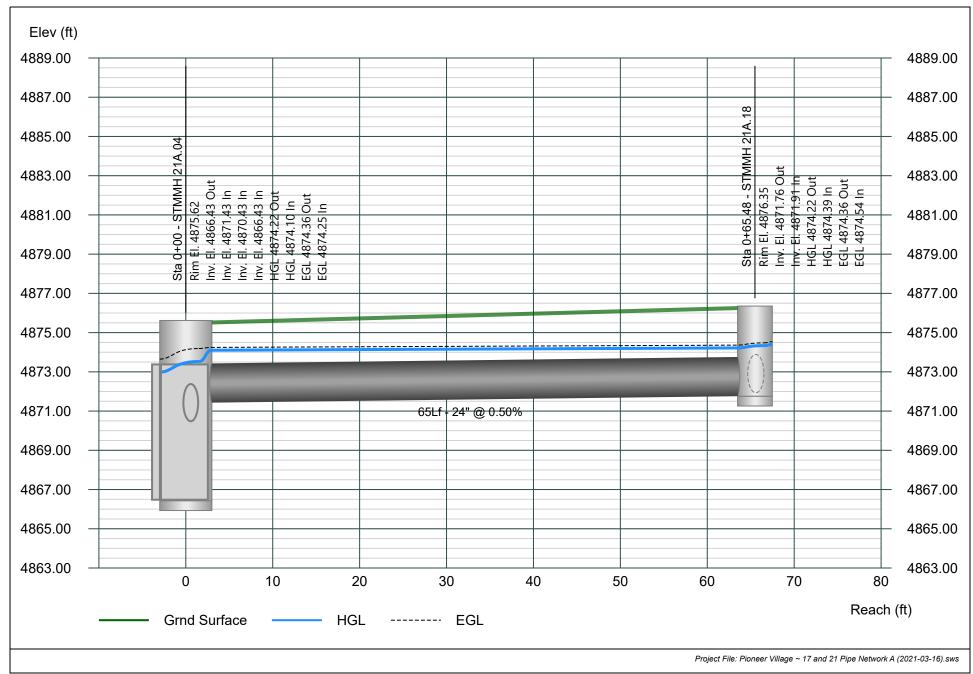
Stormwater Studio 2021 v 3.0.0.24




#### Line 3 - Pipe - (134) (PA 21A NETWORK)

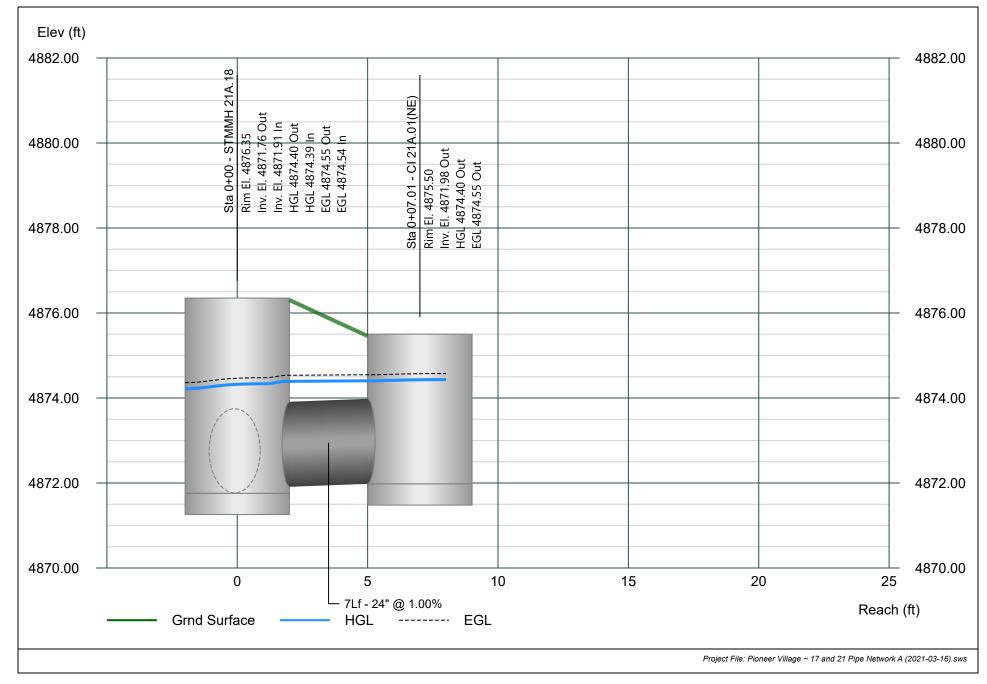
Stormwater Studio 2021 v 3.0.0.24




## Line 4 - Pipe - (133) (PA 21A NETWORK)

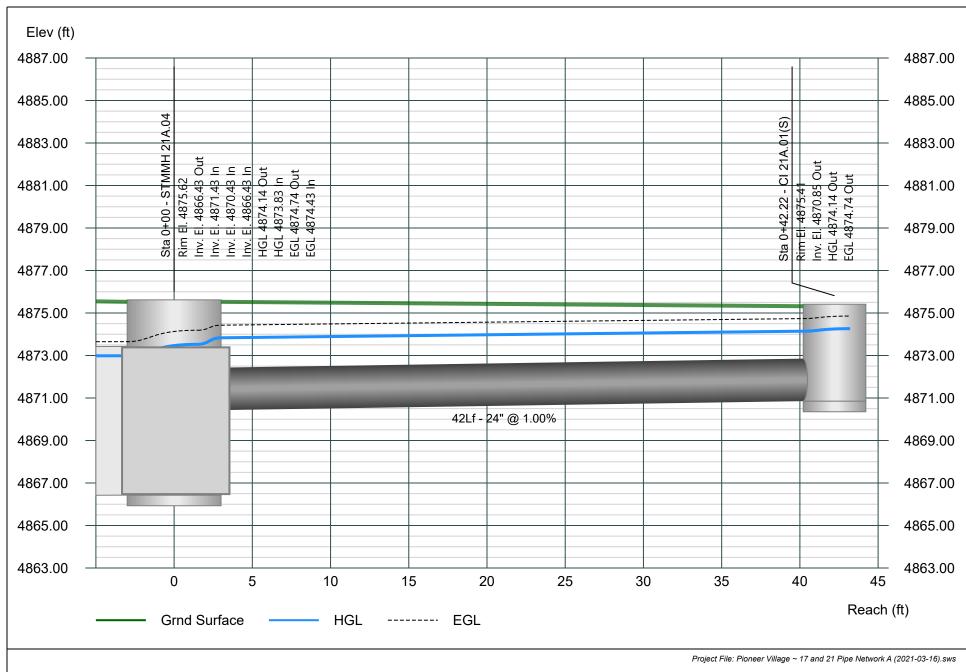
Stormwater Studio 2021 v 3.0.0.24




## Line 5 - Pipe - (389) (PA 21A NETWORK)

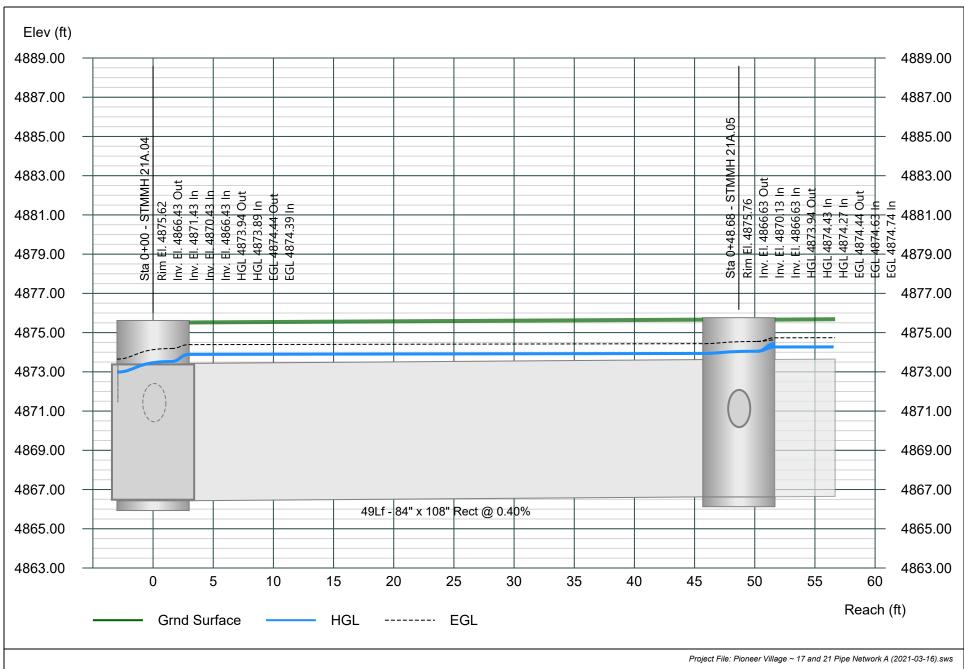
Stormwater Studio 2021 v 3.0.0.24



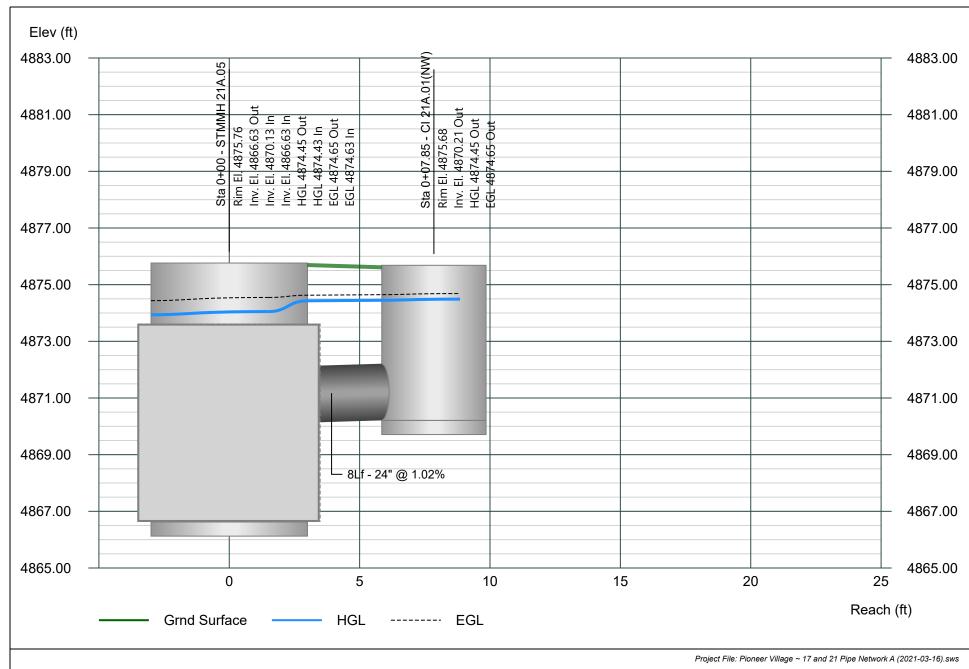

#### Line 6 - Pipe - (390) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24



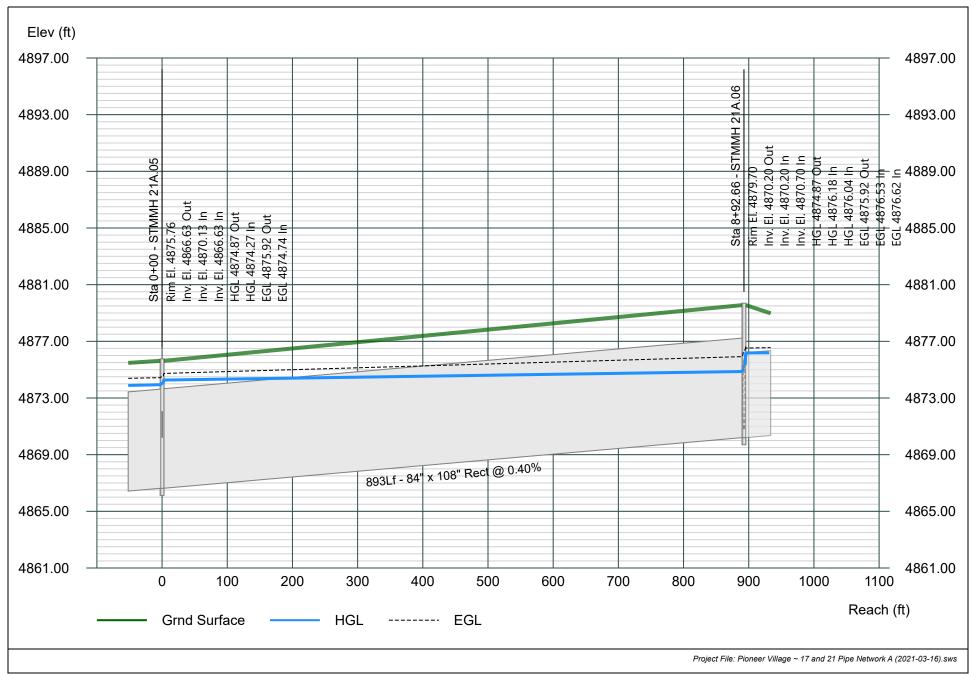

#### Line 7 - Pipe - (388) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24




## Line 8 - Pipe - (132) (PA 21A NETWORK)

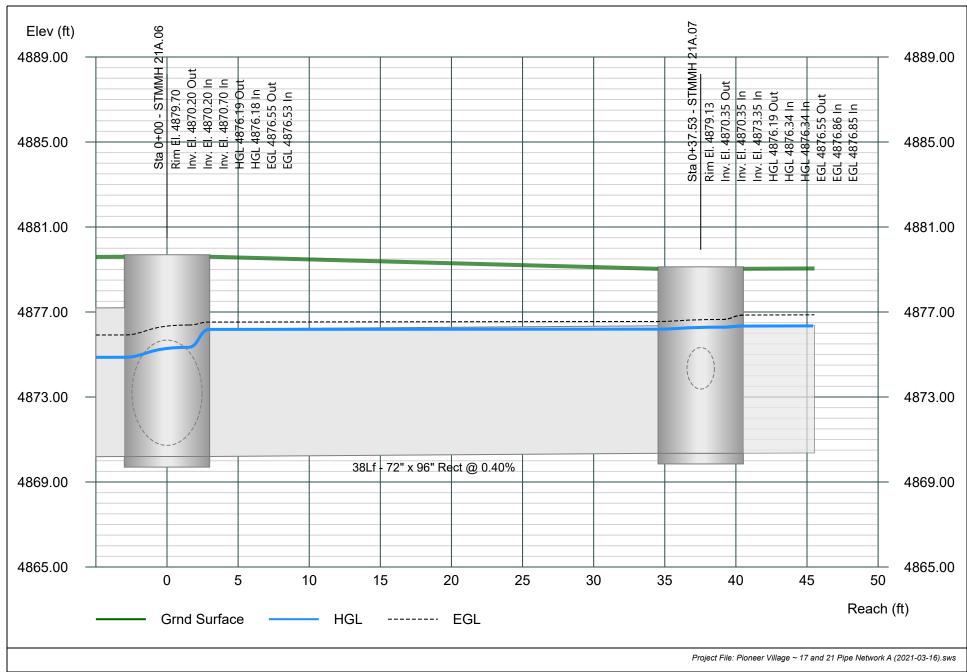
Stormwater Studio 2021 v 3.0.0.24




# Line 9 - Pipe - (400) (PA 21A NETWORK)

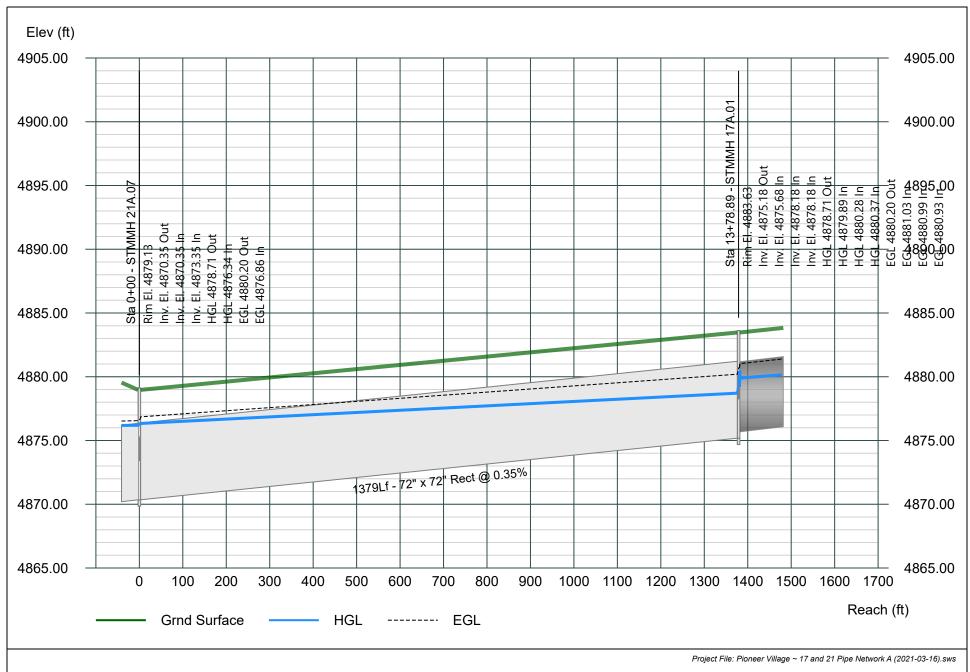


# Line 10 - Pipe - (130) (1)(0) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24



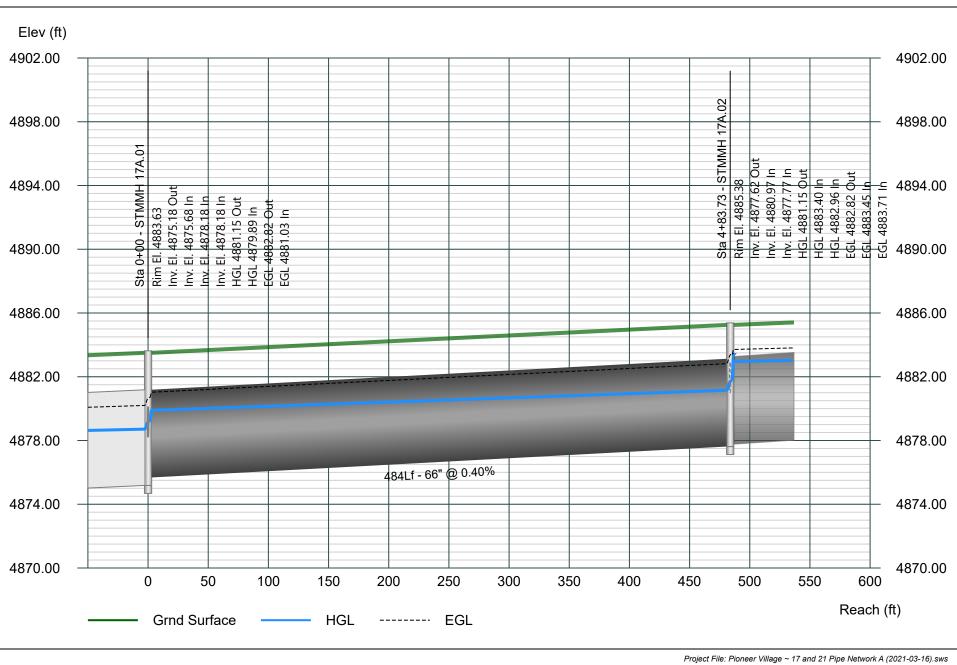
# Line 11 - Pipe - (129) (1) (1) (1) (PA 21A NETWORK)


Project Name: Pioneer Village ~ 17 & 21 A Network

03-17-2021

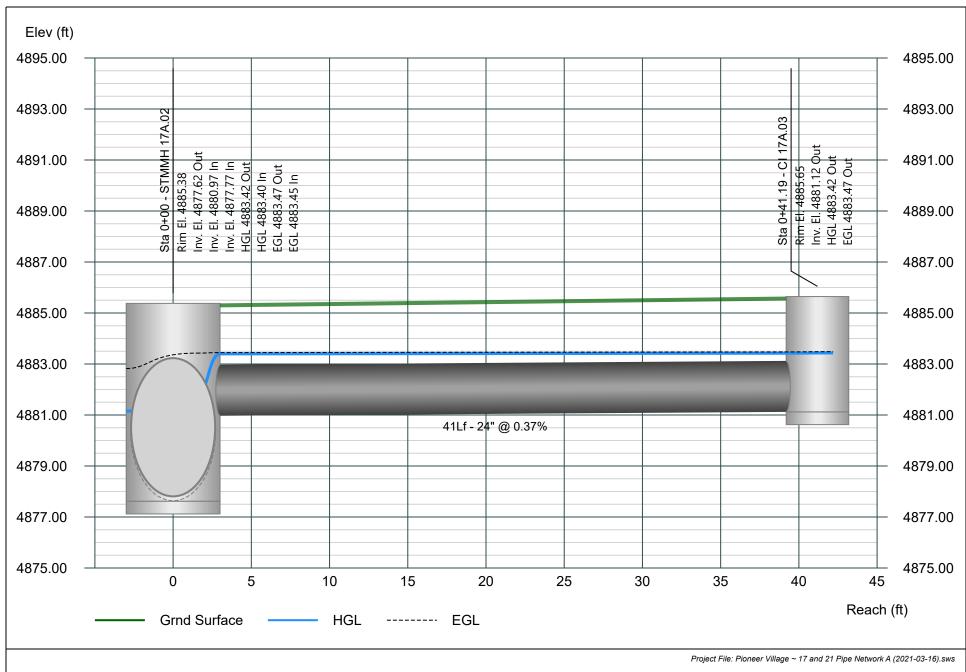


# Line 12 - Pipe - (129) (1) (1) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24

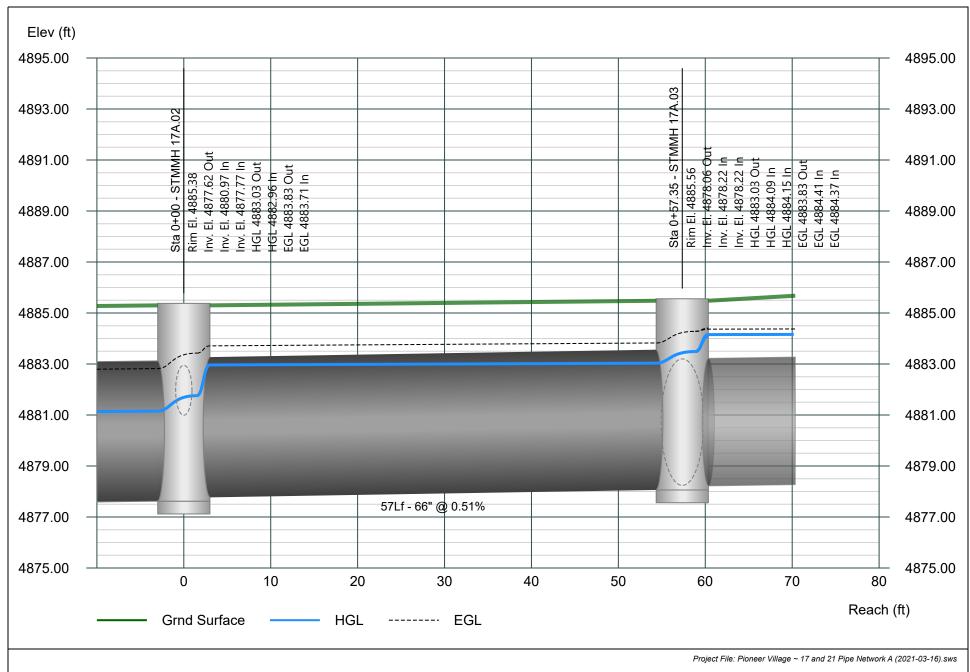


Project Name: Pioneer Village ~ 17 & 21 A Network


## Line 13 - Pipe - (129) (PA 21A NETWORK)

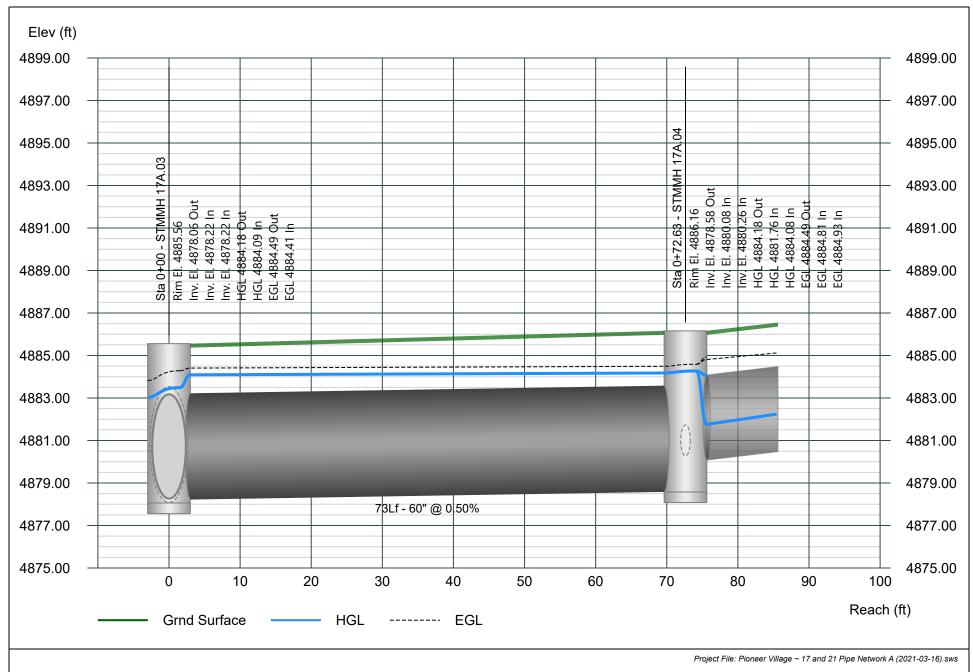
Stormwater Studio 2021 v 3.0.0.24




## Line 14 - Pipe - (399) (PA 21A NETWORK)

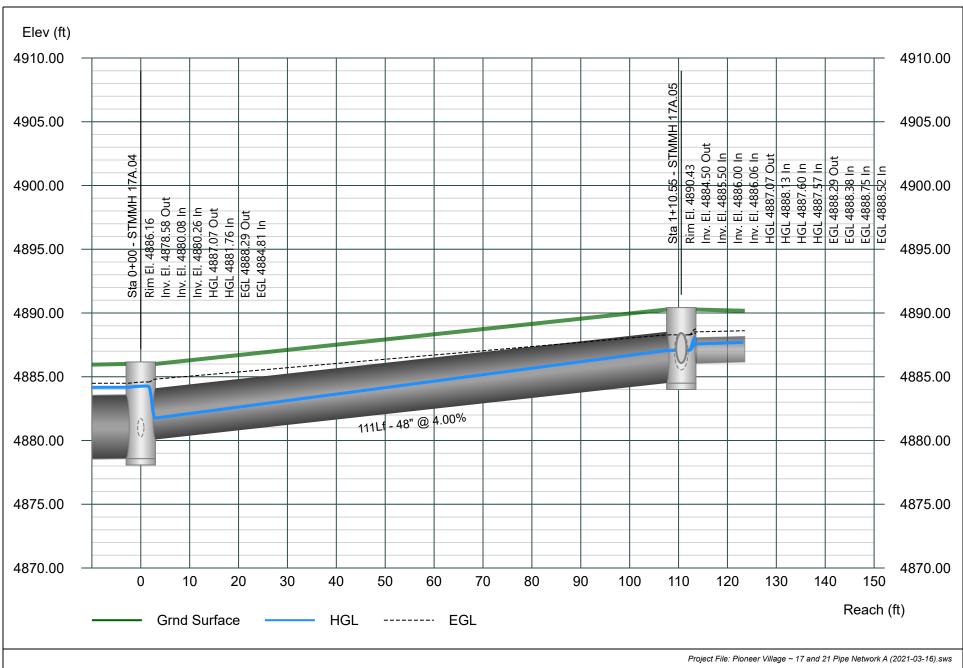
Stormwater Studio 2021 v 3.0.0.24




## Line 15 - Pipe - (128) (PA 21A NETWORK)

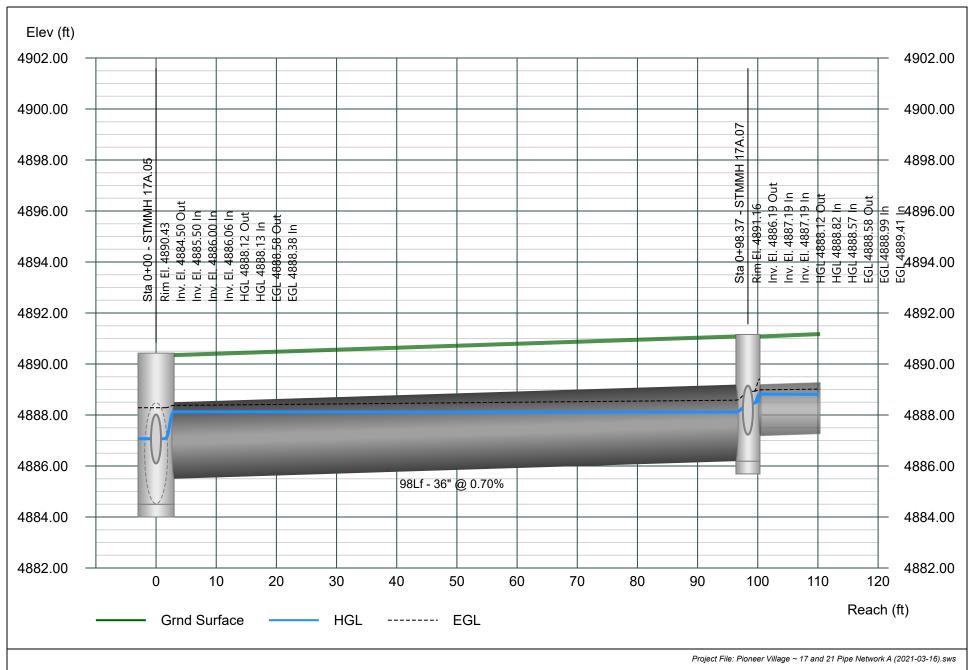
Stormwater Studio 2021 v 3.0.0.24




#### Line 16 - Pipe - (127) (PA 21A NETWORK)

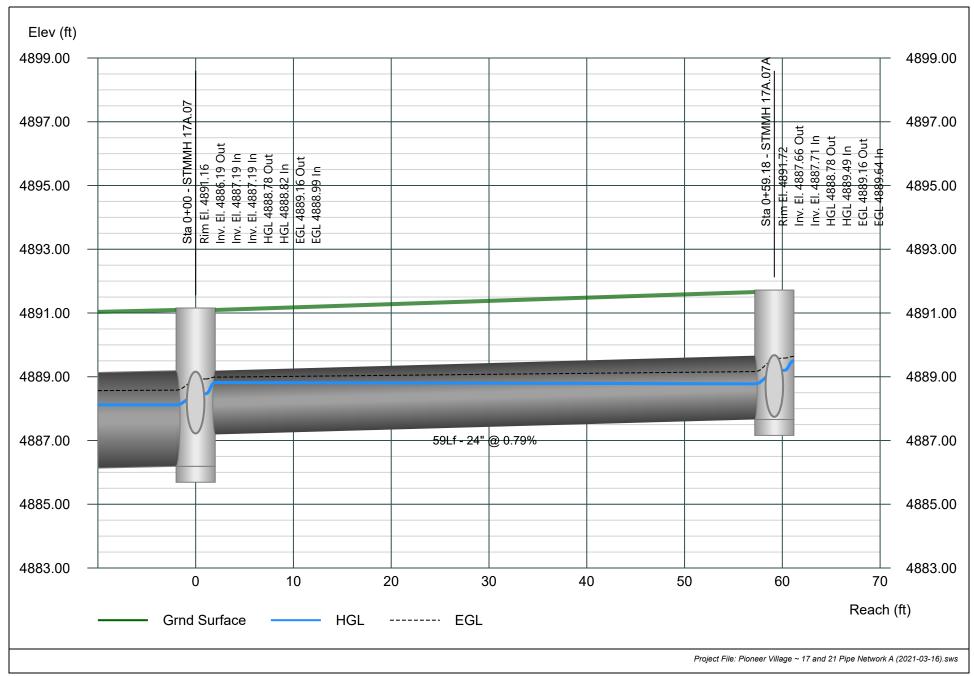
Stormwater Studio 2021 v 3.0.0.24




# Line 17 - Pipe - (126)(0) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24




### Line 18 - Pipe - (591) (PA 21A NETWORK)

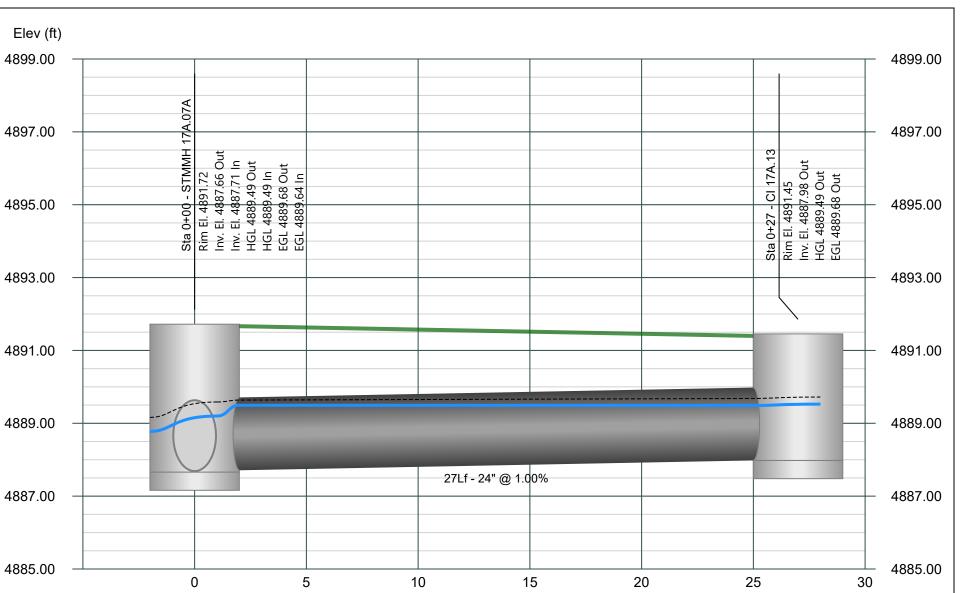
Stormwater Studio 2021 v 3.0.0.24



# Line 19 - Pipe - (604) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24

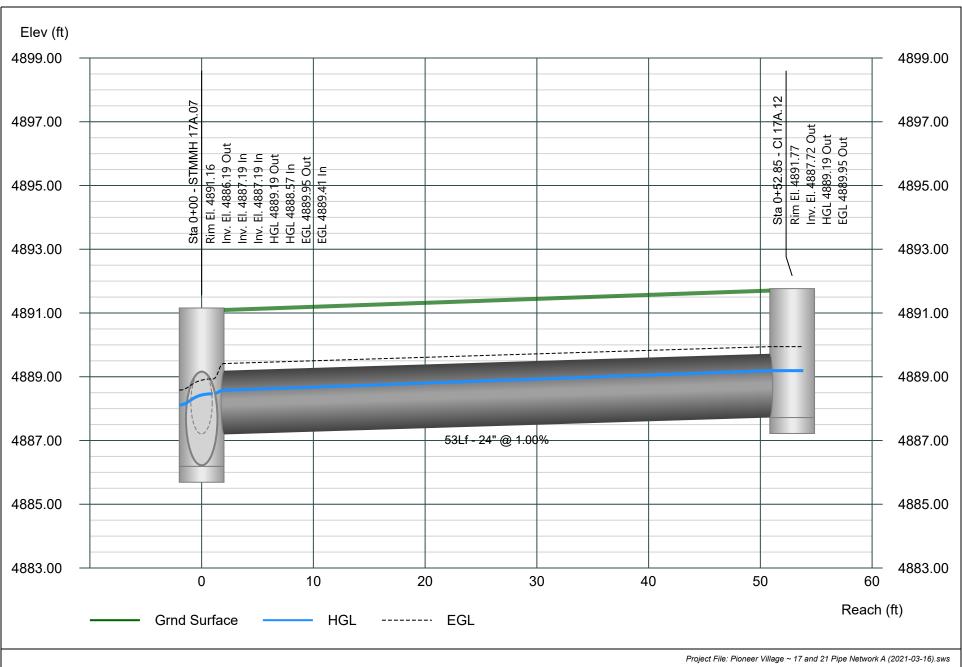



## Line 20 - Pipe - (589) (PA 21A NETWORK)

Grnd Surface

HGL

----- EGL


Stormwater Studio 2021 v 3.0.0.24

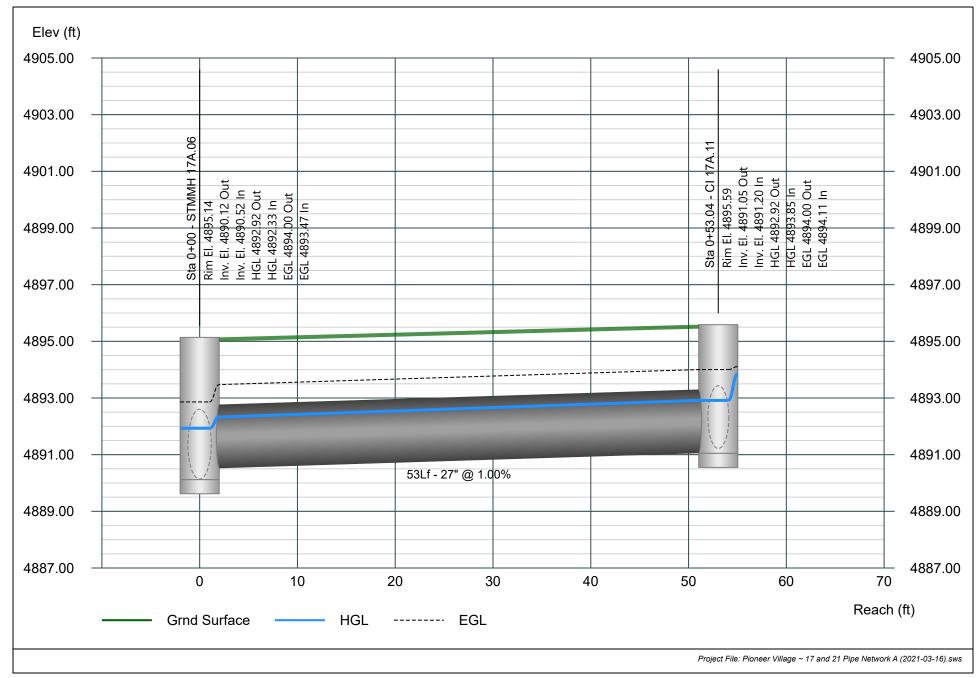


Project File: Pioneer Village ~ 17 and 21 Pipe Network A (2021-03-16).sws

#### Line 21 - Pipe - (590) (PA 21A NETWORK)

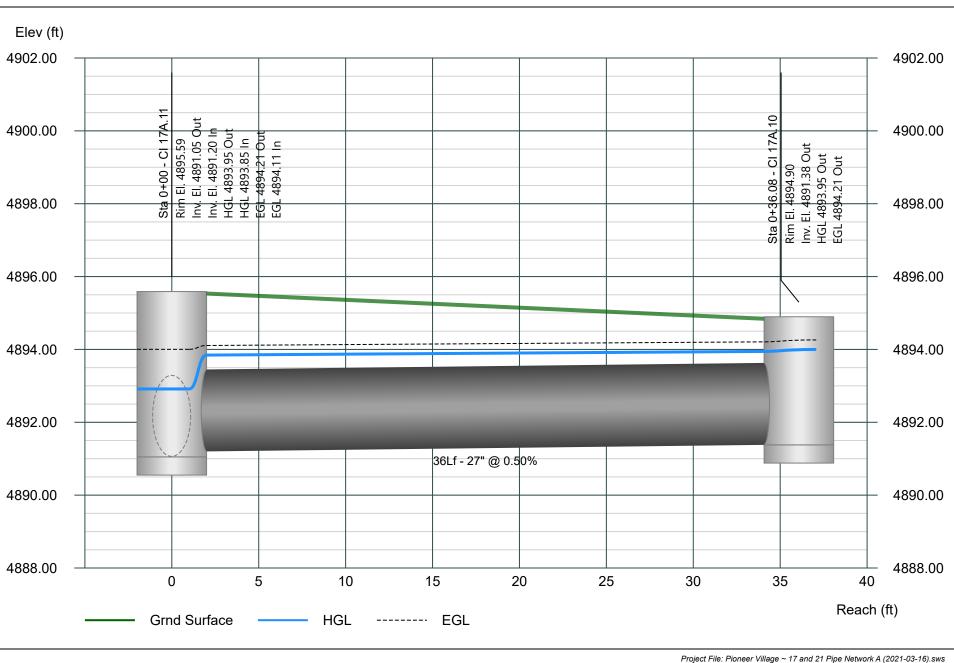
Stormwater Studio 2021 v 3.0.0.24




#### Line 22 - Pipe - (594) (PA 21A NETWORK)

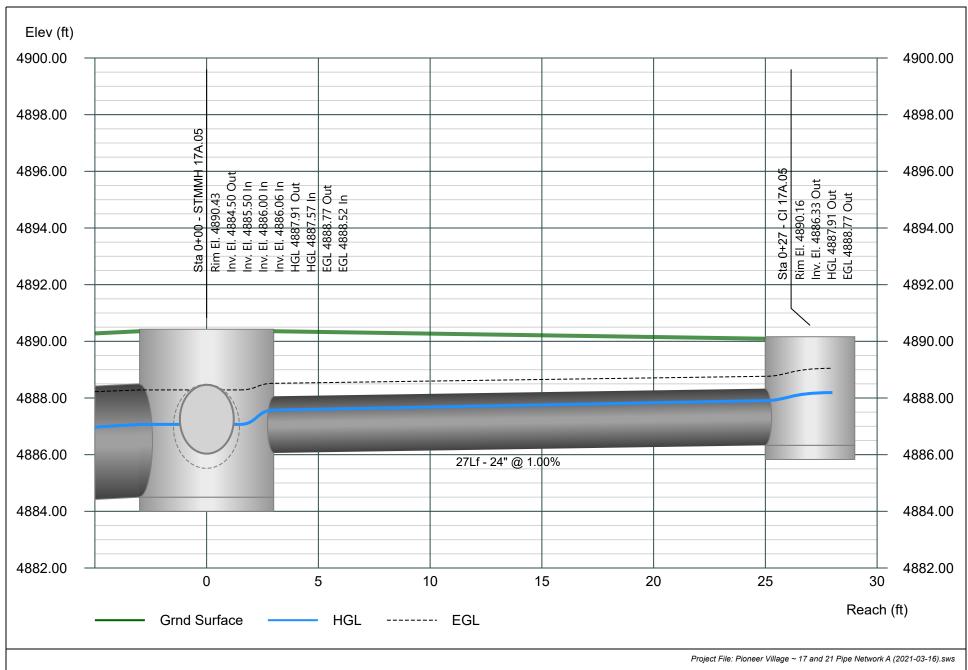
Stormwater Studio 2021 v 3.0.0.24




# Line 23 - Pipe - (593) (PA 21A NETWORK)

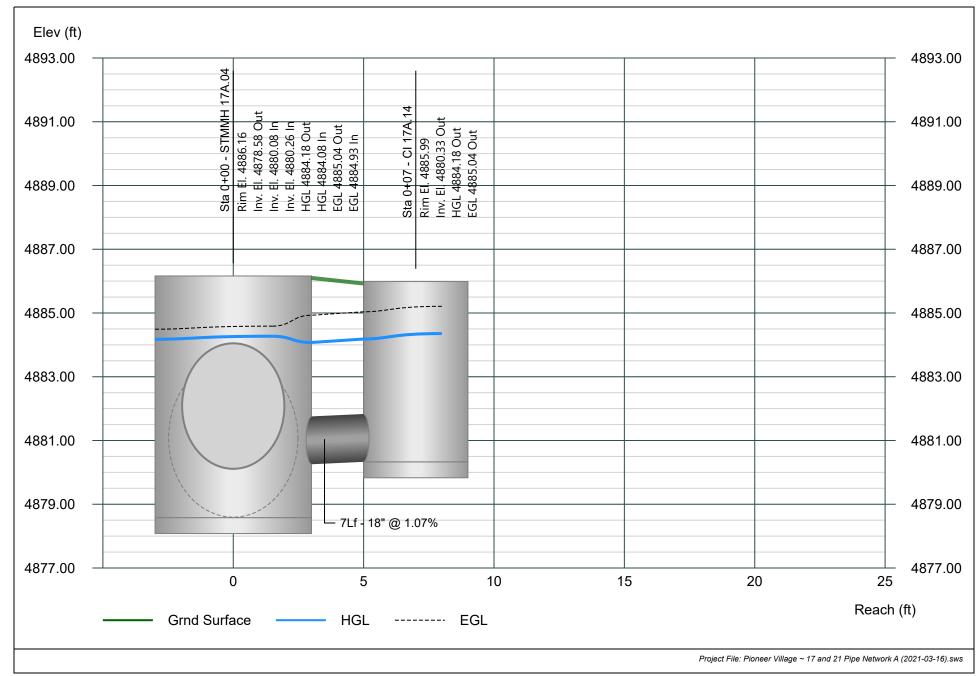
Stormwater Studio 2021 v 3.0.0.24




#### Line 24 - Pipe - (592) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24

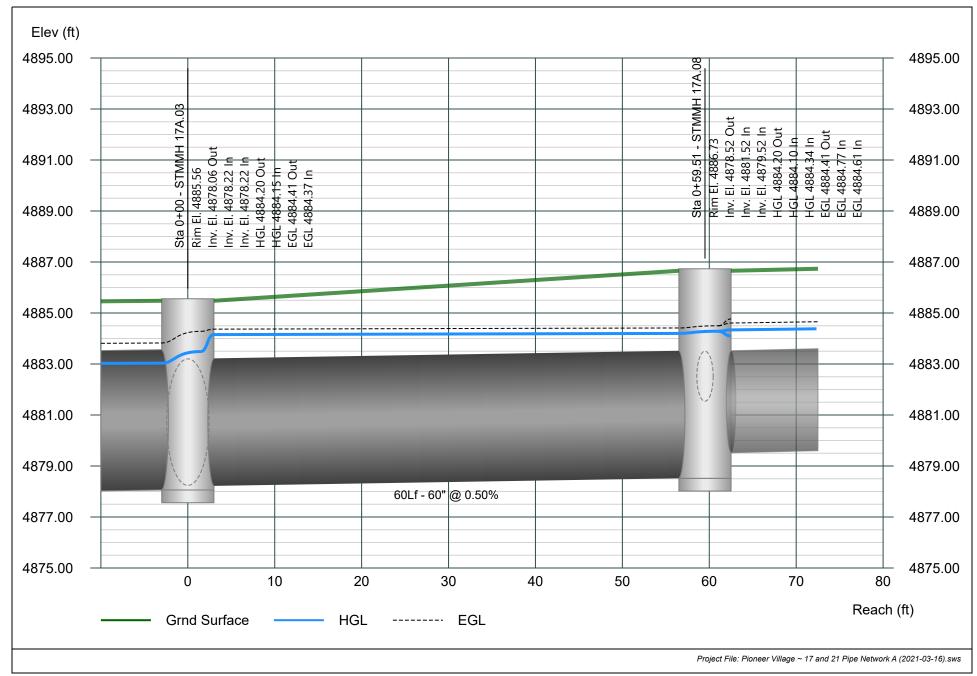



# Line 25 - Pipe - (607) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24

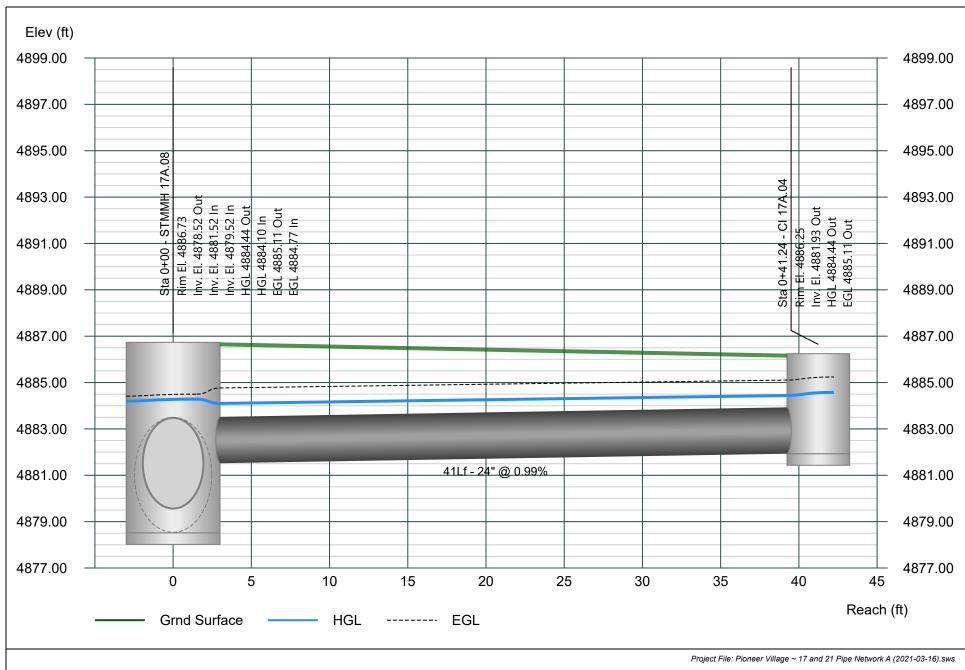


## Line 26 - Pipe - (605) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24

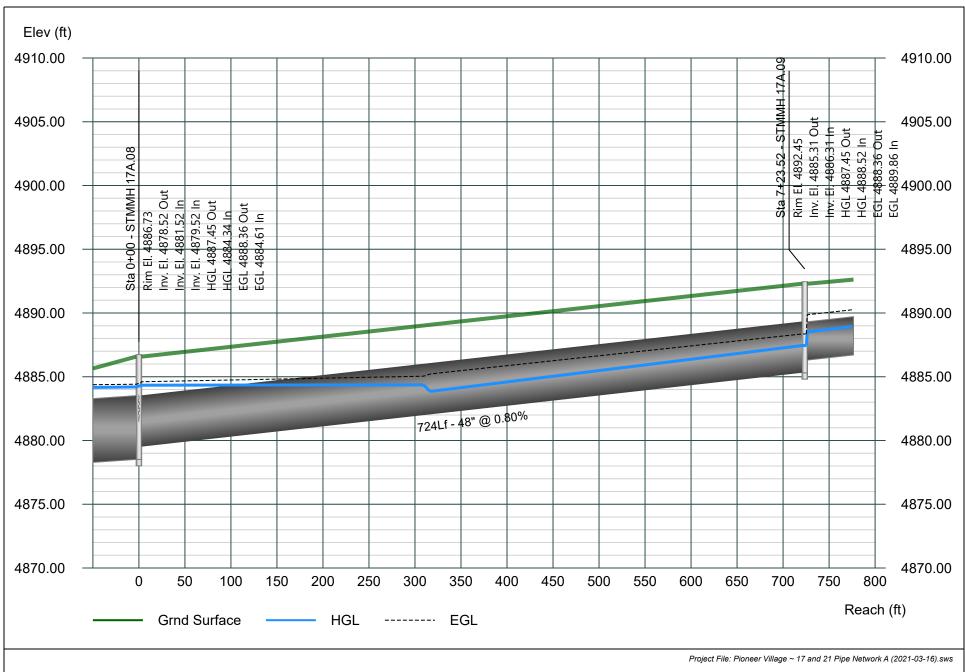


Project Name: Pioneer Village ~ 17 & 21 A Network


# Line 27 - Pipe - (397) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24




# Line 28 - Pipe - (396) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24



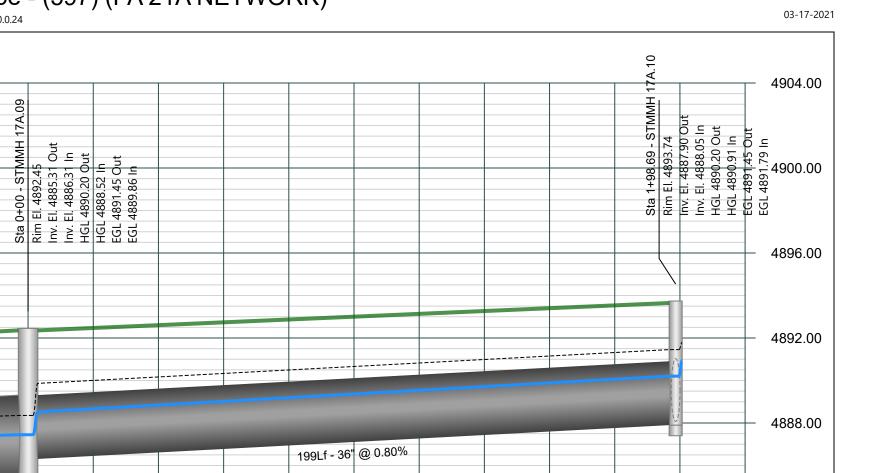
### Line 29 - Pipe - (598) (PA 21A NETWORK)

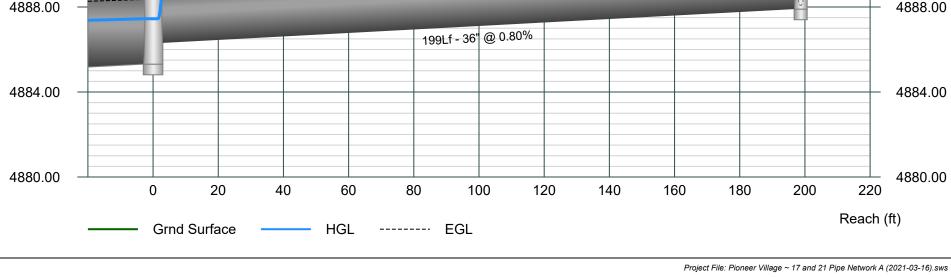
Stormwater Studio 2021 v 3.0.0.24



## Line 30 - Pipe - (597) (PA 21A NETWORK)

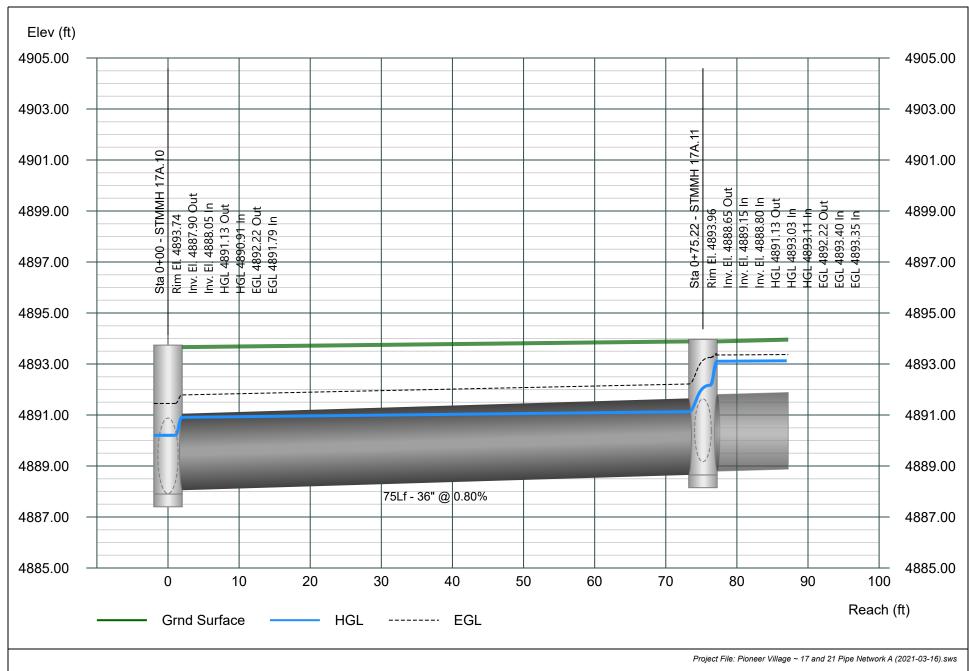
Stormwater Studio 2021 v 3.0.0.24


Elev (ft)


4904.00

4900.00

4896.00


4892.00





## Line 31 - Pipe - (596) (1) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village ~ 17 & 21 A Network

# Line 32 - Pipe - (603) (PA 21A NETWORK)

0

Grnd Surface

5

HGL

Stormwater Studio 2021 v 3.0.0.24

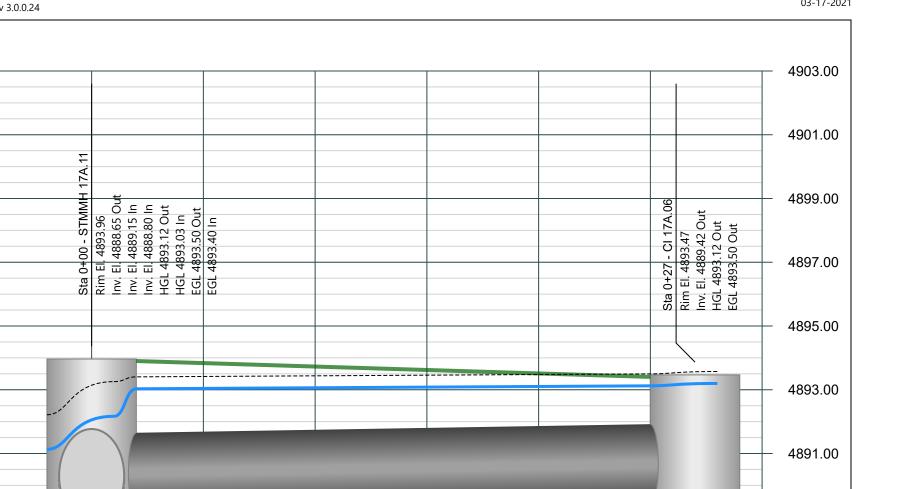
Elev (ft)

4903.00

4901.00

4899.00

4897.00


4895.00

4893.00

4891.00

4889.00

4887.00



27Lf - 30" @ 1.00%

15

20

10

----- EGL

Project File: Pioneer Village ~ 17 and 21 Pipe Network A (2021-03-16).sws

25

03-17-2021

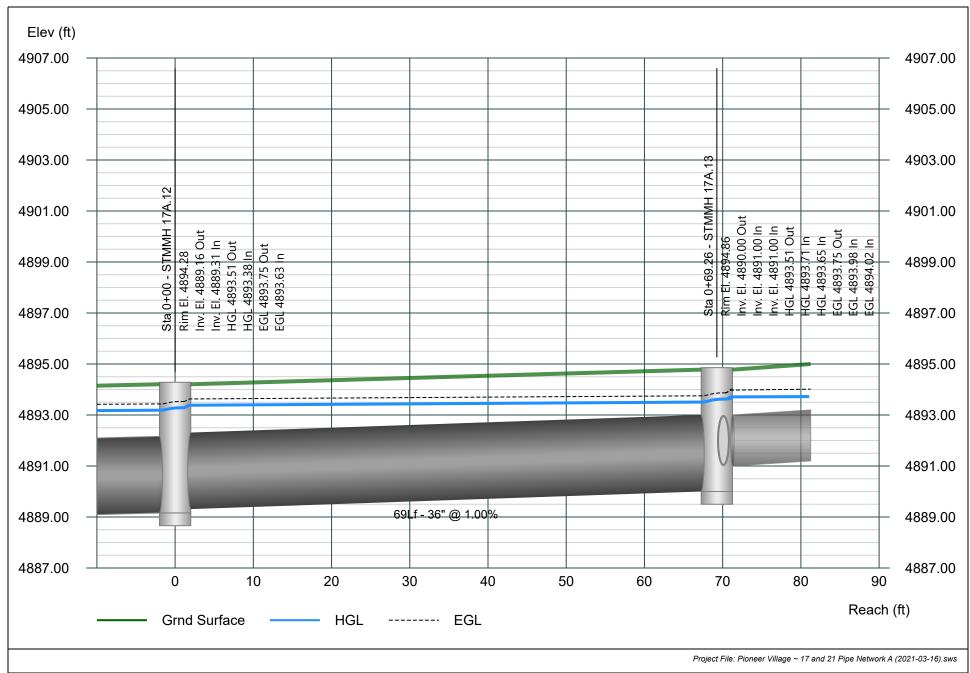
4889.00

4887.00

30

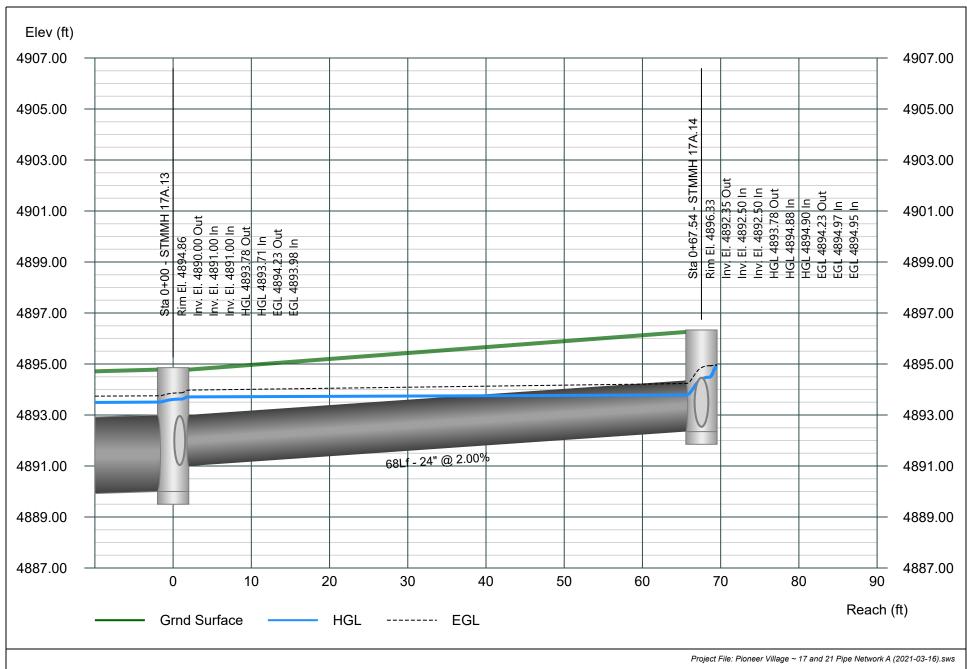
Reach (ft)

# Line 33 - Pipe - (596) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24

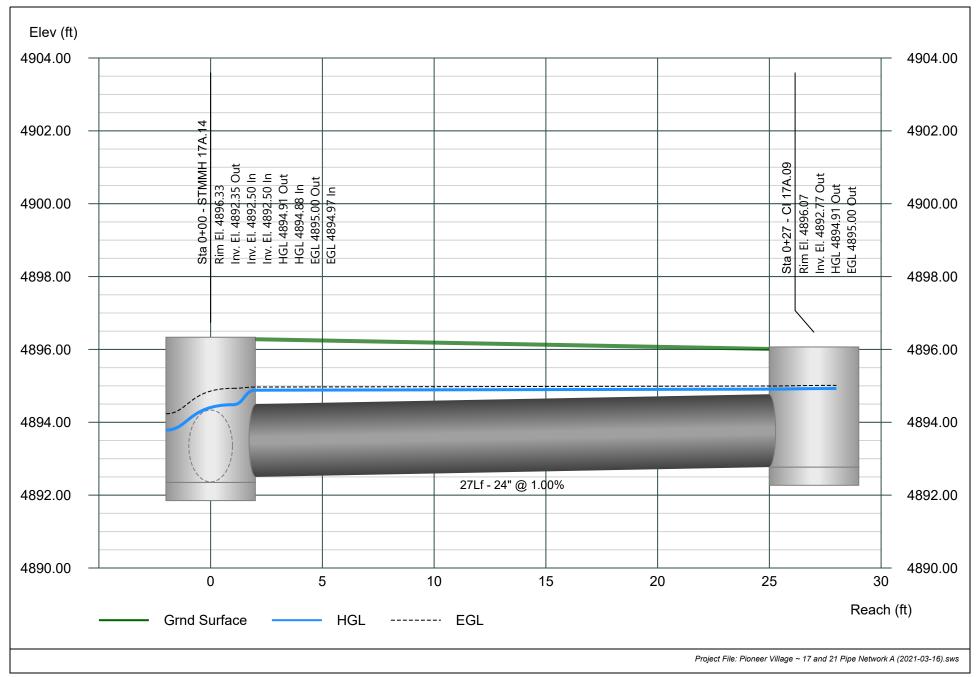


Project File: Pioneer Village ~ 17 and 21 Pipe Network A (2021-03-16).sws


# Line 34 - Pipe - (595) (1) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24




### Line 35 - Pipe - (595) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24

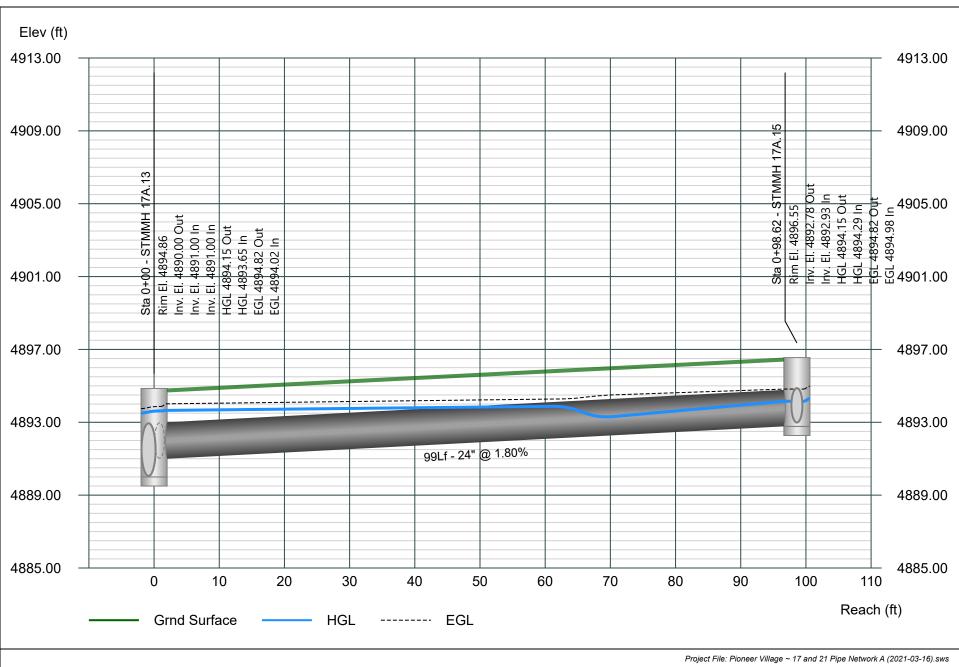


## Line 36 - Pipe - (602) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24

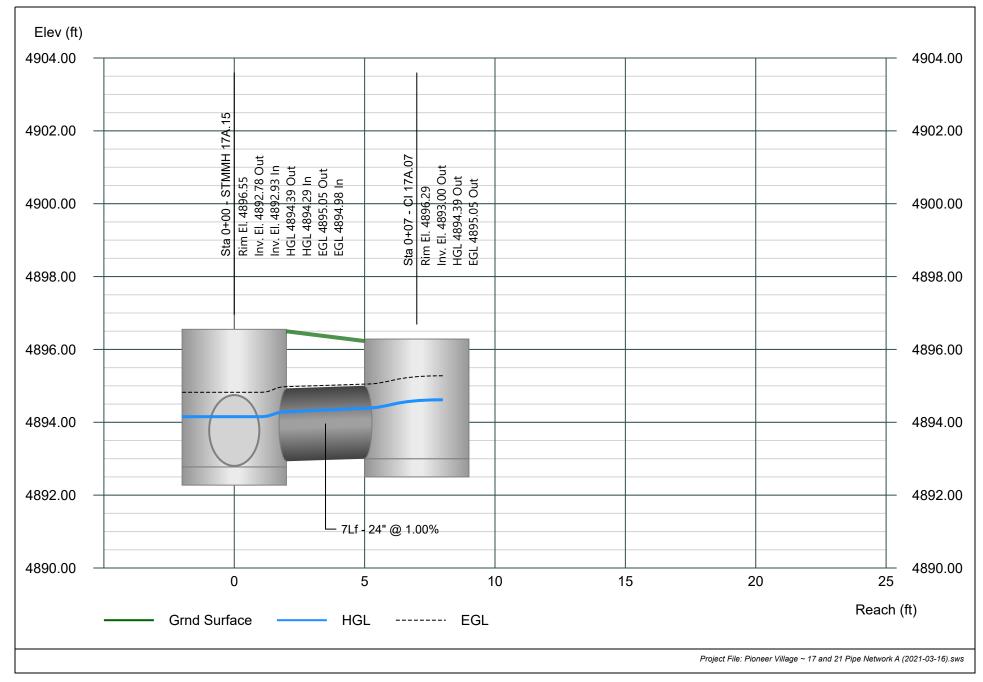


## Line 37 - Pipe - (601) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24

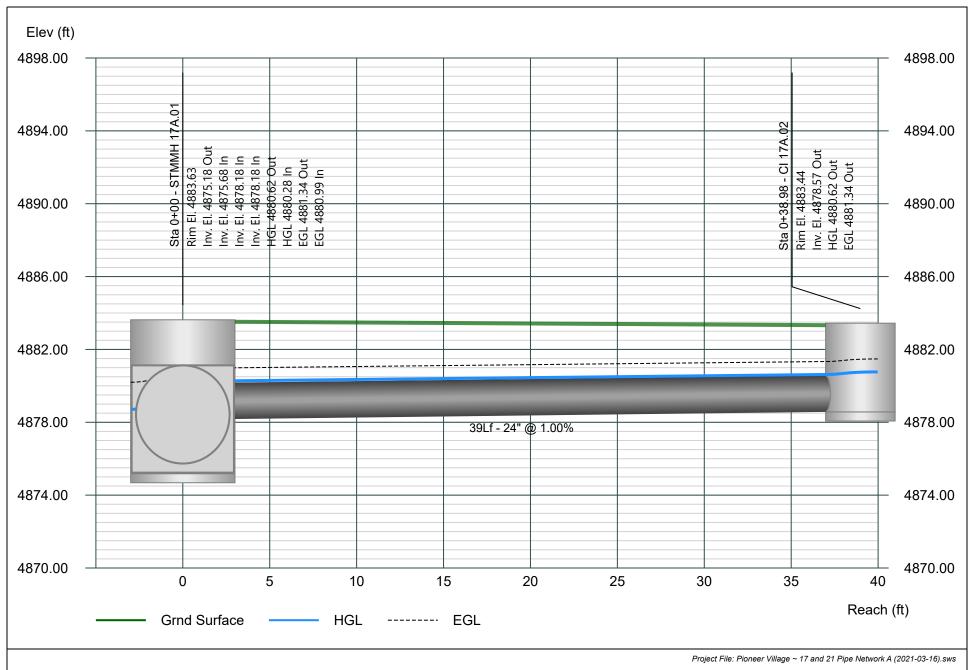


Project Name: Pioneer Village ~ 17 & 21 A Network


# Line 38 - Pipe - (599) (PA 21A NETWORK)

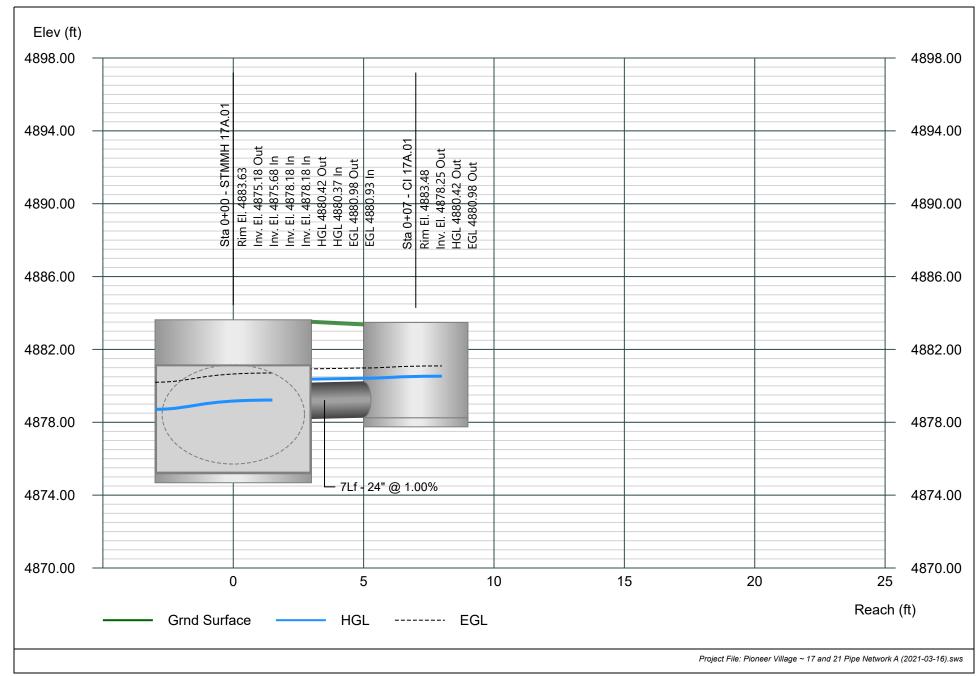
Stormwater Studio 2021 v 3.0.0.24




## Line 39 - Pipe - (600) (PA 21A NETWORK)

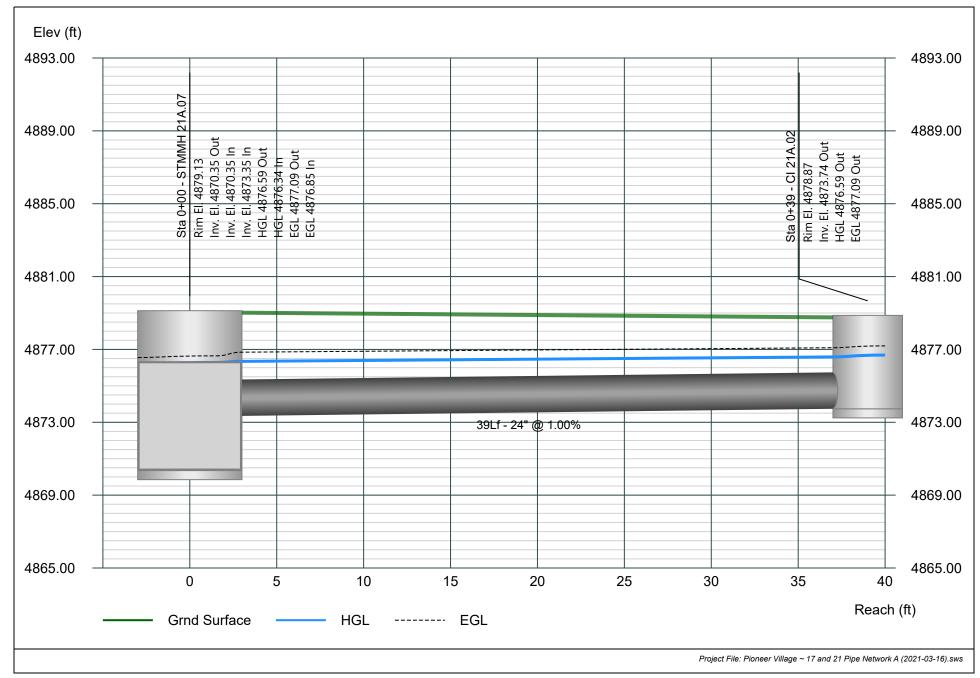
Stormwater Studio 2021 v 3.0.0.24




# Line 40 - Pipe - (566) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24




### Line 41 - Pipe - (581) (PA 21A NETWORK)

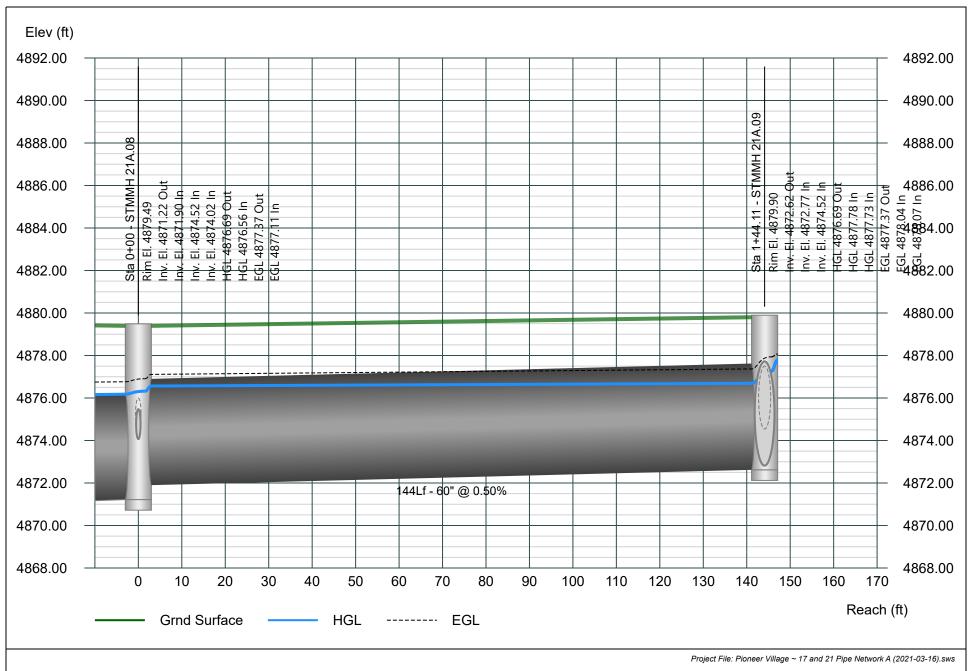
Stormwater Studio 2021 v 3.0.0.24




## Line 42 - Pipe - (606) (PA 21A NETWORK)

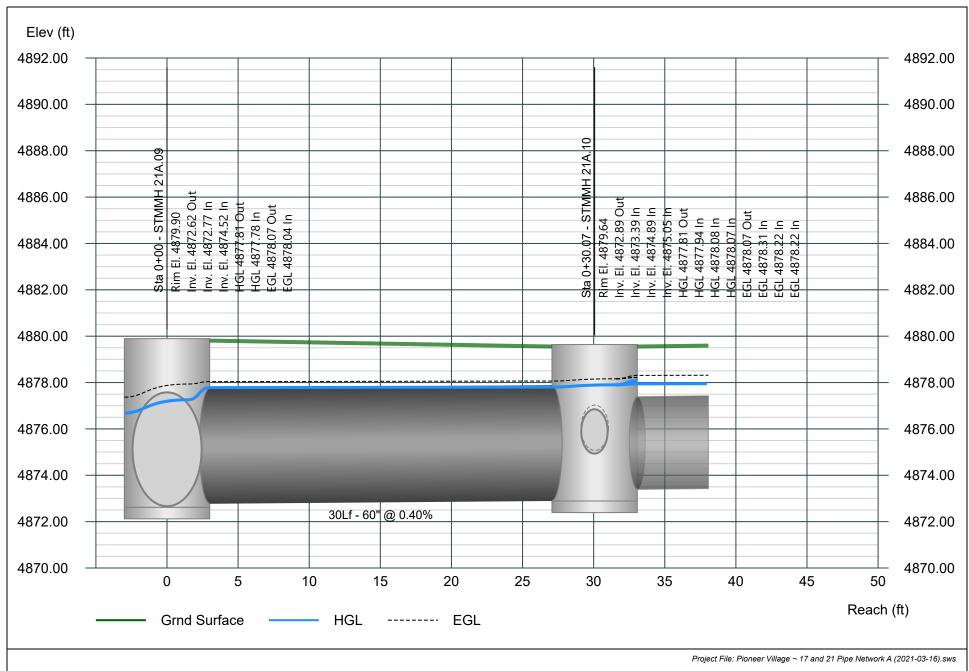
Stormwater Studio 2021 v 3.0.0.24




# Line 43 - Pipe - (526) (1) (PA 21A NETWORK)

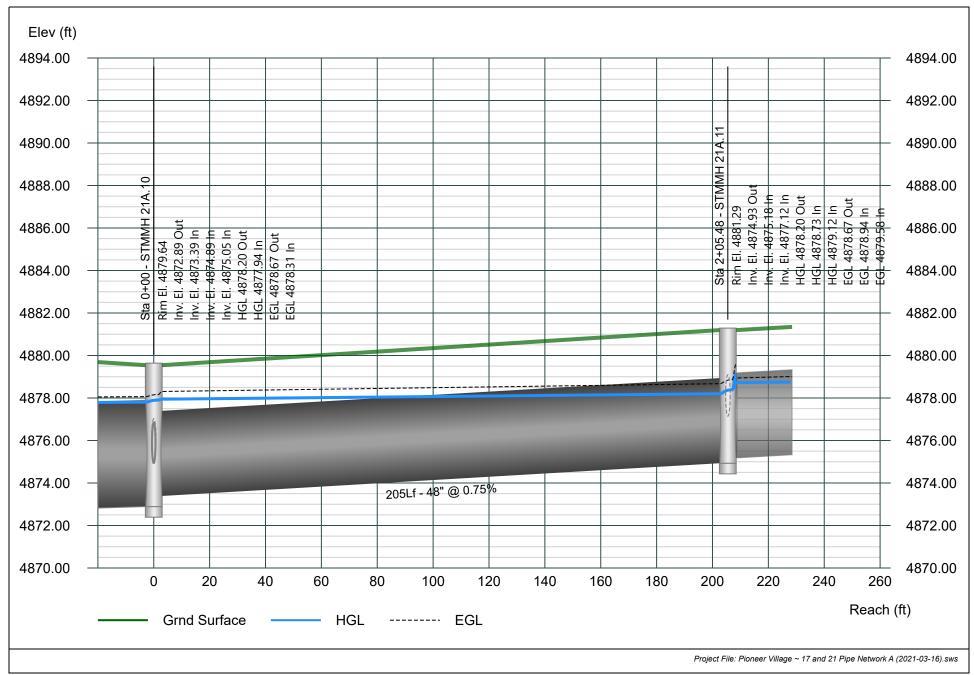
Stormwater Studio 2021 v 3.0.0.24




### Line 44 - Pipe - (526) (PA 21A NETWORK)

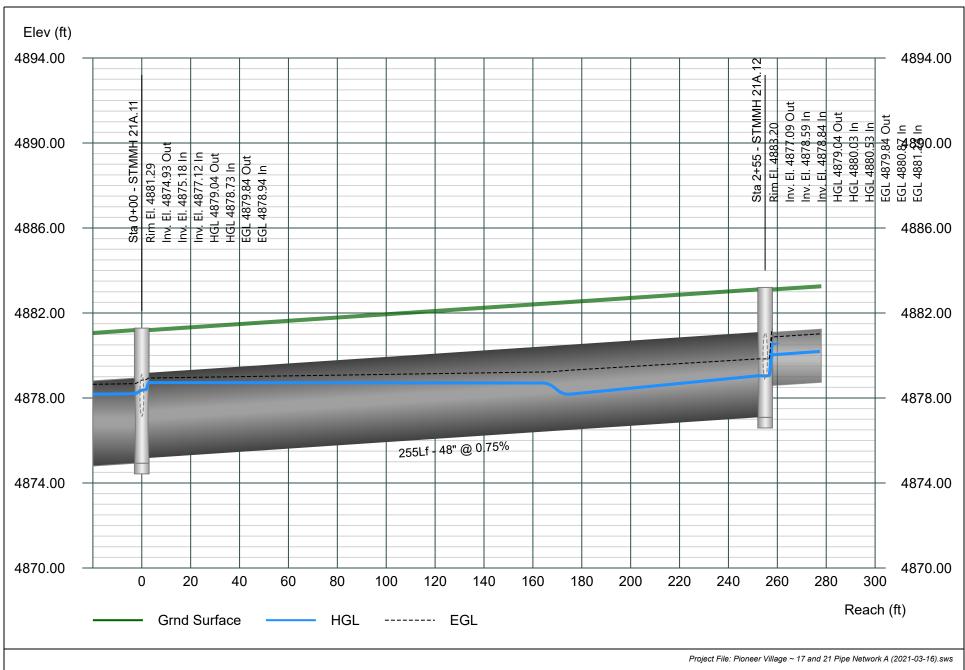
Stormwater Studio 2021 v 3.0.0.24




#### Line 45 - Pipe - (534) (PA 21A NETWORK)

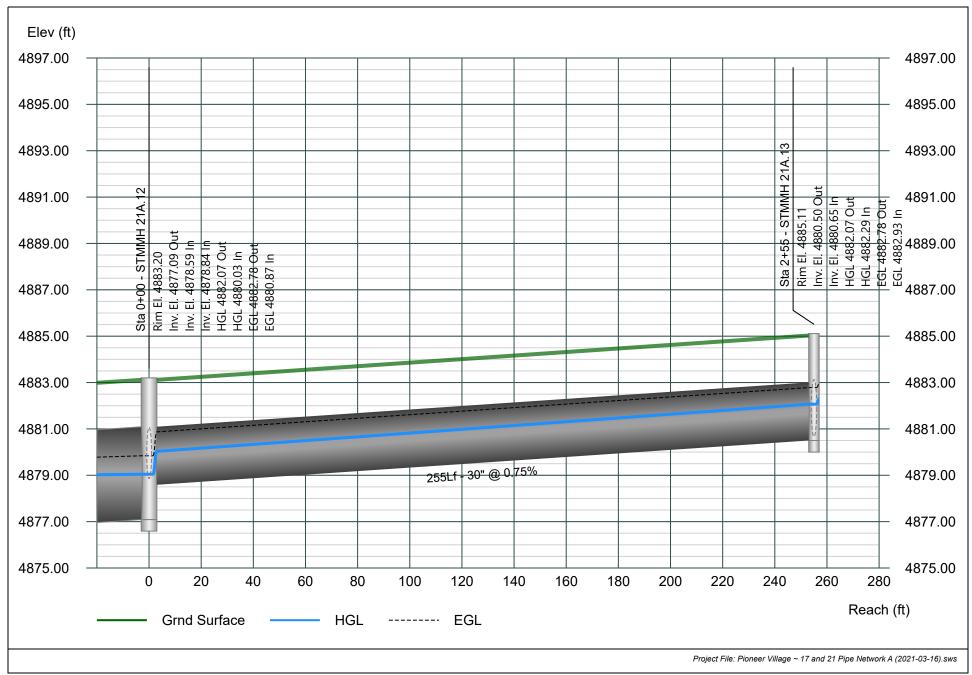
Stormwater Studio 2021 v 3.0.0.24




### Line 46 - Pipe - (533) (PA 21A NETWORK)

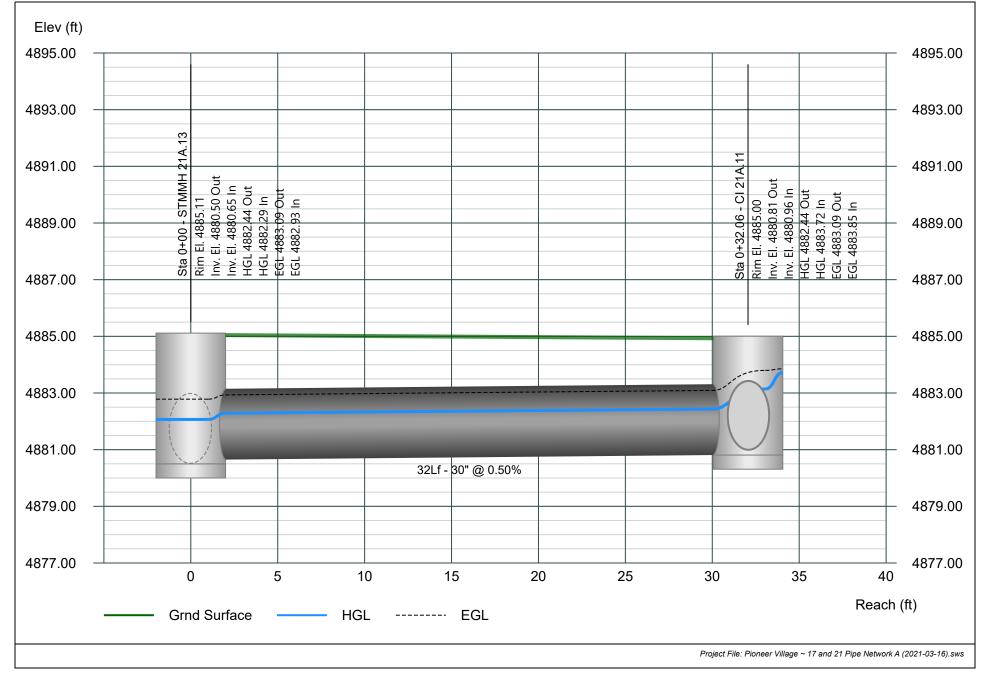
Stormwater Studio 2021 v 3.0.0.24




### Line 47 - Pipe - (548) (PA 21A NETWORK)

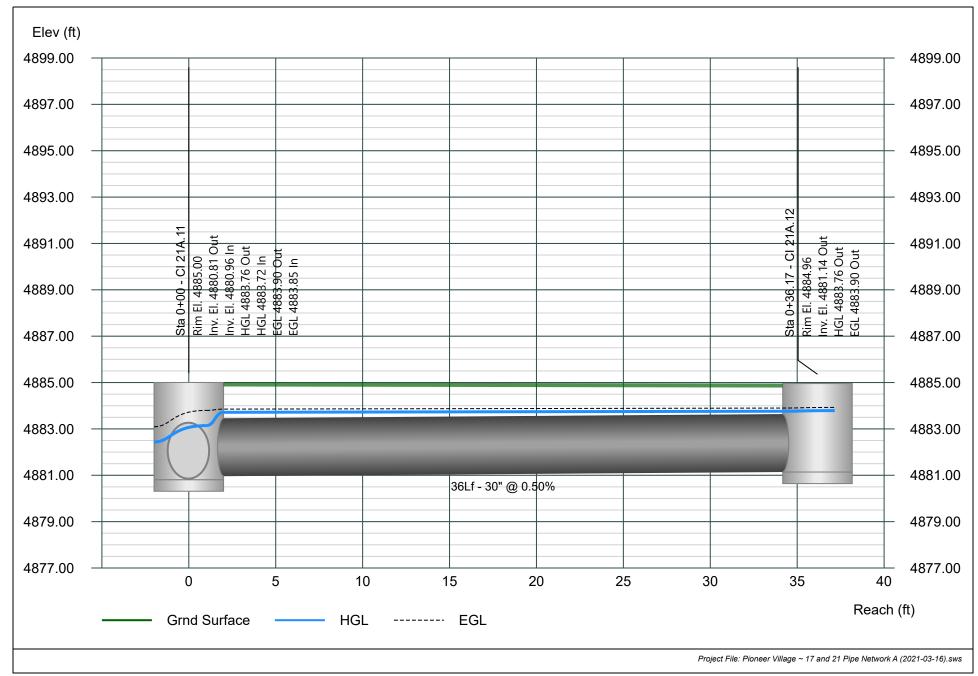
Stormwater Studio 2021 v 3.0.0.24




# Line 48 - Pipe - (546) (2) (1) (PA 21A NETWORK)

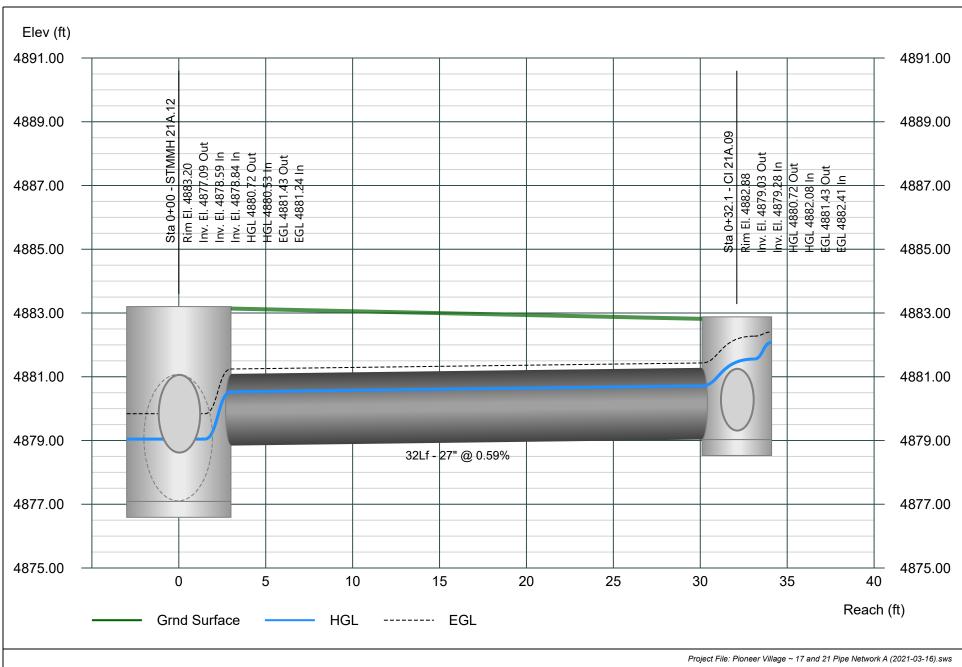
Stormwater Studio 2021 v 3.0.0.24




## Line 49 - Pipe - (545) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24

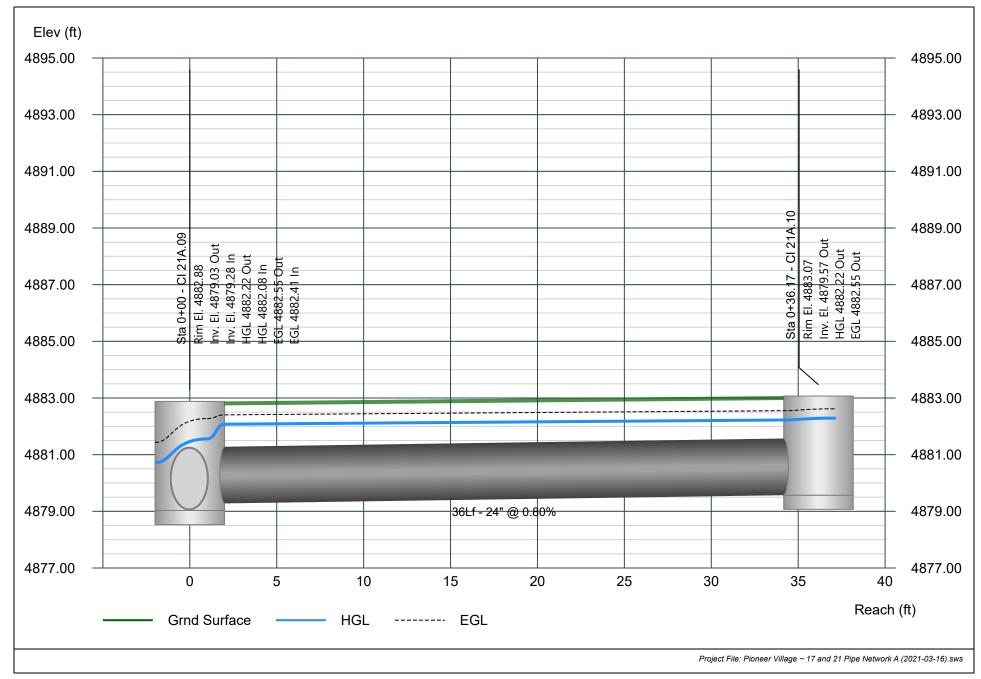



# Line 50 - Pipe - (527) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24

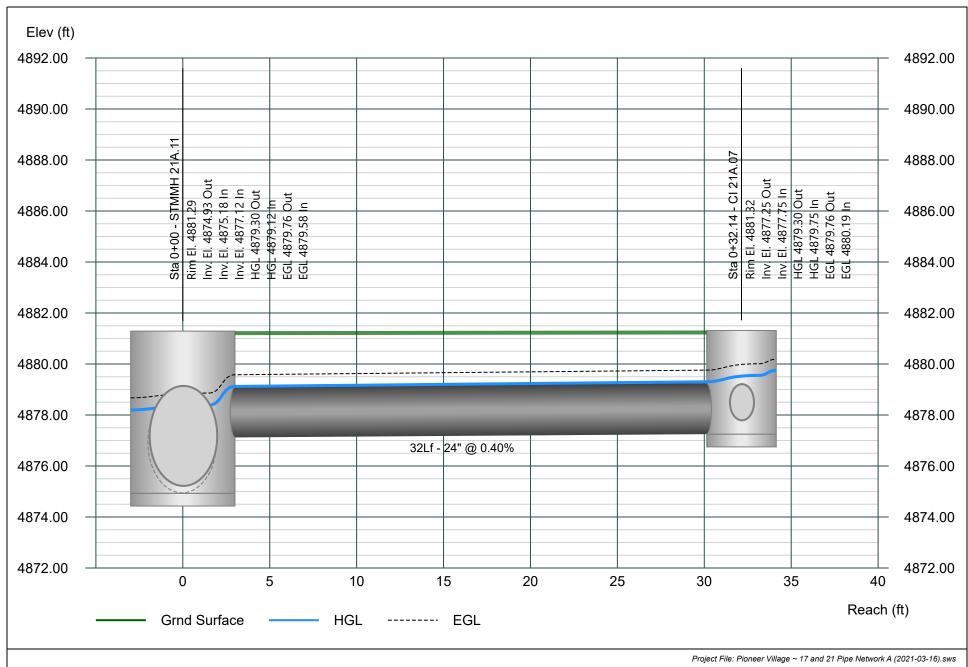


# Line 51 - Pipe - (549) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24

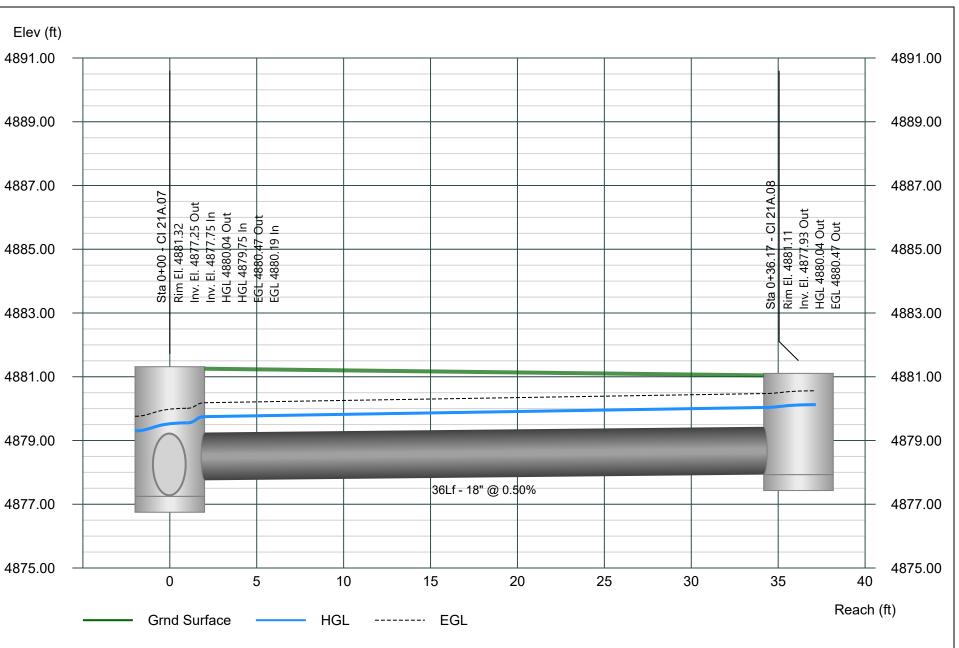


# Line 52 - Pipe - (529) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24



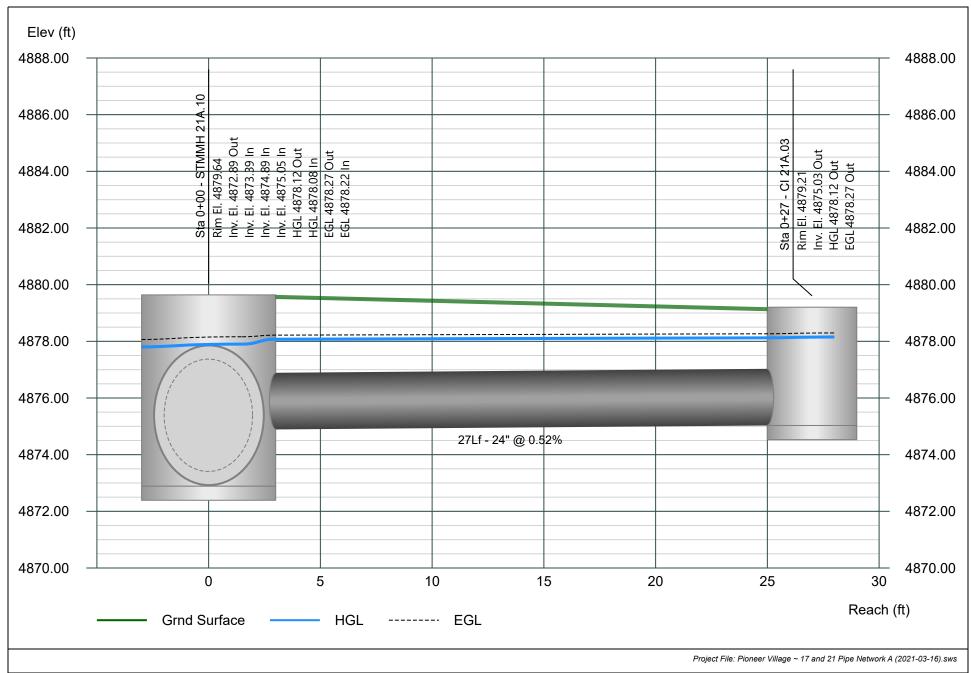



# Line 53 - Pipe - (532)(0) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24



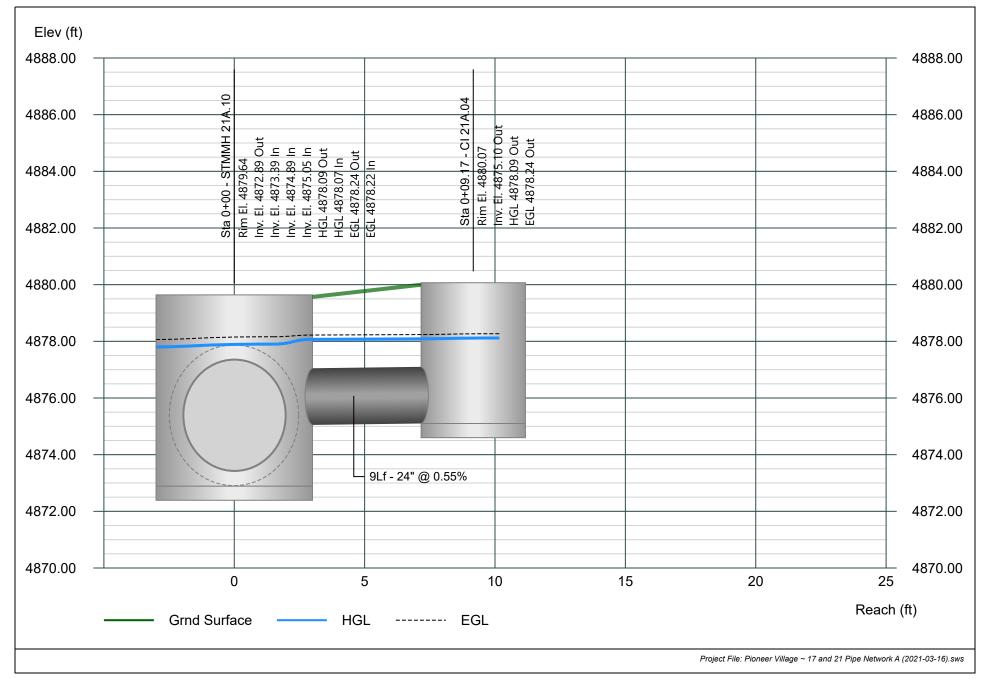
## Line 54 - Pipe - (531) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24



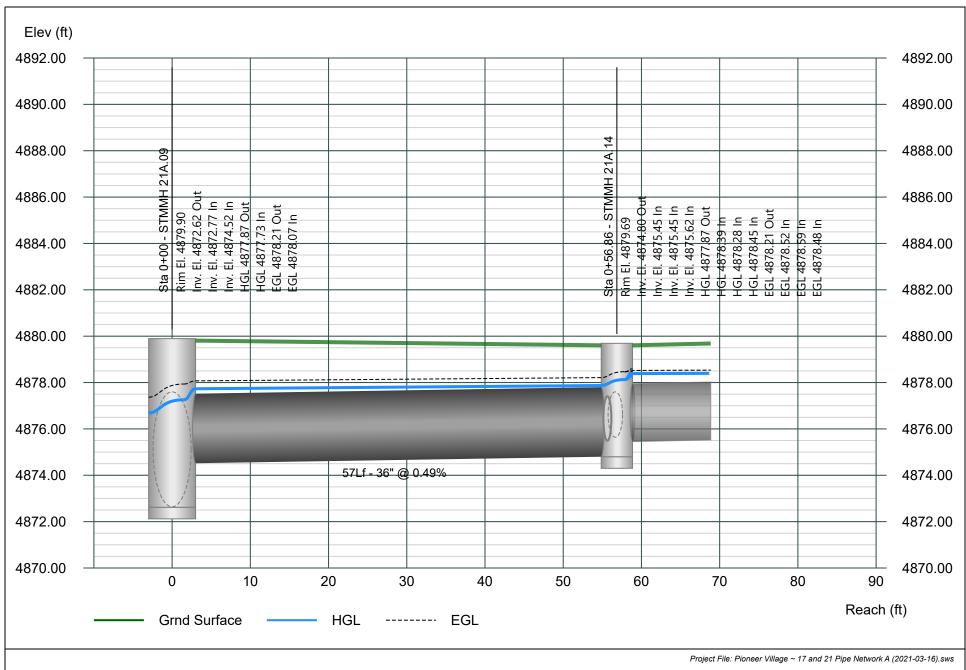
Project File: Pioneer Village ~ 17 and 21 Pipe Network A (2021-03-16).sws

# Line 55 - Pipe - (536) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24

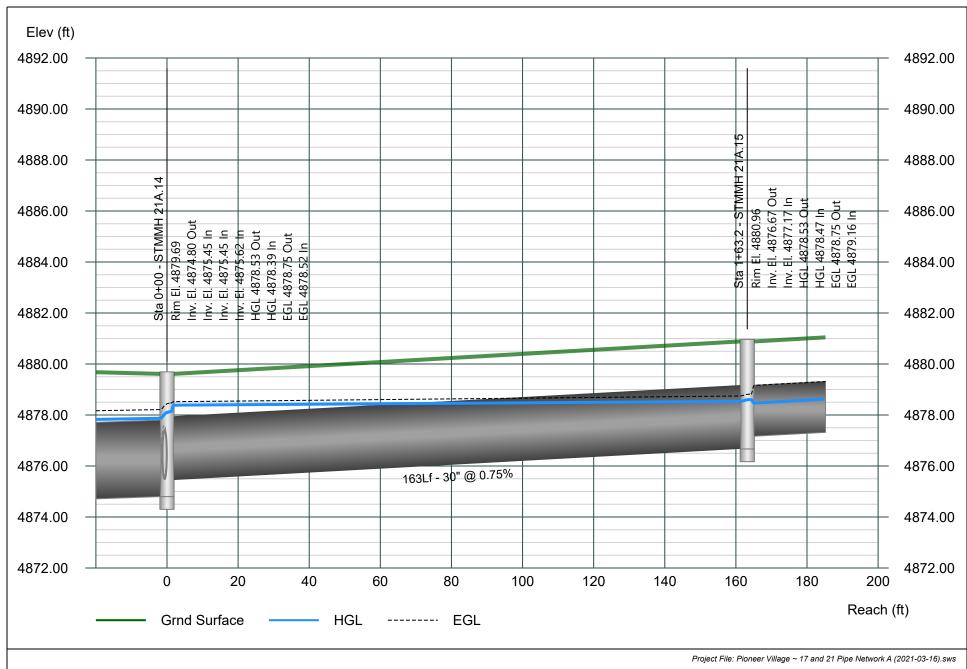


# Line 56 - Pipe - (535) (PA 21A NETWORK)


Stormwater Studio 2021 v 3.0.0.24






## Line 57 - Pipe - (525) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24




## Line 58 - Pipe - (559) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24



## Line 59 - Pipe - (556) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24



#### Line 60 - Pipe - (560) (PA 21A NETWORK)

A.16

5

- STMMH

Sta 0+00

0

Grnd Surface

Rim El. 4881.71

377.86 Out 378.36 In

Ξ Ξ

HGL

5

10

----- EGL

HGL

5.

48 428

5. 5.

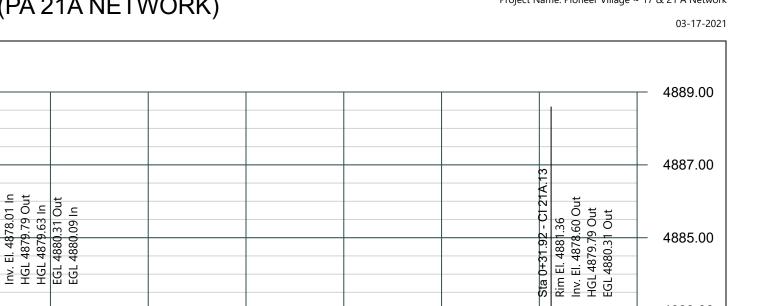
Stormwater Studio 2021 v 3.0.0.24

Elev (ft)

4889.00

4887.00

4885.00


4883.00

4881.00

4879.00

4877.00

4875.00



32Lf - 18" @ 0.75%

15

20

25

Project File: Pioneer Village ~ 17 and 21 Pipe Network A (2021-03-16).sws

30

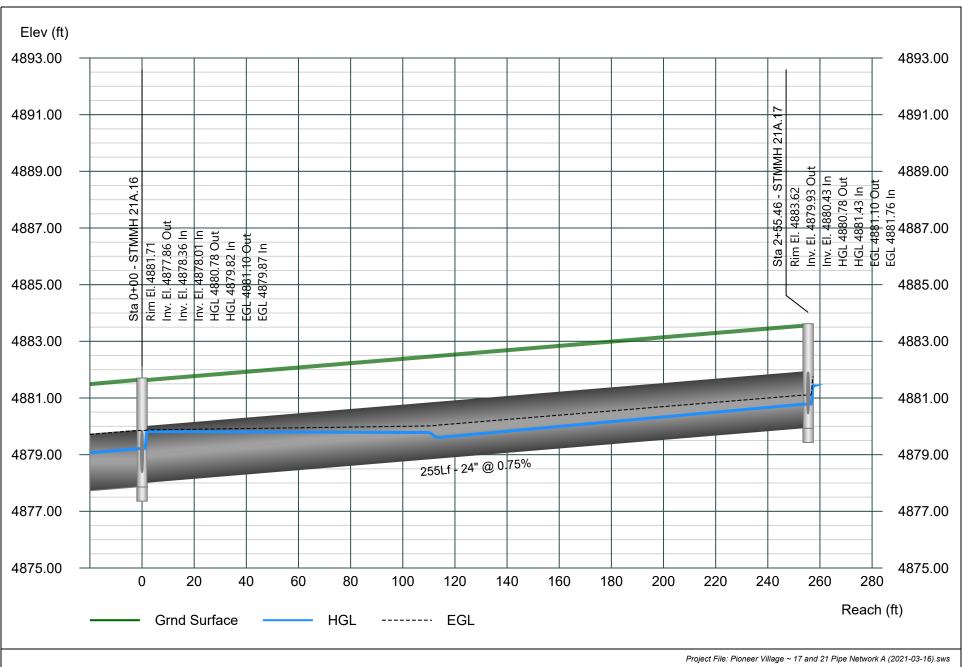


4883.00

4881.00

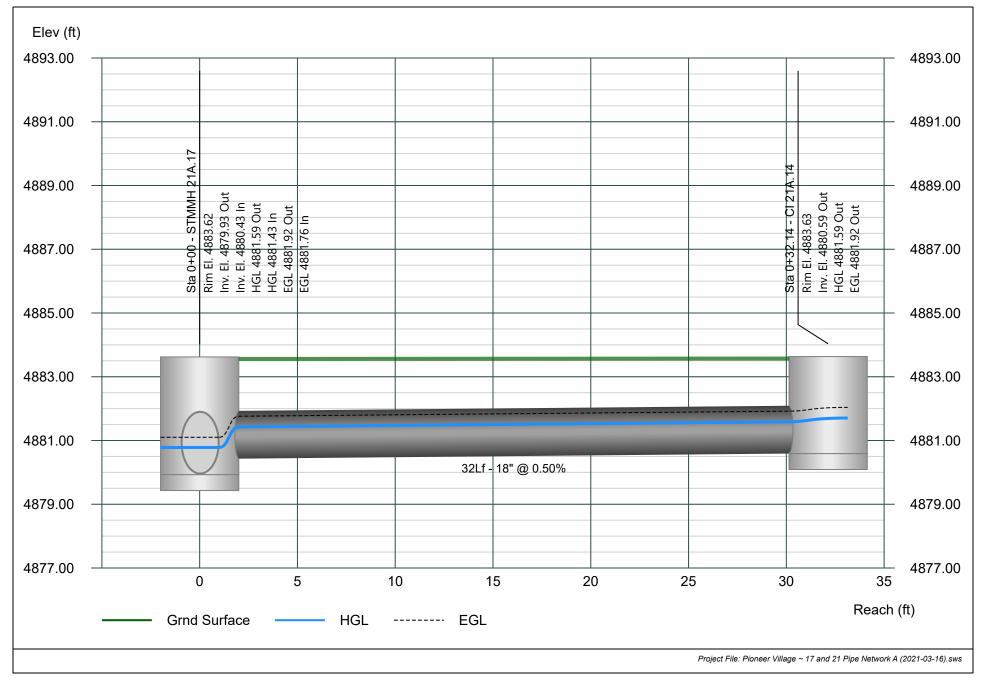
4879.00

4877.00


4875.00

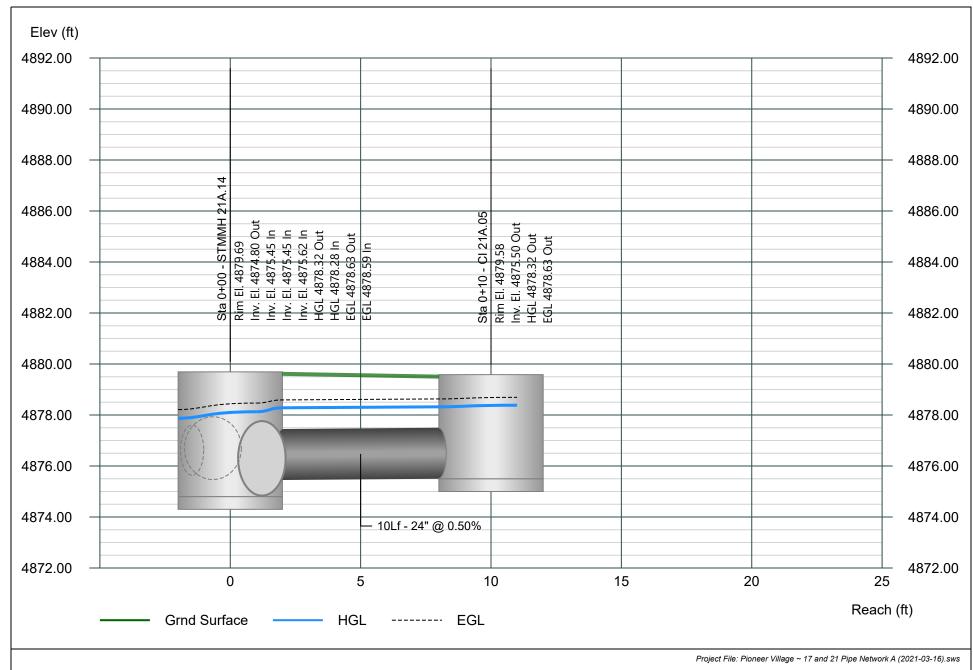
35

Reach (ft)


## Line 61 - Pipe - (555) (PA 21A NETWORK)

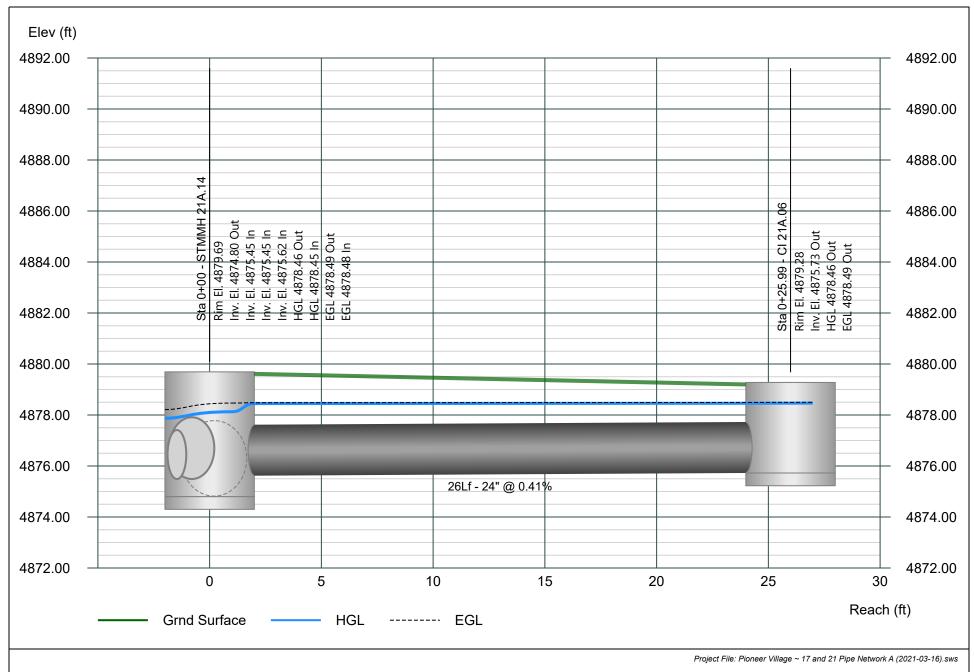
Stormwater Studio 2021 v 3.0.0.24




#### Line 62 - Pipe - (554) (PA 21A NETWORK)

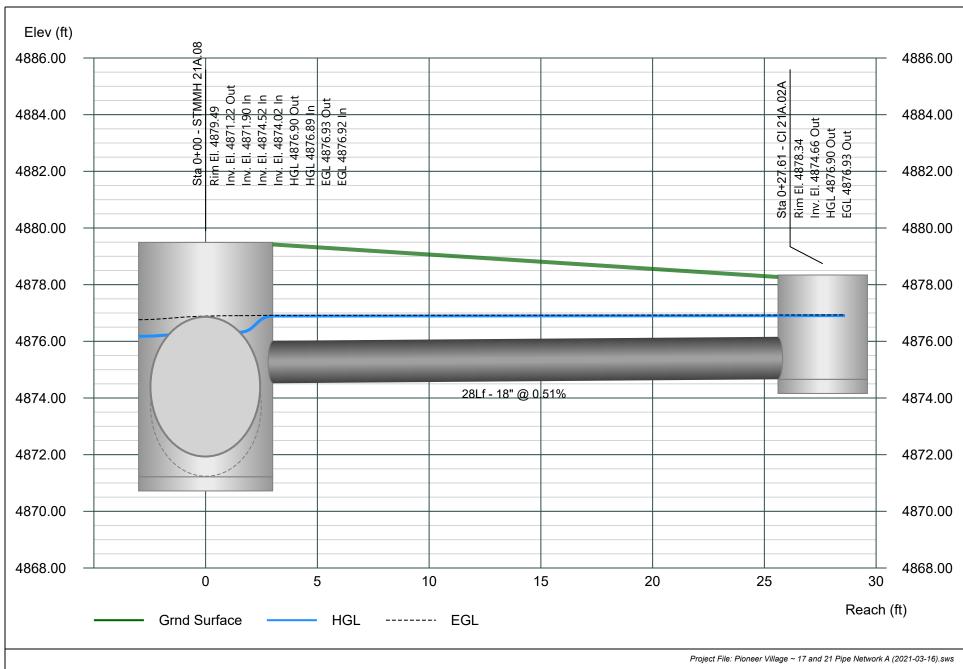
Stormwater Studio 2021 v 3.0.0.24




# Line 63 - Pipe - (524) (PA 21A NETWORK)

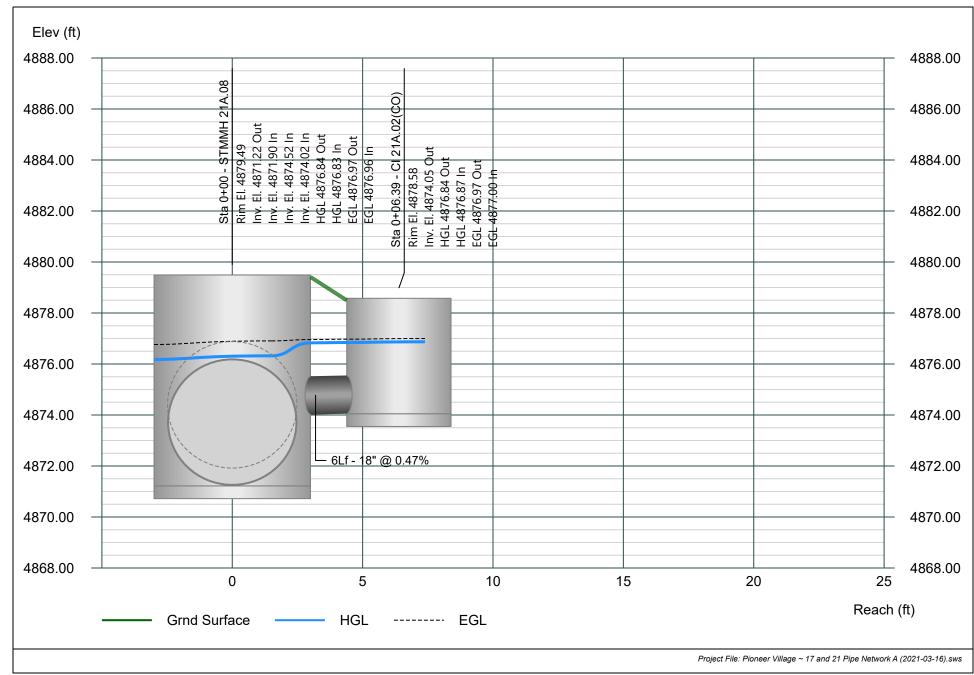
Stormwater Studio 2021 v 3.0.0.24




## Line 64 - Pipe - (537) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24




## Line 65 - Pipe - (542) (PA 21A NETWORK)

Stormwater Studio 2021 v 3.0.0.24



## Line 66 - Pipe - (541) (PA 21A NETWORK)

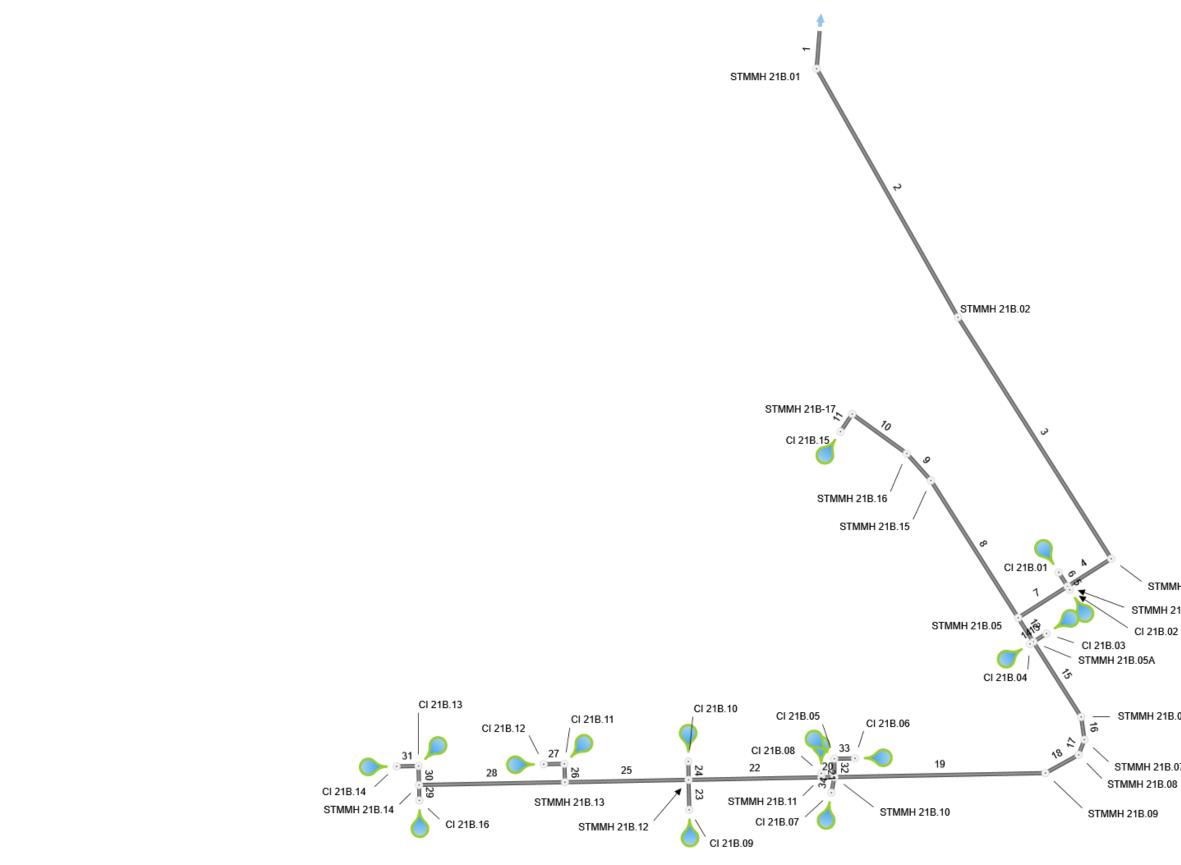
Stormwater Studio 2021 v 3.0.0.24



#### Storm Sewer Tabulation

|           | Line<br>ID                  | Length             | Drng     | Area      | Rational | C >       | ( A       | т          | c          | Intensity | Total Q | Capacity | Velocity | Lir     | ne    | Inver   | t Elev  | HGL             | Elev            | Surfac        | e Elev        | Line<br>No  |
|-----------|-----------------------------|--------------------|----------|-----------|----------|-----------|-----------|------------|------------|-----------|---------|----------|----------|---------|-------|---------|---------|-----------------|-----------------|---------------|---------------|-------------|
|           |                             | Ľ                  | Incr     | Total     | Rat      | Incr      | Total     | Inlet      | Syst       | Inte      | P       | Сар      | Vel      | Size    | Slope | Up      | Dn      | Up              | Dn              | Up            | Dn            |             |
|           |                             | (ft)               | (ac)     | (ac)      | (C)      |           |           | (min)      | (min)      | (in/hr)   | (cfs)   | (cfs)    | (ft/s)   | (in)    | (%)   | (ft)    | (ft)    | (ft)            | (ft)            | (ft)          | (ft)          |             |
| Pip       | e - (136) (PA 21A NETWOR    | t <b>K3</b> )9.13  | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 11.08      | 8.65      | 385.60  | 715.69   | 6.36     | 84x108r | 0.40  | 4864.56 | 4864.00 | 4871.05         | 4871.00         | 4873.40       | 0.00          | 1           |
| Pip       | e - (135) (PA 21A NETWOR    | R <b>7</b> ¥.38    | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 10.88      | 8.70      | 385.60  | 718.33   | 6.12     | 84x108r | 0.40  | 4865.01 | 4864.71 | 4872.00         | 4871.94         | 4877.05       | 4873.40       | 2           |
| Pip       | e - (134) (PA 21A NETWOR    | R72.79             | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 10.68      | 8.76      | 385.60  | 714.20   | 6.12     | 84x108r | 0.40  | 4865.45 | 4865.16 | 4872.44         | 4872.42         | 4877.99       | 4877.05       | 3           |
| Pip       | e - (133) (PA 21A NETWOR    | <b>240)</b> 7.38   | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 10.14      | 8.92      | 385.60  | 715.64   | 6.33     | 84x108r | 0.40  | 4866.43 | 4865.60 | 4872.99         | 4872.86         | 4875.62       | 4877.99       | 4           |
| Pip       | e - (389) (PA 21A NETWOR    | K6)5.48            | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.04       | 10.85     | 9.51    | 16.00    | 3.03     | 24      | 0.50  | 4871.76 | 4871.43 | 4874.22         | 4874.10         | 4876.35       | 4875.62       | 5           |
| Pip       | e - (390) (PA 21A NETWOR    | K7).01             | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.00       | 10.85     | 9.51    | 22.58    | 3.03     | 24      | 1.00  | 4871.98 | 4871.91 | 4874.40         | 4874.39         | 4875.50       | 4876.35       | 6           |
| Pip       | e - (388) (PA 21A NETWOR    | <b>₩</b> 2.22      | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.00       | 10.85     | 19.40   | 22.62    | 6.18     | 24      | 1.00  | 4870.85 | 4870.43 | 4874.14         | 4873.83         | 4875.41       | 4875.62       | 7           |
| Pip       | e - (132) (PA 21A NETWOR    | <b>₩</b> 8.68      | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 9.99       | 8.96      | 356.69  | 715.81   | 5.66     | 84x108r | 0.40  | 4866.63 | 4866.43 | 4873.94         | 4873.89         | 4875.76       | 4875.62       | 8           |
| Pip       | e - (400) (PA 21A NETWOR    | K7).85             | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.00       | 10.85     | 11.19   | 22.85    | 3.56     | 24      | 1.02  | 4870.21 | 4870.13 | 4874.45         | 4874.43         | 4875.68       | 4875.76       | 9           |
| Pipe -    | (130) (1)(0) (PA 21A NETW   | <b>8972KG</b> 6    | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 7.82       | 9.68      | 345.50  | 715.62   | 6.85     | 84x108r | 0.40  | 4870.20 | 4866.63 | 4874.87         | 4874.27         | 4879.70       | 4875.76       | 10          |
| Pipe - (1 | 29) (1) (1) (1) (PA 21A NET | <b>V310/B</b> (K)  | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 7.69       | 9.72      | 225.13  | 496.80   | 4.76     | 72x96r  | 0.40  | 4870.35 | 4870.20 | 4876.19         | 4876.18         | 4879.13       | 4879.70       | 11          |
| Pipe -    | (129) (1) (1) (PA 21A NETV  | 1 <b>0178</b> K\$9 | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 4.73       | 10.85     | 207.23  | 319.19   | 7.77     | 72x72r  | 0.35  | 4875.18 | 4870.35 | 4878.71         | 4876.34         | 4883.63       | 4879.13       | 12          |
| Pip       | e - (129) (PA 21A NETWOR    | <b>#48)</b> 3.73   | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 3.88       | 10.85     | 167.05  | 212.69   | 9.46     | 66      | 0.40  | 4877.62 | 4875.68 | 4881.15         | 4879.89         | 4885.38       | 4883.63       | 13          |
| Pip       | e - (399) (PA 21A NETWOR    | <b>⊯4)</b> 1.19    | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.00       | 10.85     | 5.71    | 13.73    | 1.82     | 24      | 0.37  | 4881.12 | 4880.97 | 4883.42         | 4883.40         | 4885.65       | 4885.38       | 14          |
| Pip       | e - (128) (PA 21A NETWOR    | <b>KS7</b> .35     | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 3.75       | 10.85     | 161.34  | 238.84   | 7.04     | 66      | 0.51  | 4878.06 | 4877.77 | 4883.03         | 4882.96         | 4885.56       | 4885.38       | 15          |
| Pip       | e - (127) (PA 21A NETWOR    | R72.63             | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 1.41       | 10.85     | 88.54   | 183.34   | 4.51     | 60      | 0.50  | 4878.58 | 4878.22 | 4884.18         | 4884.09         | 4886.16       | 4885.56       | 16          |
| Pipe      | - (126)(0) (PA 21A NETWO    | <b>fr:140)</b> .55 | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 1.17       | 10.85     | 75.44   | 287.22   | 11.96    | 48      | 4.00  | 4884.50 | 4880.08 | 4887.07         | 4881.76         | 4890.43       | 4886.16       | 17          |
| Pip       | e - (591) (PA 21A NETWOR    | 19)8.37            | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.38       | 10.85     | 26.22   | 55.86    | 4.73     | 36      | 0.70  | 4886.19 | 4885.50 | 4888.12         | 4888.13         | 4891.16       | 4890.43       | 18          |
| Pip       | e - (604) (PA 21A NETWOR    | 156)9.18           | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.14       | 10.85     | 8.98    | 20.16    | 4.13     | 24      | 0.79  | 4887.66 | 4887.19 | 4888.78         | 4888.82         | 4891.72       | 4891.16       | 19          |
| Pip       | e - (589) (PA 21A NETWOR    | 187.00             | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.00       | 10.85     | 8.98    | 22.62    | 3.29     | 24      | 1.00  | 4887.98 | 4887.71 | 4889.49         | 4889.49         | 4891.45       | 4891.72       | 20          |
| Pip       | e - (590) (PA 21A NETWOR    | <b>K5</b> 12.85    | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.00       | 10.85     | 17.24   | 22.66    | 7.20     | 24      | 1.00  | 4887.72 | 4887.19 | 4889.19         | 4888.57         | 4891.77       | 4891.16       | 21          |
| Pip       | e - (594) (PA 21A NETWOR    | # <b>€1)</b> 1.64  | 0.000    | 0.000     | 0.00     | 0.00      | 0.00      | 0.0        | 0.25       | 10.85     | 29.47   | 41.03    | 8.32     | 30      | 1.00  | 4890.12 | 4886.00 | 4891.94         | 4887.60         | 4895.14       | 4890.43       | 22          |
|           |                             |                    |          |           |          |           |           |            |            |           |         |          |          |         |       |         |         |                 |                 |               |               |             |
|           | Notes: IDF File = SampleI   | DF.idf, F          | Return P | eriod = 1 | 00-yrs.  | r = recta | angular e | e = ellipt | ical a = a | arch      |         |          |          |         |       |         | Project | File: Pioneer \ | /illage ~ 17 aı | nd 21 Pipe Ne | twork A (2021 | -03-16).sws |

#### Storm Sewer Tabulation


|      | Line<br>ID                | Length              | ength    | Drng      | Area    | Rational | CxA   |       | Т     | с       | Intensity | Total Q | Capacity | Velocity | Line  |         | Invert Elev |                 | HGL Elev        |               | Surface Elev  |             | Line<br>No |
|------|---------------------------|---------------------|----------|-----------|---------|----------|-------|-------|-------|---------|-----------|---------|----------|----------|-------|---------|-------------|-----------------|-----------------|---------------|---------------|-------------|------------|
|      |                           | Ľ                   | Incr     | Total     | Rat     | Incr     | Total | Inlet | Syst  | Inte    | 4         | Сар     | Ve       | Size     | Slope | Up      | Dn          | Up              | Dn              | Up            | Dn            |             |            |
|      |                           | (ft)                | (ac)     | (ac)      | (C)     |          |       | (min) | (min) | (in/hr) | (cfs)     | (cfs)   | (ft/s)   | (in)     | (%)   | (ft)    | (ft)        | (ft)            | (ft)            | (ft)          | (ft)          |             |            |
| Pip  | e - (593) (PA 21A NETWOR  | RKS)₿.04            | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.15  | 10.85   | 29.47     | 30.96   | 8.49     | 27       | 1.00  | 4891.05 | 4890.52     | 4892.92         | 4892.33         | 4895.59       | 4895.14       | 23          |            |
| Pip  | e - (592) (PA 21A NETWOR  | RKS)6.08            | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 16.35     | 21.85   | 4.11     | 27       | 0.50  | 4891.38 | 4891.20     | 4893.95         | 4893.85         | 4894.90       | 4895.59       | 24          |            |
| Pip  | e - (607) (PA 21A NETWOR  | RK27.00             | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 19.75     | 22.62   | 7.59     | 24       | 1.00  | 4886.33 | 4886.06     | 4887.91         | 4887.57         | 4890.16       | 4890.43       | 25          |            |
| Pip  | e - (605) (PA 21A NETWOR  | RK7).00             | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 13.10     | 10.88   | 7.41     | 18       | 1.07  | 4880.33 | 4880.26     | 4884.18         | 4884.08         | 4885.99       | 4886.16       | 26          |            |
| Pip  | e - (397) (PA 21A NETWOR  | RKS)9.51            | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 3.48  | 10.85   | 72.80     | 184.13  | 3.71     | 60       | 0.50  | 4878.52 | 4878.22     | 4884.20         | 4884.15         | 4886.73       | 4885.56       | 27          |            |
| Pip  | e - (396) (PA 21A NETWOR  | R <b>IA</b> )1.24   | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 20.58     | 22.56   | 6.55     | 24       | 0.99  | 4881.93 | 4881.52     | 4884.44         | 4884.10         | 4886.25       | 4886.73       | 28          |            |
| Pip  | e - (598) (PA 21A NETWOR  | 8 <b>17(2)</b> 3.52 | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 1.43  | 10.85   | 52.22     | 128.50  | 5.90     | 48       | 0.80  | 4885.31 | 4879.52     | 4887.45         | 4884.34         | 4892.45       | 4886.73       | 29          |            |
| Pip  | e - (597) (PA 21A NETWOR  | 8 <b>1K9</b> 8.69   | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 1.06  | 10.85   | 52.22     | 59.66   | 9.16     | 36       | 0.80  | 4887.90 | 4886.31     | 4890.20         | 4888.52         | 4893.74       | 4892.45       | 30          |            |
| Pipe | - (596) (1) (PA 21A NETWO | D <b>RK</b> )22     | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.91  | 10.85   | 52.22     | 59.57   | 7.94     | 36       | 0.80  | 4888.65 | 4888.05     | 4891.13         | 4890.91         | 4893.96       | 4893.74       | 31          |            |
| Pip  | e - (603) (PA 21A NETWOR  | RK27.00             | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 24.09     | 41.01   | 4.91     | 30       | 1.00  | 4889.42 | 4889.15     | 4893.12         | 4893.03         | 4893.47       | 4893.96       | 32          |            |
| Pip  | e - (596) (PA 21A NETWOR  | R <b>I4</b> )5.10   | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.72  | 10.85   | 28.13     | 59.61   | 3.98     | 36       | 0.80  | 4889.16 | 4888.80     | 4893.19         | 4893.11         | 4894.28       | 4893.96       | 33          |            |
| Pipe | - (595) (1) (PA 21A NETWO | <b>RB</b> (26       | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.43  | 10.85   | 28.13     | 66.57   | 3.98     | 36       | 1.00  | 4890.00 | 4889.31     | 4893.51         | 4893.38         | 4894.86       | 4894.28       | 34          |            |
| Pip  | e - (595) (PA 21A NETWOR  | RK677.54            | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.19  | 10.85   | 12.97     | 31.98   | 4.75     | 24       | 2.00  | 4892.35 | 4891.00     | 4893.78         | 4893.71         | 4896.33       | 4894.86       | 35          |            |
| Pip  | e - (602) (PA 21A NETWOR  | RK27.00             | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 7.39      | 22.62   | 2.35     | 24       | 1.00  | 4892.77 | 4892.50     | 4894.91         | 4894.88         | 4896.07       | 4896.33       | 36          |            |
| Pip  | e - (601) (PA 21A NETWOR  | RK7).00             | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 5.58      | 22.59   | 1.78     | 24       | 1.00  | 4892.57 | 4892.50     | 4894.91         | 4894.90         | 4896.06       | 4896.33       | 37          |            |
| Pip  | e - (599) (PA 21A NETWOR  | RK9)8.62            | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.02  | 10.85   | 15.16     | 30.34   | 5.69     | 24       | 1.80  | 4892.78 | 4891.00     | 4894.15         | 4893.65         | 4896.55       | 4894.86       | 38          |            |
| Pip  | e - (600) (PA 21A NETWOR  | RK7).00             | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 15.16     | 22.59   | 6.60     | 24       | 1.00  | 4893.00 | 4892.93     | 4894.39         | 4894.29         | 4896.29       | 4896.55       | 39          |            |
| Pip  | e - (566) (PA 21A NETWOR  | RK8)8.98            | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 21.26     | 22.61   | 6.77     | 24       | 1.00  | 4878.57 | 4878.18     | 4880.62         | 4880.28         | 4883.44       | 4883.63       | 40          |            |
| Pip  | e - (581) (PA 21A NETWOR  | RK7).00             | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 18.92     | 22.59   | 6.02     | 24       | 1.00  | 4878.25 | 4878.18     | 4880.42         | 4880.37         | 4883.48       | 4883.63       | 41          |            |
| Pip  | e - (606) (PA 21A NETWOR  | RKS)9.00            | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 0.00  | 10.85   | 17.90     | 22.62   | 5.70     | 24       | 1.00  | 4873.74 | 4873.35     | 4876.59         | 4876.34         | 4878.87       | 4879.13       | 42          |            |
| Pipe | - (526) (1) (PA 21A NETWO | <b>RB</b> .23       | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 3.08  | 10.85   | 120.37    | 225.75  | 6.14     | 60       | 0.75  | 4871.22 | 4870.70     | 4876.18         | 4876.04         | 4879.49       | 4879.70       | 43          |            |
| Pip  | e - (526) (PA 21A NETWOR  | R <b>K4)</b> 4.11   | 0.000    | 0.000     | 0.00    | 0.00     | 0.00  | 0.0   | 2.70  | 10.85   | 113.10    | 184.14  | 6.27     | 60       | 0.50  | 4872.62 | 4871.90     | 4876.69         | 4876.56         | 4879.90       | 4879.49       | 44          |            |
|      |                           |                     |          |           |         |          |       |       |       |         |           |         |          |          |       |         |             |                 |                 |               |               |             |            |
|      | Notes: IDF File = Samplel | DF.idf, F           | Return P | eriod = 1 | 00-yrs. |          |       |       |       |         |           |         |          |          |       |         | Project I   | File: Pioneer \ | /illage ~ 17 ar | nd 21 Pipe Ne | twork A (2021 | -03-16).sws |            |

## Storm Sewer Tabulation

|        | Line<br>ID                 | Length             | Drng     | Area      | Rational | C    | ٢A    | т     | c     | Intensity | Total Q | Capacity | Velocity | Li   | ne    | Inver   | t Elev  | HGL             | Elev            | Surfac        | e Elev        | Line<br>No  |
|--------|----------------------------|--------------------|----------|-----------|----------|------|-------|-------|-------|-----------|---------|----------|----------|------|-------|---------|---------|-----------------|-----------------|---------------|---------------|-------------|
|        |                            | Ľ                  | Incr     | Total     | Rat      | Incr | Total | Inlet | Syst  | Inte      | 4       | Cap      | Vel      | Size | Slope | Up      | Dn      | Up              | Dn              | Up            | Dn            |             |
|        |                            | (ft)               | (ac)     | (ac)      | (C)      |      |       | (min) | (min) | (in/hr)   | (cfs)   | (cfs)    | (ft/s)   | (in) | (%)   | (ft)    | (ft)    | (ft)            | (ft)            | (ft)          | (ft)          |             |
| Pip    | e - (534) (PA 21A NETWOF   | RKS)0.07           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 2.36  | 10.85     | 80.01   | 164.63   | 4.08     | 60   | 0.40  | 4872.89 | 4872.77 | 4877.81         | 4877.78         | 4879.64       | 4879.90       | 45          |
| Pip    | e - (533) (PA 21A NETWOF   | <b>280)</b> 5.48   | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 1.69  | 10.85     | 60.70   | 124.36   | 5.18     | 48   | 0.75  | 4874.93 | 4873.39 | 4878.20         | 4877.94         | 4881.29       | 4879.64       | 46          |
| Pip    | e - (548) (PA 21A NETWOF   | <b>285)</b> 5.00   | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.91  | 10.85     | 43.66   | 124.31   | 5.43     | 48   | 0.75  | 4877.09 | 4875.18 | 4879.04         | 4878.73         | 4883.20       | 4881.29       | 47          |
| Pipe - | (546) (2) (1) (PA 21A NETV | / <b>23F5k0</b> )0 | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.29  | 10.85     | 21.96   | 35.50    | 7.14     | 30   | 0.75  | 4880.50 | 4878.59 | 4882.07         | 4880.03         | 4885.11       | 4883.20       | 48          |
| Pip    | e - (545) (PA 21A NETWOF   | RKS)2.06           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.20  | 10.85     | 21.96   | 28.99    | 6.47     | 30   | 0.50  | 4880.81 | 4880.65 | 4882.44         | 4882.29         | 4885.00       | 4885.11       | 49          |
| Pip    | e - (527) (PA 21A NETWOF   | RKS)6.17           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 14.59   | 28.95    | 2.97     | 30   | 0.50  | 4881.14 | 4880.96 | 4883.76         | 4883.72         | 4884.96       | 4885.00       | 50          |
| Pip    | e - (549) (PA 21A NETWOF   | RKS)2.10           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.13  | 10.85     | 21.70   | 23.82    | 6.79     | 27   | 0.59  | 4879.03 | 4878.84 | 4880.72         | 4880.53         | 4882.88       | 4883.20       | 51          |
| Pip    | e - (529) (PA 21A NETWOF   | RKS)6.17           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 14.45   | 20.24    | 4.60     | 24   | 0.80  | 4879.57 | 4879.28 | 4882.22         | 4882.08         | 4883.07       | 4882.88       | 52          |
| Pipe   | - (532)(0) (PA 21A NETWO   | 14 (RS122)         | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.11  | 10.85     | 17.04   | 14.32    | 5.42     | 24   | 0.40  | 4877.25 | 4877.12 | 4879.30         | 4879.12         | 4881.32       | 4881.29       | 53          |
| Pip    | e - (531) (PA 21A NETWOF   | RKS)6.17           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 9.36    | 7.41     | 5.30     | 18   | 0.50  | 4877.93 | 4877.75 | 4880.04         | 4879.75         | 4881.11       | 4881.32       | 54          |
| Pip    | e - (536) (PA 21A NETWOF   | RK27.00            | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 9.53    | 16.27    | 3.03     | 24   | 0.52  | 4875.03 | 4874.89 | 4878.12         | 4878.08         | 4879.21       | 4879.64       | 55          |
| Pip    | e - (535) (PA 21A NETWOF   | RK9.17             | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 9.78    | 16.75    | 3.11     | 24   | 0.55  | 4875.10 | 4875.05 | 4878.09         | 4878.07         | 4880.07       | 4879.64       | 56          |
| Pip    | e - (525) (PA 21A NETWOF   | RKS)6.86           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 2.49  | 10.85     | 33.09   | 46.78    | 4.68     | 36   | 0.49  | 4874.80 | 4874.52 | 4877.87         | 4877.73         | 4879.69       | 4879.90       | 57          |
| Pip    | e - (559) (PA 21A NETWOF   | R <b>K6)</b> 3.20  | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 1.68  | 10.85     | 14.50   | 35.46    | 3.32     | 30   | 0.75  | 4876.67 | 4875.45 | 4878.53         | 4878.39         | 4880.96       | 4879.69       | 58          |
| Pip    | e - (556) (PA 21A NETWOF   | RK9)2.34           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 1.43  | 10.85     | 14.50   | 19.55    | 6.59     | 24   | 0.75  | 4877.86 | 4877.17 | 4879.21         | 4878.47         | 4881.71       | 4880.96       | 59          |
| Pip    | e - (560) (PA 21A NETWOF   | RKS)1.92           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 8.72    | 9.11     | 5.63     | 18   | 0.75  | 4878.60 | 4878.36 | 4879.79         | 4879.63         | 4881.36       | 4881.71       | 60          |
| Pip    | e - (555) (PA 21A NETWOF   | 2 <b>83</b> 5.46   | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.12  | 10.85     | 5.78    | 19.61    | 3.24     | 24   | 0.75  | 4879.93 | 4878.01 | 4880.78         | 4879.82         | 4883.62       | 4881.71       | 61          |
| Pip    | e - (554) (PA 21A NETWOF   | RKS)2.14           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 5.78    | 7.40     | 4.63     | 18   | 0.50  | 4880.59 | 4880.43 | 4881.59         | 4881.43         | 4883.63       | 4883.62       | 62          |
| Pip    | e - (524) (PA 21A NETWOF   | RM()0.00           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 14.02   | 15.96    | 4.46     | 24   | 0.50  | 4875.50 | 4875.45 | 4878.32         | 4878.28         | 4879.58       | 4879.69       | 63          |
| Pip    | e - (537) (PA 21A NETWOF   | RI\$5.99           | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 4.57    | 14.44    | 1.45     | 24   | 0.41  | 4875.73 | 4875.62 | 4878.46         | 4878.45         | 4879.28       | 4879.69       | 64          |
| Pip    | e - (542) (PA 21A NETWOF   | RK27.61            | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 2.17    | 7.48     | 1.23     | 18   | 0.51  | 4874.66 | 4874.52 | 4876.90         | 4876.89         | 4878.34       | 4879.49       | 65          |
| Pip    | e - (541) (PA 21A NETWOF   | RK6).39            | 0.000    | 0.000     | 0.00     | 0.00 | 0.00  | 0.0   | 0.00  | 10.85     | 5.10    | 7.17     | 2.89     | 18   | 0.47  | 4874.05 | 4874.02 | 4876.84         | 4876.83         | 4878.58       | 4879.49       | 66          |
|        |                            |                    |          |           |          |      |       |       |       |           |         |          |          |      |       |         |         |                 |                 |               |               |             |
|        | Notes: IDF File = SampleI  | DF.idf, F          | Return P | eriod = 1 | 100-yrs. |      |       |       |       |           |         |          |          |      |       |         | Project | File: Pioneer \ | /illage ~ 17 ai | nd 21 Pipe Ne | twork A (2021 | -03-16).sws |

#### Plan View

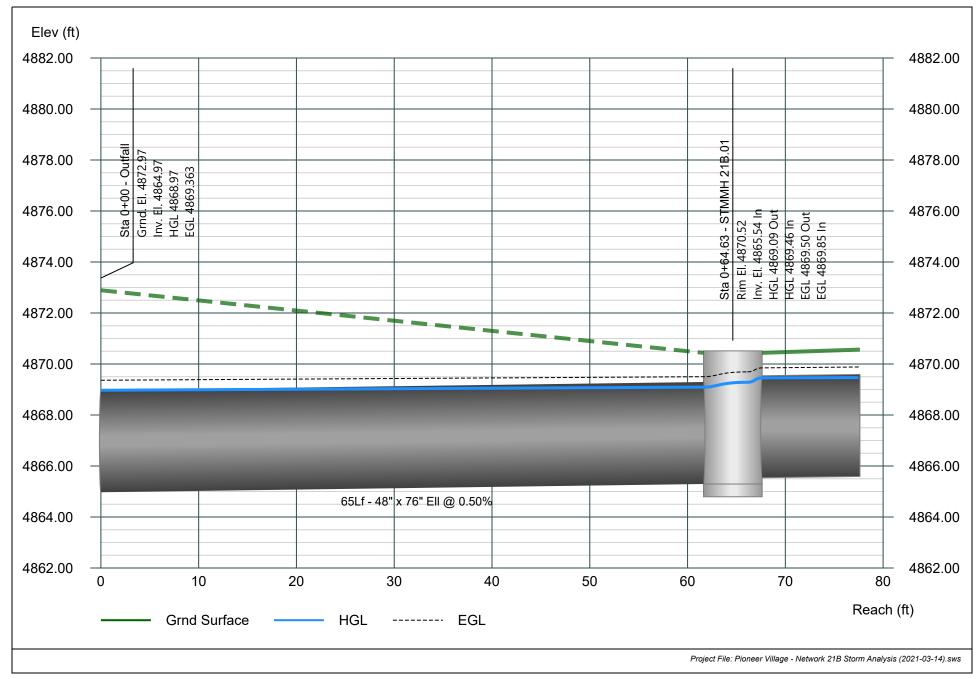
Stormwater Studio 2021 v 3.0.0.24



03-15-2021

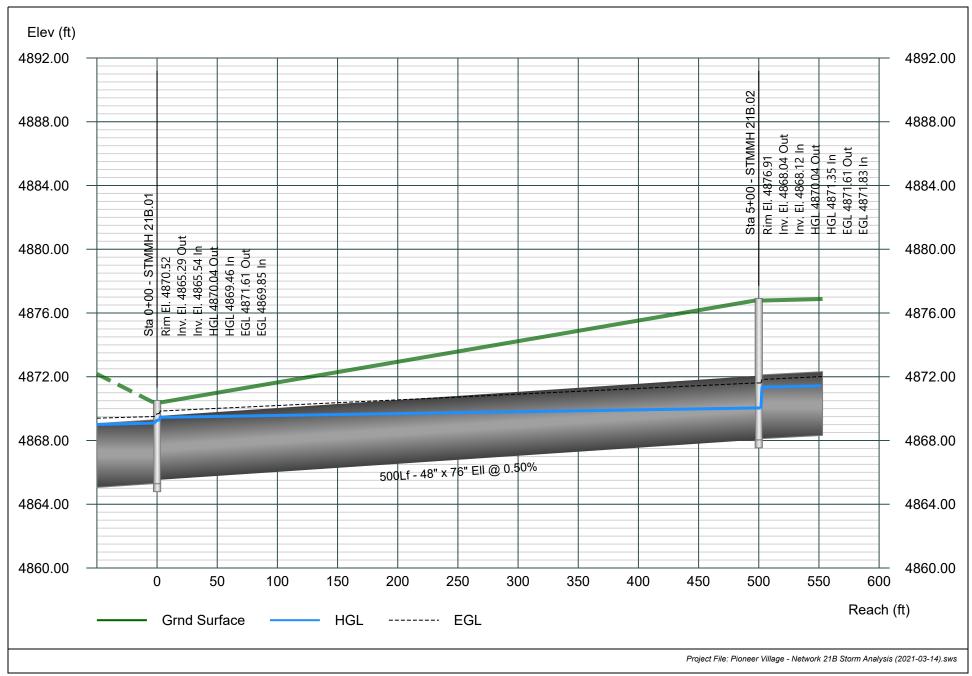
STMMH 2

#### STMMH 21B.(


#### CI 21B.02

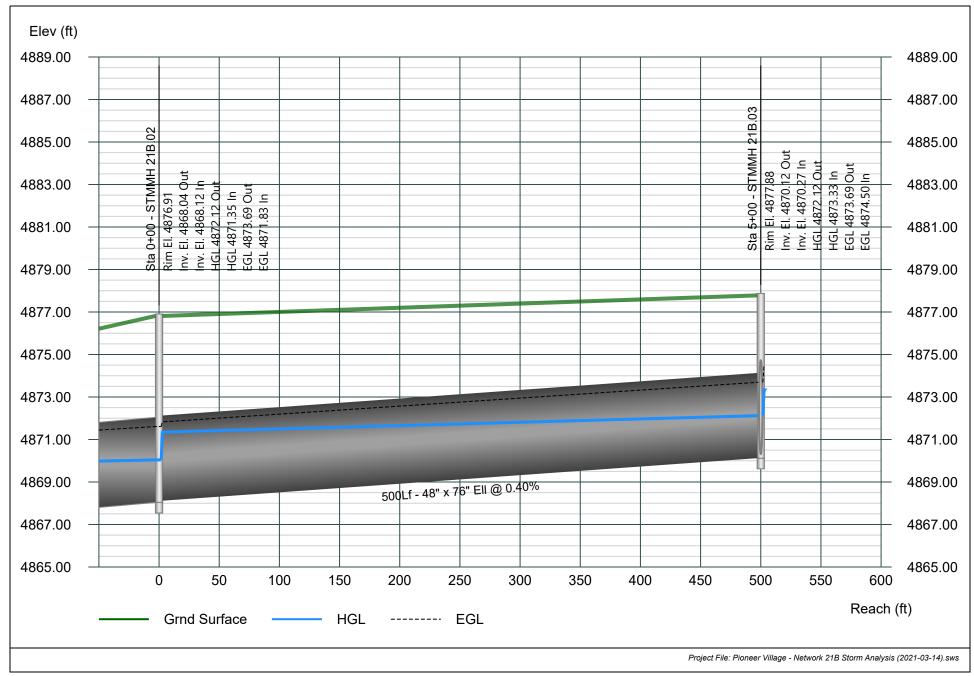
— STMMH 21B.06

STMMH 21B.07


#### Line 1 - Pipe - (500)

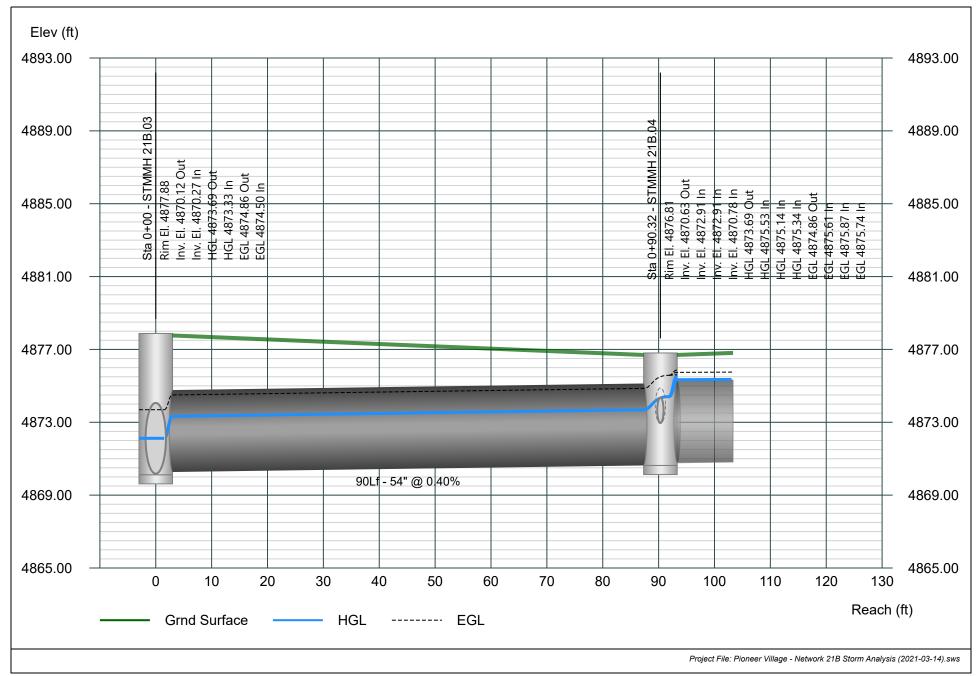
Stormwater Studio 2021 v 3.0.0.24




# Line 2 - Pipe - (499) (Storm Sewer - 21 B Network)

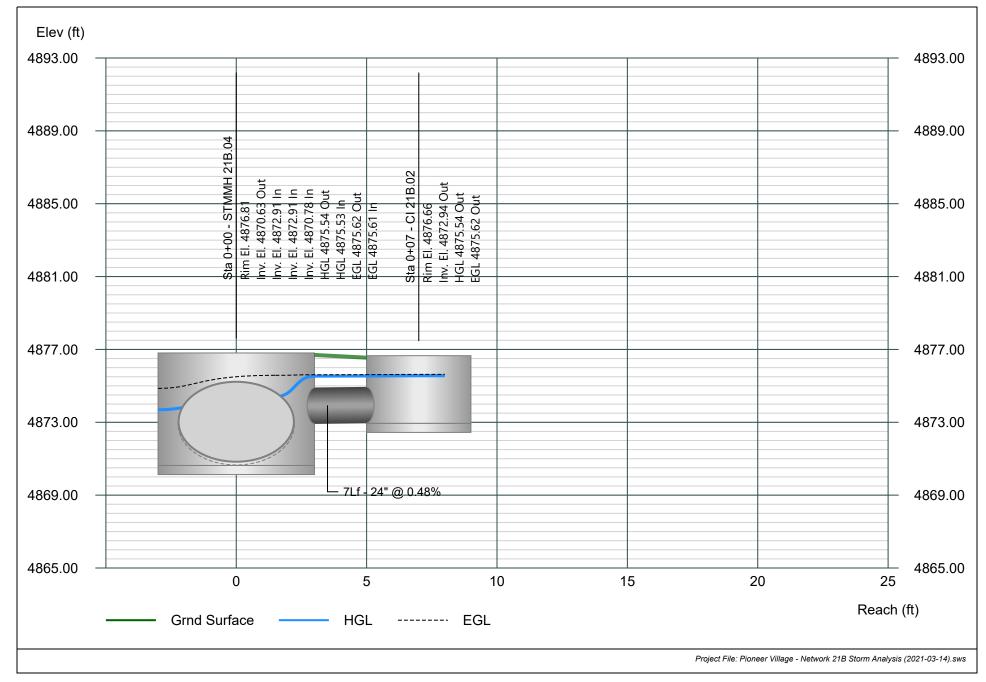
Stormwater Studio 2021 v 3.0.0.24




# Line 3 - Pipe - (498) (Storm Sewer - 21 B Network)

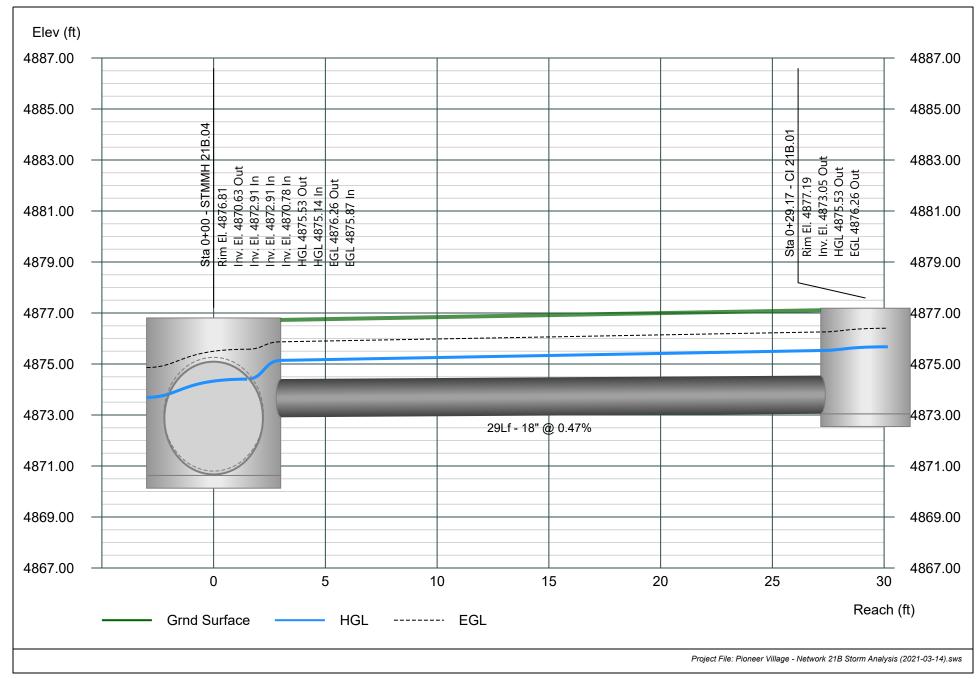
Stormwater Studio 2021 v 3.0.0.24




# Line 4 - Pipe - (497) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

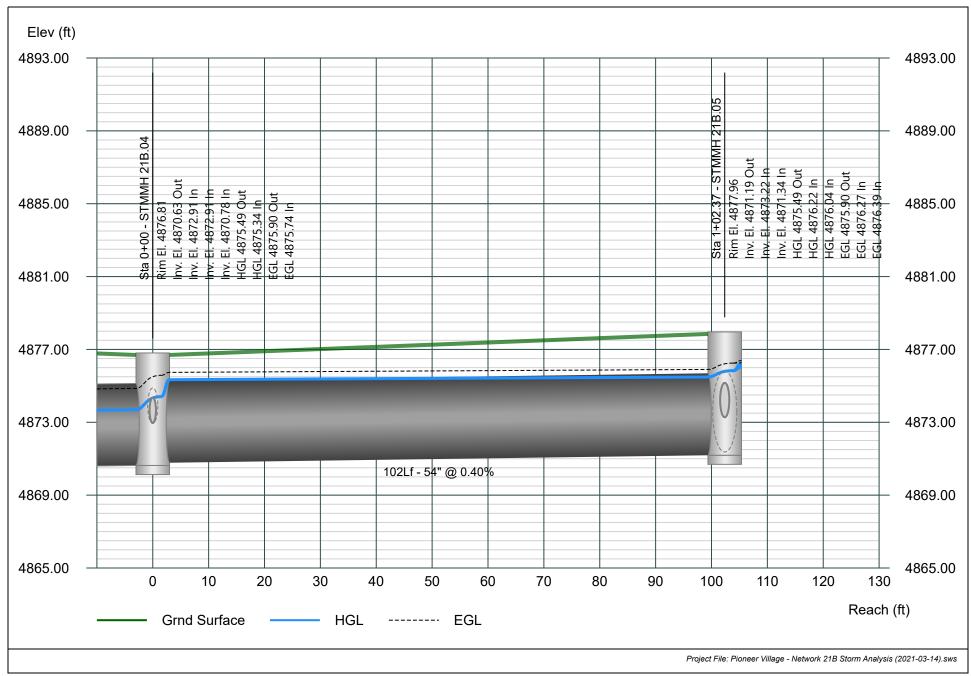



## Line 5 - Pipe - (515) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24



## Line 6 - Pipe - (513) (Storm Sewer - 21 B Network)

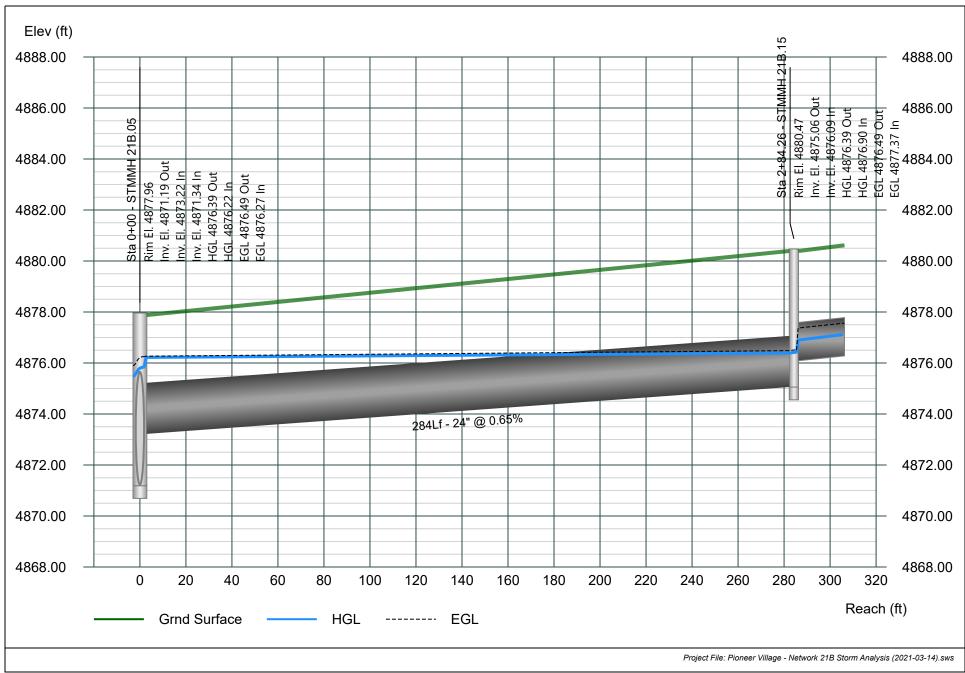

Stormwater Studio 2021 v 3.0.0.24



Project Name: Pioneer Village Storm Network 21B

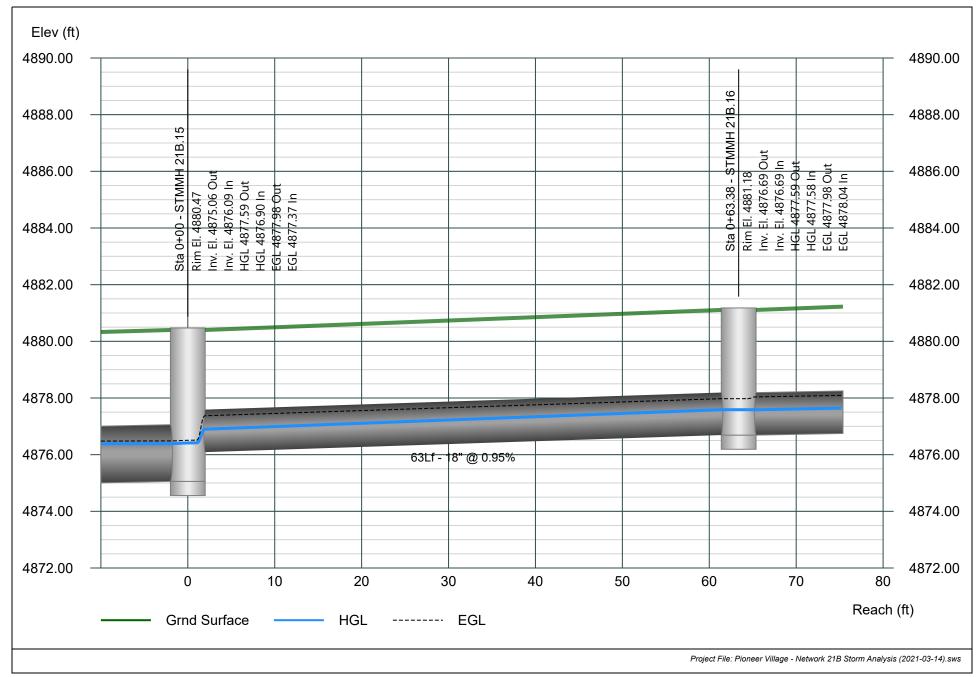
# Line 7 - Pipe - (496) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24




# Line 8 - Pipe - (507) (1) (Storm Sewer - 21 B Network)

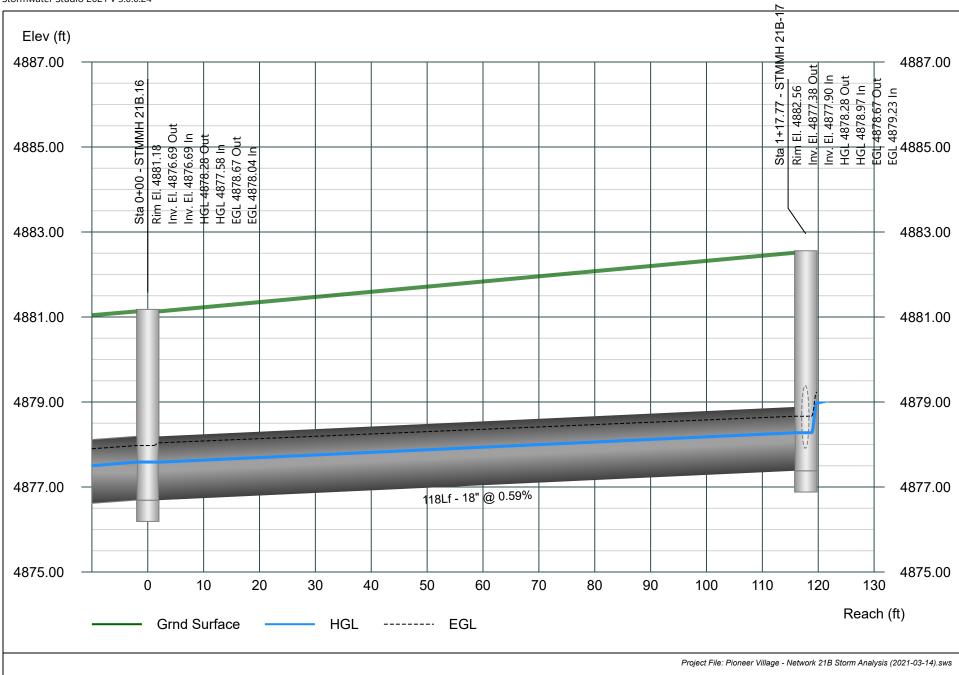
Project Name: Pioneer Village Storm Network 21B


03-15-2021

Stormwater Studio 2021 v 3.0.0.24

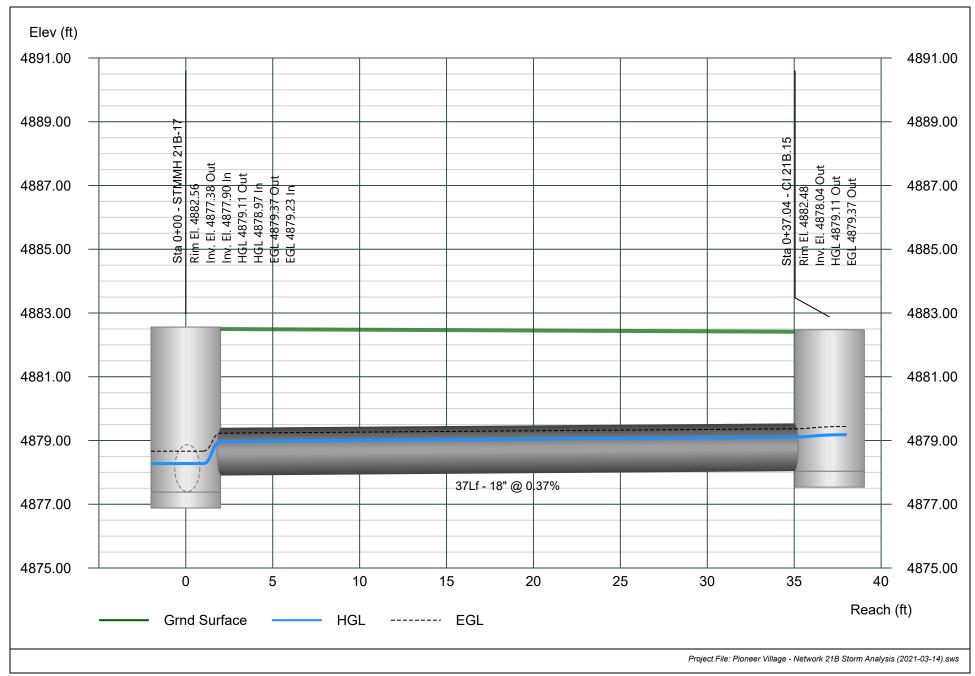


# Line 9 - Pipe - (506) (Storm Sewer - 21 B Network)


Stormwater Studio 2021 v 3.0.0.24

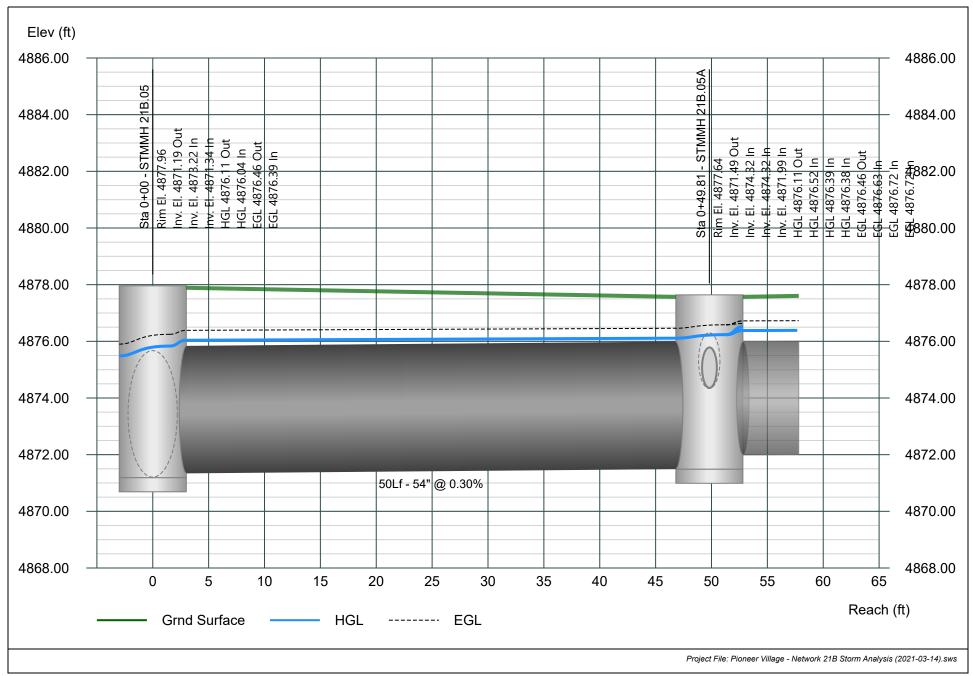


#### Line 10 - Pipe - (505) (Storm Sewer - 21 B Network)


03-15-2021

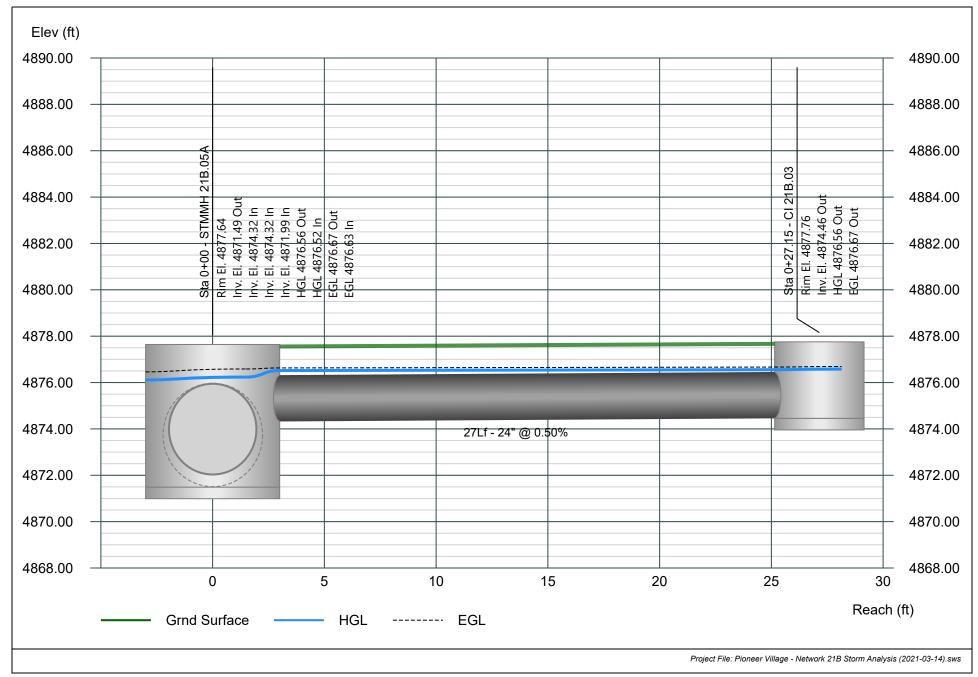
Stormwater Studio 2021 v 3.0.0.24




## Line 11 - Pipe - (503) (Storm Sewer - 21 B Network)

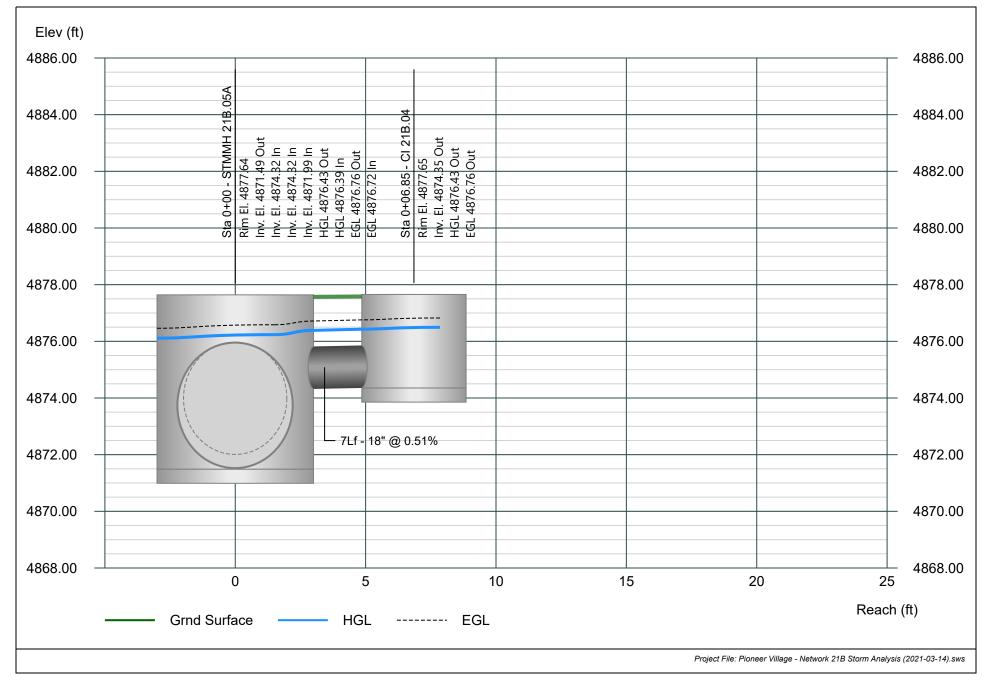
Stormwater Studio 2021 v 3.0.0.24




#### Line 12 - Pipe - (510) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

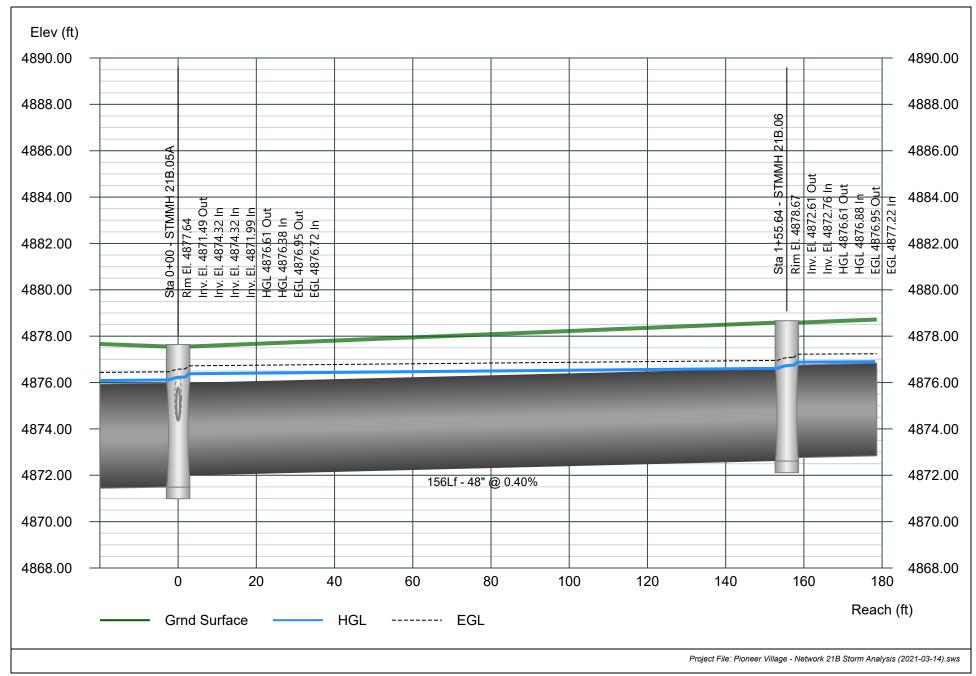



## Line 13 - Pipe - (565) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

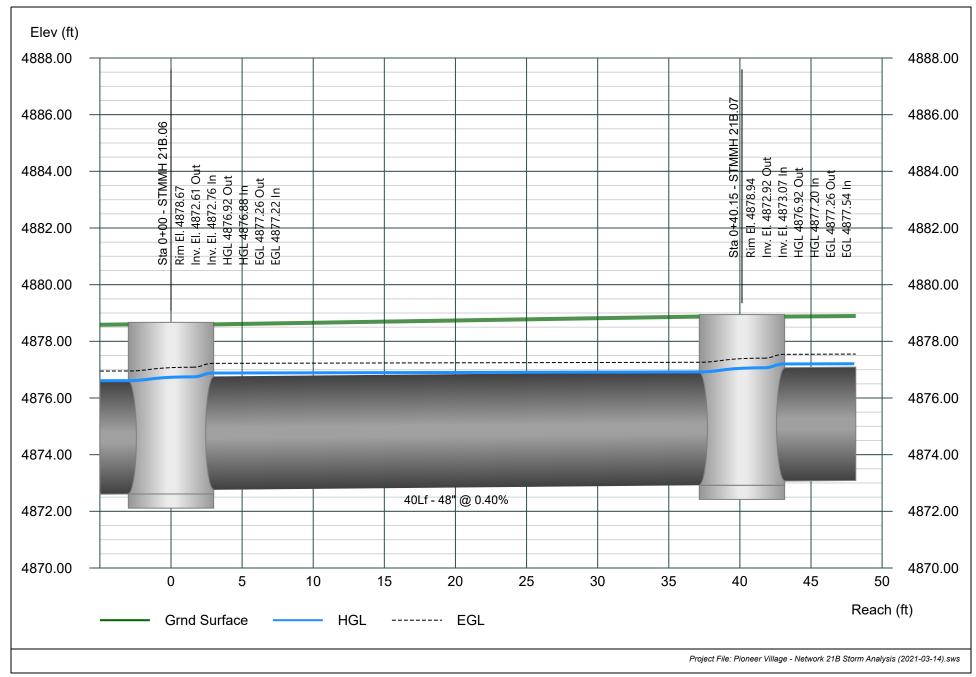


# Line 14 - Pipe - (511) (Storm Sewer - 21 B Network)


Stormwater Studio 2021 v 3.0.0.24

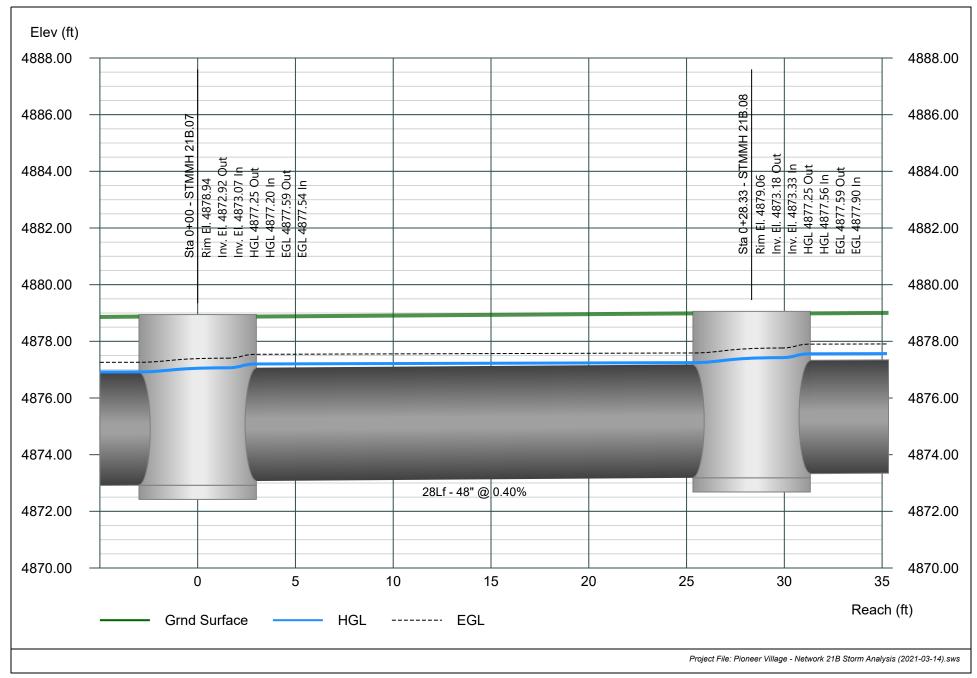


Project Name: Pioneer Village Storm Network 21B


## Line 15 - Pipe - (564) (1) (Storm Sewer - 21 B Network)

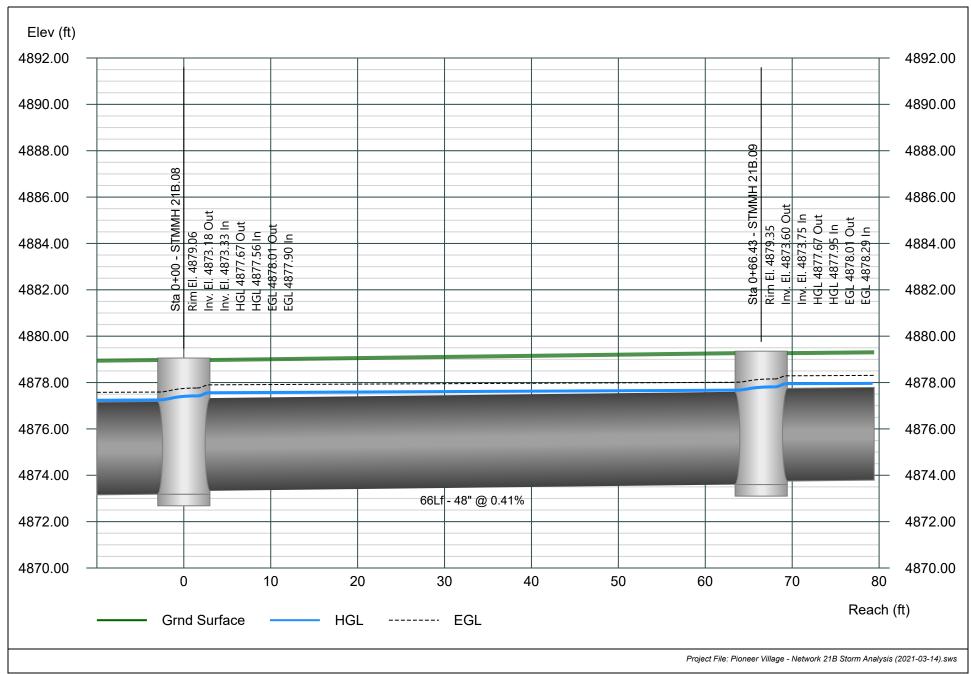
Stormwater Studio 2021 v 3.0.0.24




### Line 16 - Pipe - (564) (Storm Sewer - 21 B Network)

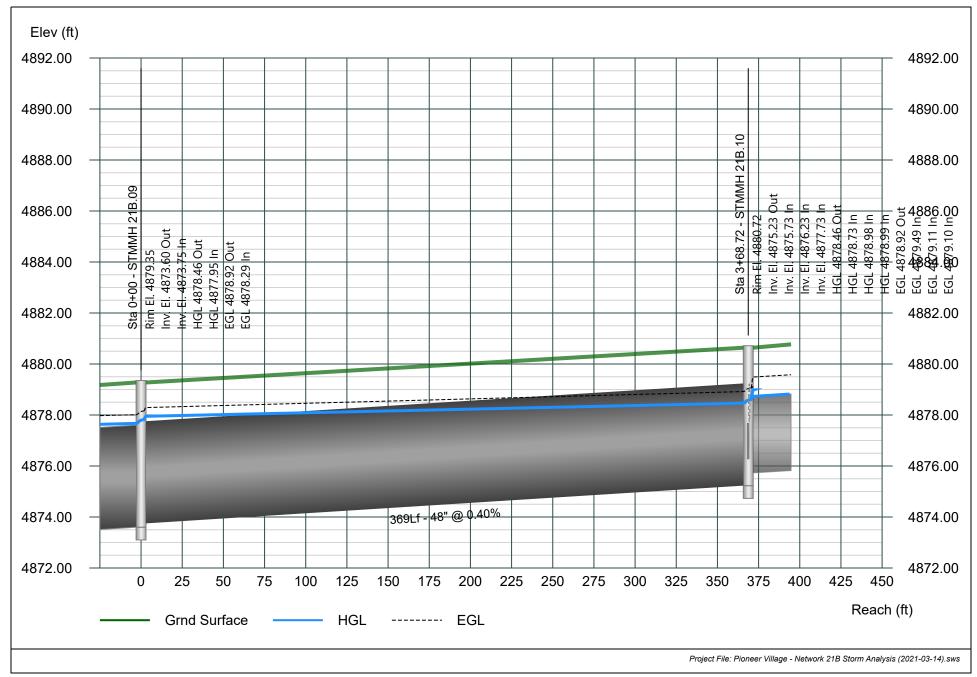
Stormwater Studio 2021 v 3.0.0.24




## Line 17 - Pipe - (493) (Storm Sewer - 21 B Network)

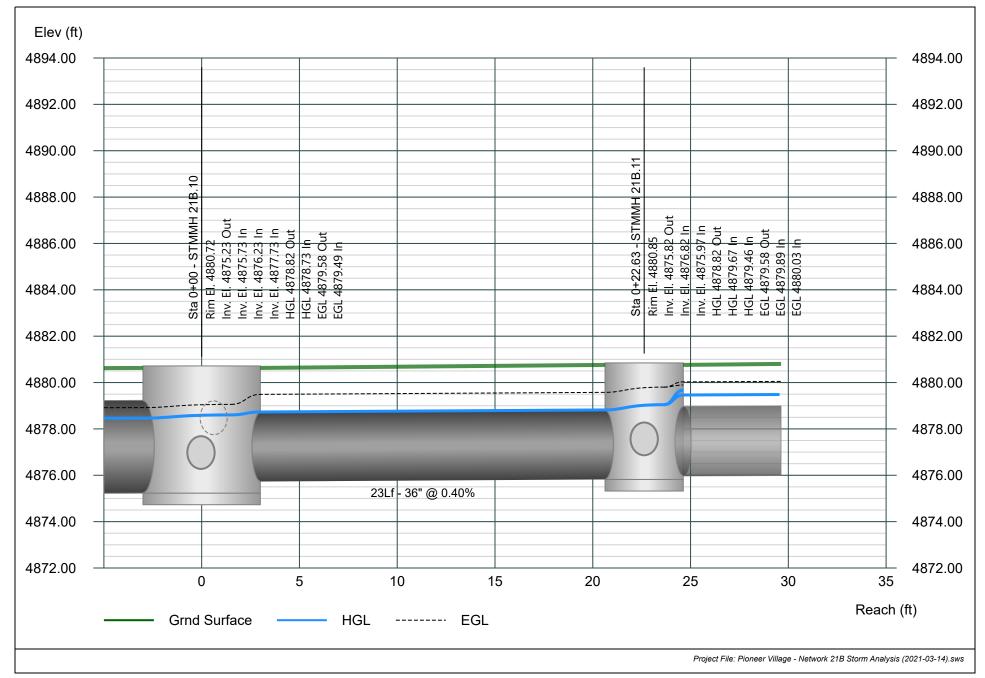
Stormwater Studio 2021 v 3.0.0.24




## Line 18 - Pipe - (492) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

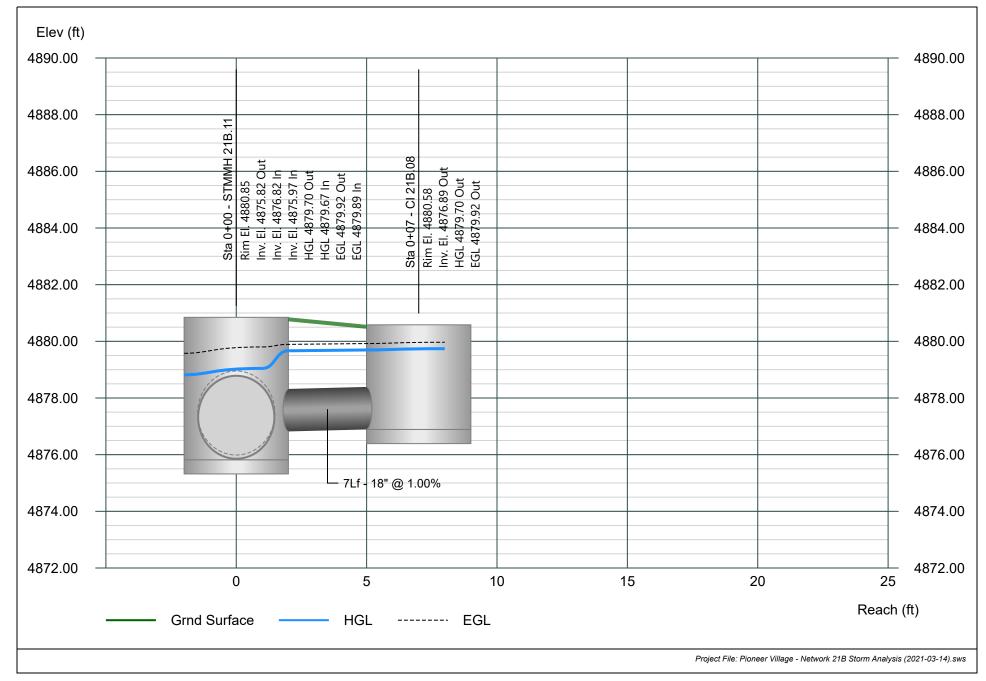



## Line 19 - Pipe - (571) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24



# Line 20 - Pipe - (570) (Storm Sewer - 21 B Network)


Stormwater Studio 2021 v 3.0.0.24



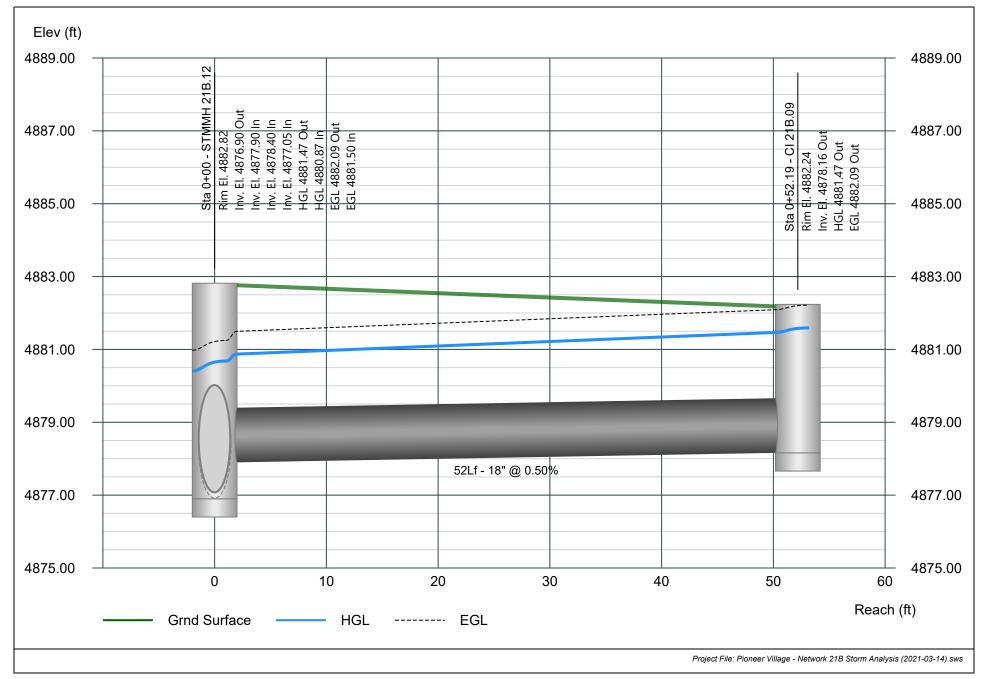
Project Name: Pioneer Village Storm Network 21B

# Line 21 - Pipe - (518) (Storm Sewer - 21 B Network)


Stormwater Studio 2021 v 3.0.0.24

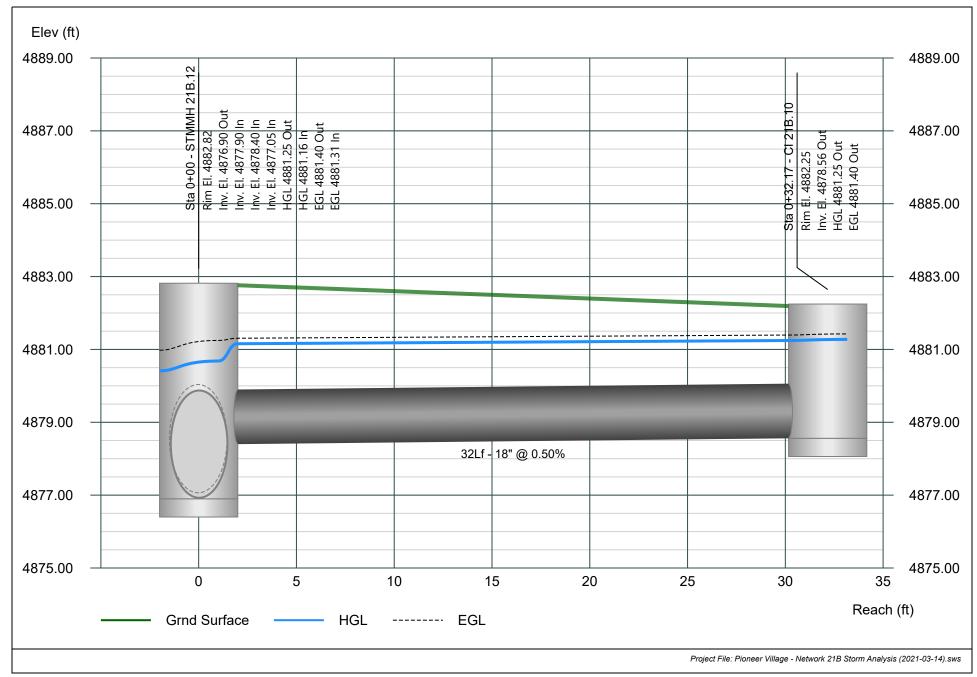


Project Name: Pioneer Village Storm Network 21B

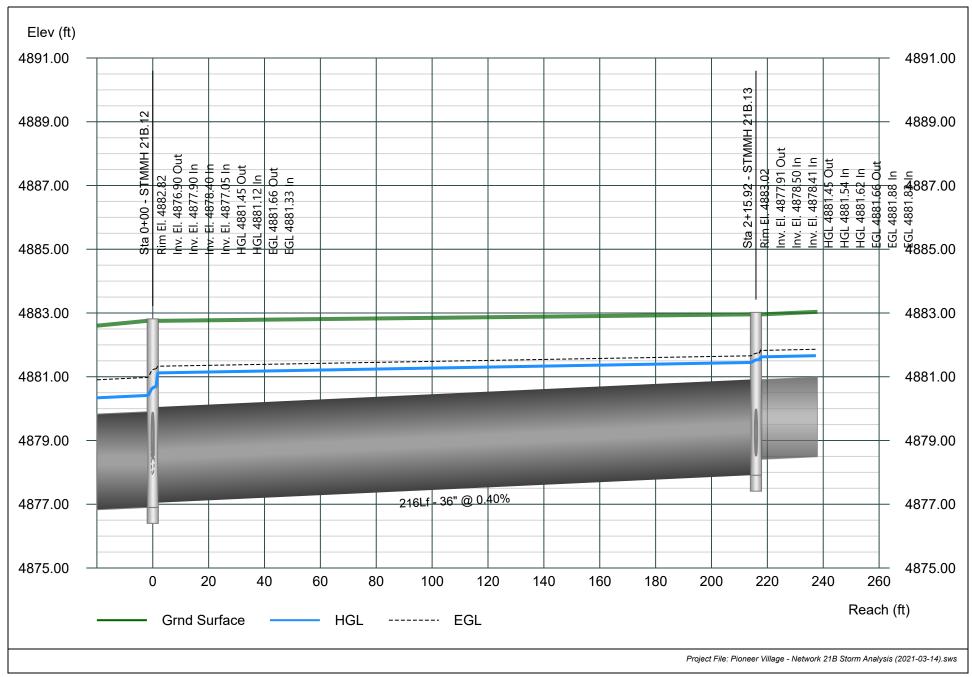

### Line 22 - Pipe - (488) (1) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24



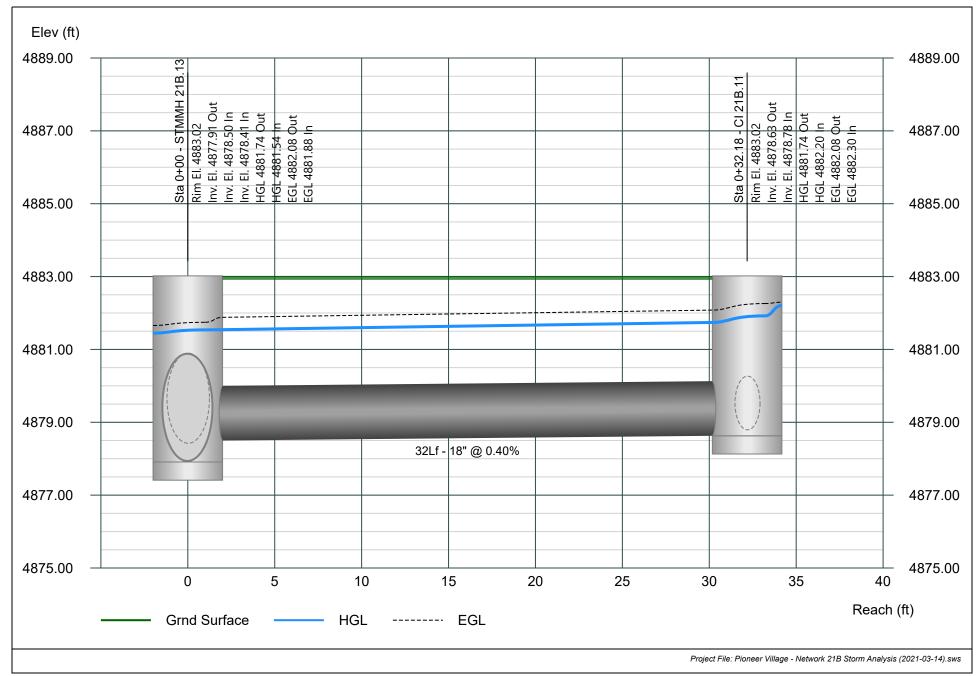

#### Line 23 - Pipe - (585) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

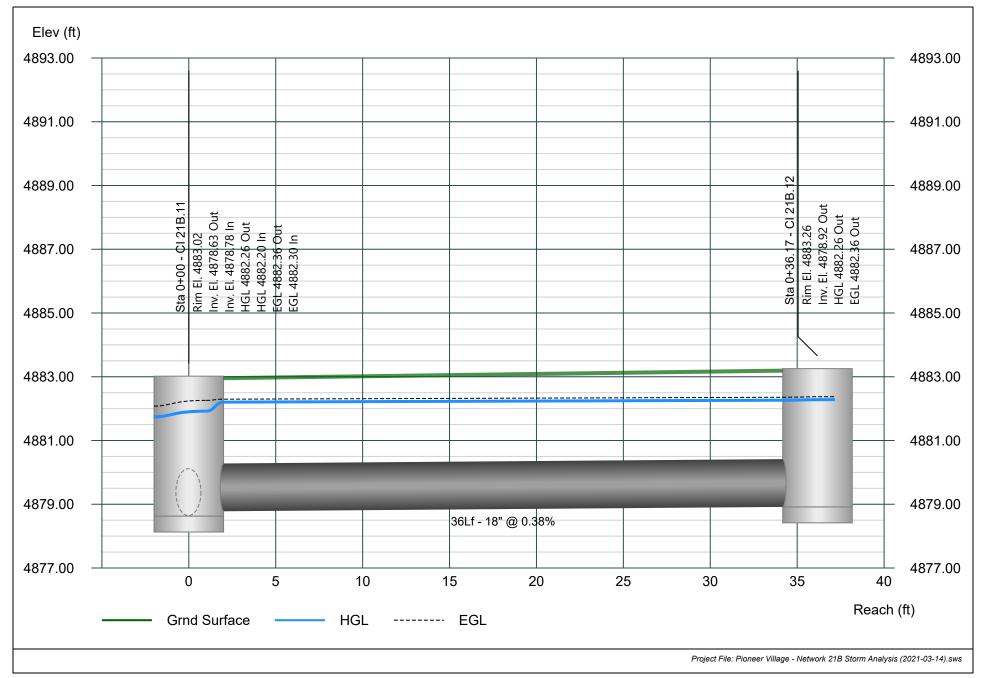



## Line 24 - Pipe - (519) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

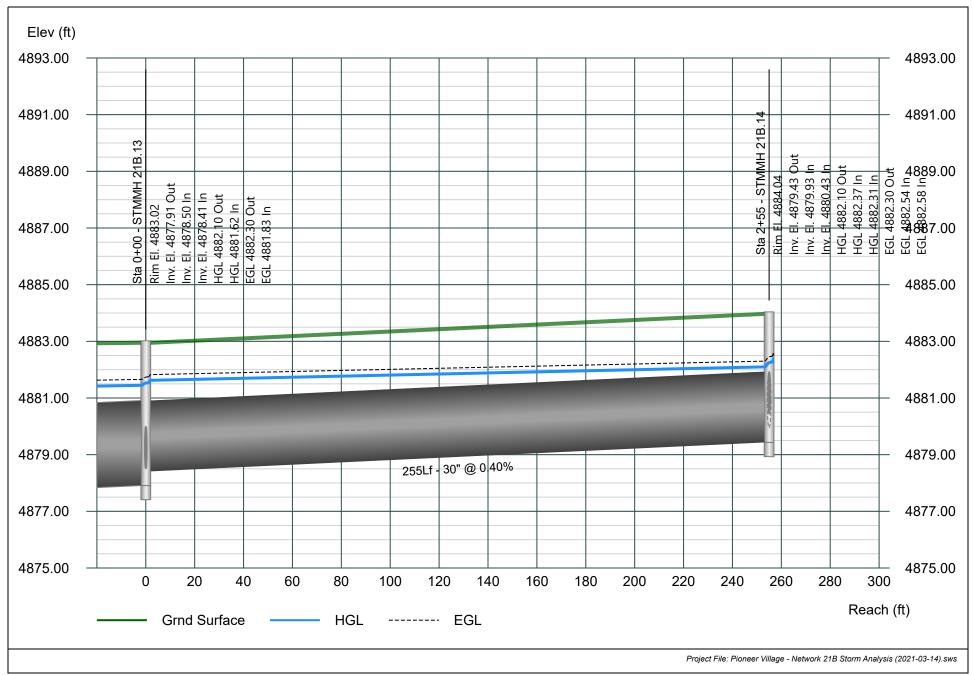



#### Line 25 - Pipe - (487) (Storm Sewer - 21 B Network)



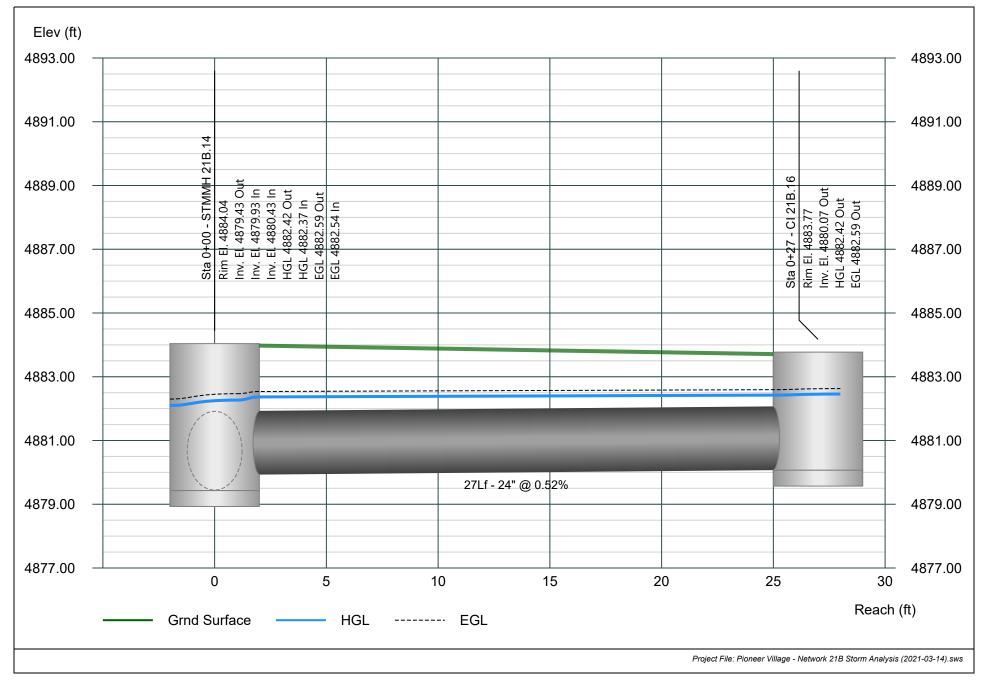

### Line 26 - Pipe - (486) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

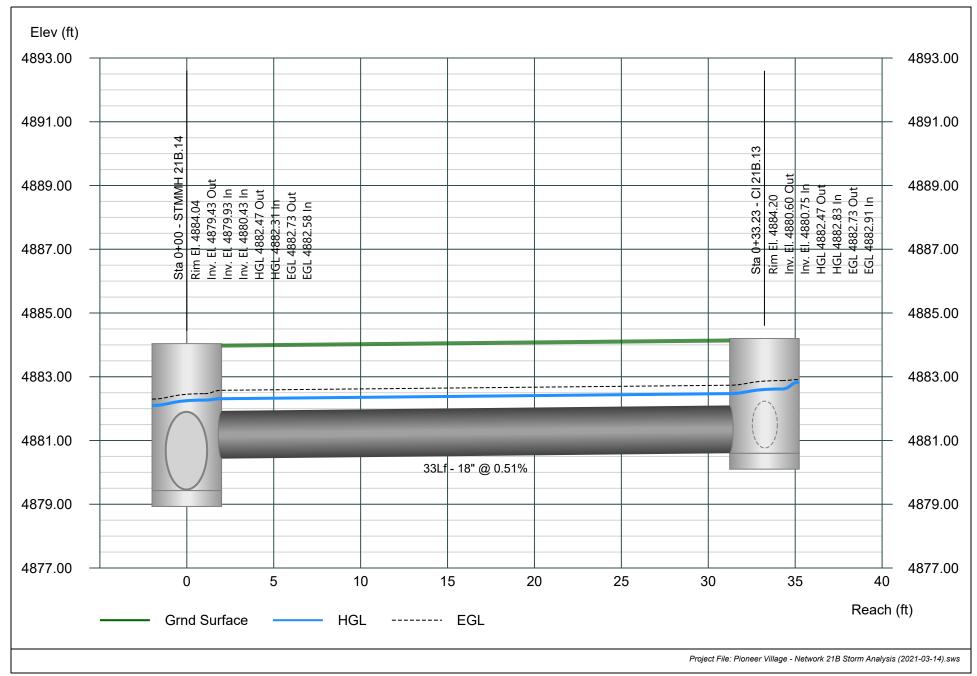



## Line 27 - Pipe - (485) (Storm Sewer - 21 B Network)

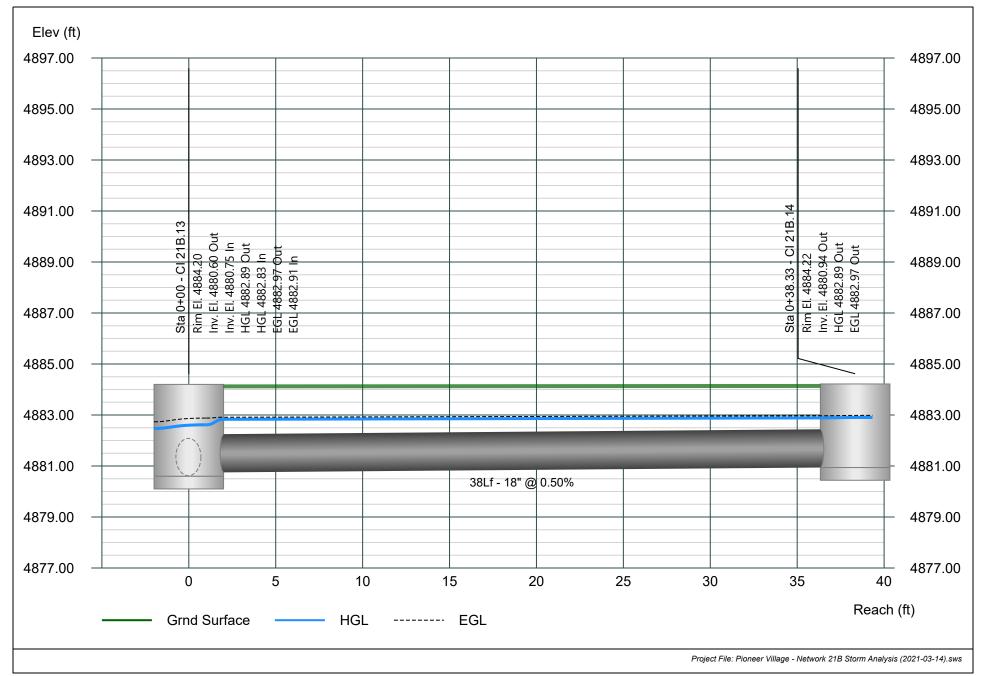



#### Line 28 - Pipe - (580) (Storm Sewer - 21 B Network)

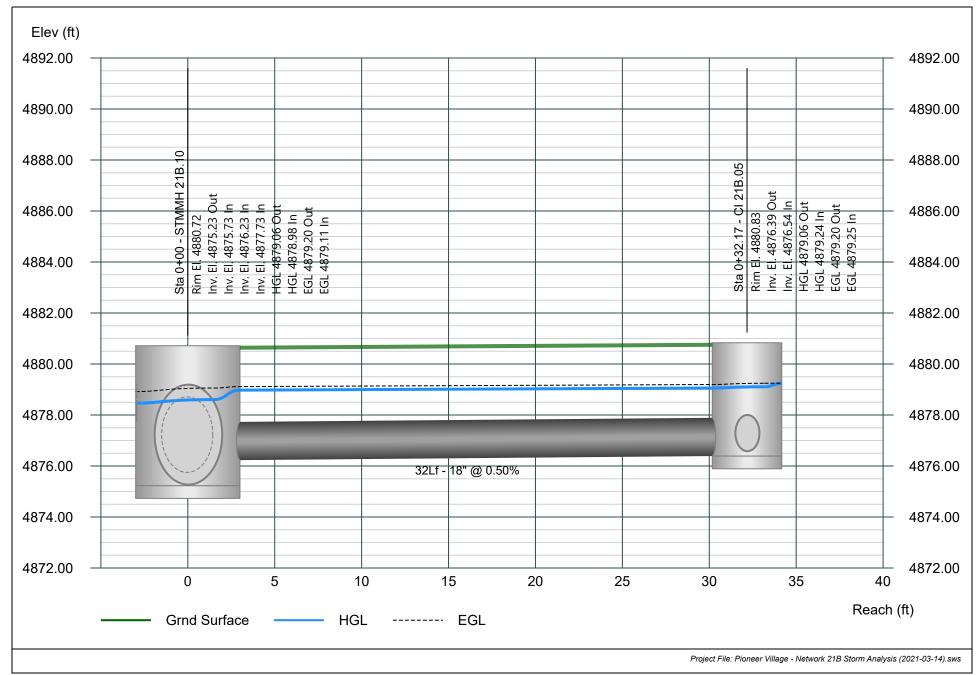
Stormwater Studio 2021 v 3.0.0.24




## Line 29 - Pipe - (587) (Storm Sewer - 21 B Network)

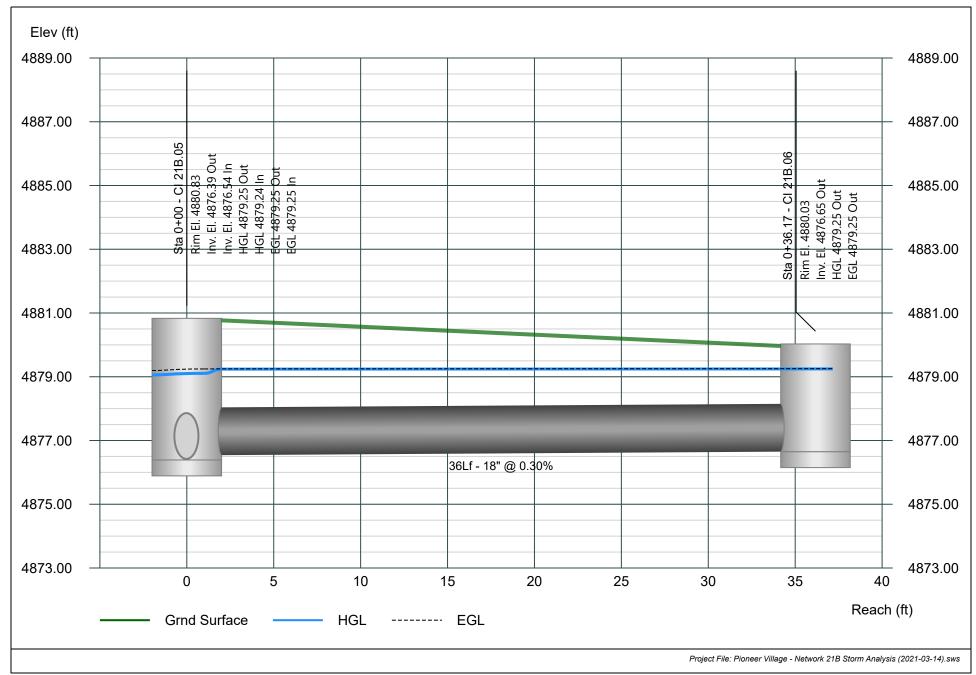

Stormwater Studio 2021 v 3.0.0.24




## Line 30 - Pipe - (579) (Storm Sewer - 21 B Network)

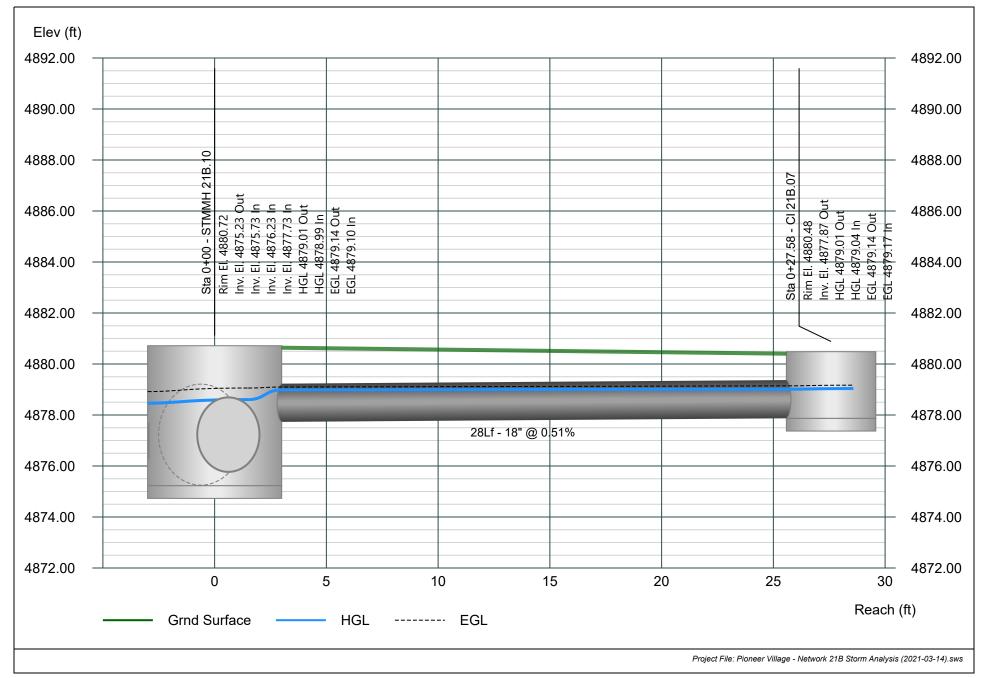


# Line 31 - Pipe - (578) (Storm Sewer - 21 B Network)




# Line 32 - Pipe - (586)(0) (Storm Sewer - 21 B Network)




## Line 33 - Pipe - (584)(0) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24



### Line 34 - Pipe - (517) (Storm Sewer - 21 B Network)

Stormwater Studio 2021 v 3.0.0.24

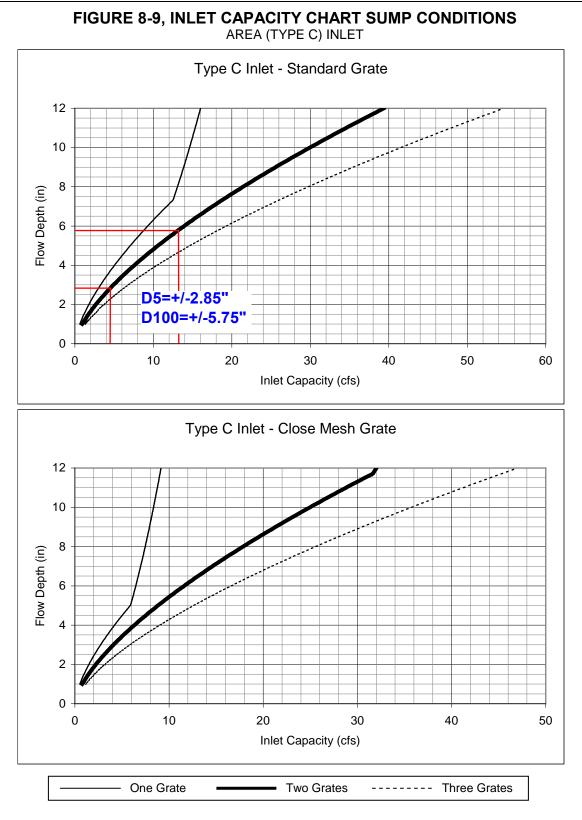


# Energy Grade Line Calculations

03-15-2021

| Line   | Line<br>Size | _        |                          |                   | Do                  | ownstrea    | m      |             |             | gth        | Upstream       |       |        |             |        |             |                  | Pi          | ре            |               | Junction       |               |  |
|--------|--------------|----------|--------------------------|-------------------|---------------------|-------------|--------|-------------|-------------|------------|----------------|-------|--------|-------------|--------|-------------|------------------|-------------|---------------|---------------|----------------|---------------|--|
| No     |              | Q        | Invert<br>Elev           | Depth             | Area                | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | Len        | Invert<br>Elev | Depth | Area   | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev      | n<br>Value  | Enrgy<br>Loss | HGLa<br>Elev  | EGLa<br>Elev   | Enrgy<br>Loss |  |
|        | (in)         | (cfs)    | (ft)                     | (ft)              | (sqft)              | (ft)        | (ft/s) | (ft)        | (ft)        | (ft)       | (ft)           | (ft)  | (sqft) | (ft)        | (ft/s) | (ft)        | (ft)             |             | (ft)          | (ft)          | (ft)           | (ft)          |  |
| 1      | 48x76e       | 99.96    | 4864.97                  | 4.00              | 19.90               | 4868.97     | 5.02   | 0.39        | 4869.36     | 64.63      | 4865.29        | 3.80  | 19.50  | 4869.09     | 5.13   | 0.41        | 4869.50          | 0.013       | 0.139         | 4869.28       | 4869.69        | 0.19          |  |
| 2      | 48x76e       | 99.96    | 4865.54                  | 3.92              | 19.90               | 4869.46     | 5.02   | 0.39        | 4869.85     | 500.00     | 4868.04        | 2.00  | 9.95   | 4870.04     | 10.05  | 1.57        | 4871.61          | 0.013       | 1.762         | 4870.04       | 4871.61        | 0.00          |  |
| 3      | 48x76e       | 99.96    | 4868.12                  | 3.23              | 17.95               | 4871.35     | 5.57   | 0.48        | 4871.83     | 500.00     | 4870.12        | 2.00  | 9.95   | 4872.12     | 10.05  | 1.57        | 4873.69          | 0.013       | 1.861         | 4872.12       | 4873.69        | 0.00          |  |
| 4      | 54           | 99.96    | 4870.27                  | 3.06 <sup>3</sup> | 11.52               | 4873.33     | 8.68   | 1.17        | 4874.50     | 90.32      | 4870.63        | 3.06  | 11.52  | 4873.69     | 8.68   | 1.17        | 4874.86          | 0.013       | 0.360         | 4874.41       | 4875.58        | 0.72          |  |
| 5      | 24           | 6.96     | 4872.91                  | 2.00              | 3.14                | 4875.53     | 2.22   | 0.08        | 4875.61     | 7.00       | 4872.94        | 2.00  | 3.14   | 4875.54     | 2.22   | 0.08        | 4875.62          | 0.013       | 0.007         | 4875.56       | 4875.63        | 0.02          |  |
| 6      | 18           | 12.09    | 4872.91                  | 1.50 <sup>3</sup> | 1.77                | 4875.14     | 6.84   | 0.73        | 4875.87     | 29.17      | 4873.05        | 1.50  | 1.77   | 4875.53     | 6.84   | 0.73        | 4876.26          | 0.013       | 0.387         | 4875.67       | 4876.40        | 0.15          |  |
| 7      | 54           | 80.91    | 4870.78                  | 4.50              | 15.90               | 4875.34     | 5.09   | 0.40        | 4875.74     | 102.37     | 4871.19        | 4.30  | 15.65  | 4875.49     | 5.17   | 0.42        | 4875.90          | 0.013       | 0.162         | 4875.83       | 4876.25        | 0.35          |  |
| 8      | 24           | 5.50     | 4873.22                  | 2.00              | 3.14                | 4876.22     | 1.75   | 0.05        | 4876.27     | 284.26     | 4875.06        | 1.33  | 2.22   | 4876.39     | 2.47   | 0.10        | 4876.49          | 0.013       | 0.218         | 4876.42       | 4876.51        | 0.03          |  |
| 9      | 18           | 5.50     | 4876.09                  | 0.81‡             | 0.97                | 4876.90     | 5.66   | 0.50        | 4877.37     | 63.38      | 4876.69        | 0.90² | 1.10   | 4877.59     | 5.00   | 0.39        | 4877.98          | 0.013       | 0.602         | 4877.59       | 4877.98        | 0.00          |  |
| 10     | 18           | 5.50     | 4876.69                  | 0.89‡             | 1.10                | 4877.58     | 5.00   | 0.39        | 4878.04     | 117.77     | 4877.38        | 0.90² | 1.10   | 4878.28     | 5.00   | 0.39        | 4878.67          | 0.013       | 0.626         | 4878.28       | 4878.67        | 0.00          |  |
| 11     | 18           | 5.50     | 4877.90                  | 1.07³             | 1.35                | 4878.97     | 4.07   | 0.26        | 4879.23     | 37.04      | 4878.04        | 1.07  | 1.35   | 4879.11     | 4.07   | 0.26        | 4879.37          | 0.013       | 0.137         | 4879.18       | 4879.44        | 0.07          |  |
| 12     | 54           | 75.41    | 4871.34                  | 4.50              | 15.90               | 4876.04     | 4.74   | 0.35        | 4876.39     | 49.81      | 4871.49        | 4.50  | 15.90  | 4876.11     | 4.74   | 0.35        | 4876.46          | 0.013       | 0.073         | 4876.24       | 4876.59        | 0.12          |  |
| 13     | 24           | 8.43     | 4874.32                  | 2.00              | 3.14                | 4876.52     | 2.68   | 0.11        | 4876.63     | 27.15      | 4874.46        | 2.00  | 3.14   | 4876.56     | 2.68   | 0.11        | 4876.67          | 0.013       | 0.038         | 4876.58       | 4876.69        | 0.02          |  |
| 14     | 18           | 8.13     | 4874.32                  | 1.50 <sup>3</sup> | 1.77                | 4876.39     | 4.60   | 0.33        | 4876.72     | 6.85       | 4874.35        | 1.50  | 1.77   | 4876.43     | 4.60   | 0.33        | 4876.76          | 0.013       | 0.041         | 4876.50       | 4876.82        | 0.07          |  |
| 15     | 48           | 58.85    | 4871.99                  | 4.00              | 12.56               | 4876.38     | 4.68   | 0.34        | 4876.72     | 155.64     | 4872.61        | 4.00  | 12.57  | 4876.61     | 4.68   | 0.34        | 4876.95          | 0.013       | 0.231         | 4876.75       | 4877.09        | 0.13          |  |
| 16     | 48           | 58.85    | 4872.76                  | 4.00              | 12.56               | 4876.88     | 4.68   | 0.34        | 4877.22     | 40.15      | 4872.92        | 4.00  | 12.57  | 4876.92     | 4.68   | 0.34        | 4877.26          | 0.013       | 0.039         | 4877.07       | 4877.41        | 0.14          |  |
| 17     | 48           | 58.85    | 4873.07                  | 4.00              | 12.56               | 4877.20     | 4.68   | 0.34        | 4877.54     | 28.33      | 4873.18        | 4.00  | 12.57  | 4877.25     | 4.68   | 0.34        | 4877.59          | 0.013       | 0.047         | 4877.42       | 4877.76        | 0.17          |  |
| 18     | 48           | 58.85    | 4873.33                  | 4.00              | 12.56               | 4877.56     | 4.68   | 0.34        | 4877.90     | 66.43      | 4873.60        | 4.00  | 12.57  | 4877.67     | 4.68   | 0.34        | 4878.01          | 0.013       | 0.111         | 4877.81       | 4878.15        | 0.14          |  |
| 19     | 48           | 58.85    | 4873.75                  | 4.00              | 12.56               | 4877.95     | 4.68   | 0.34        | 4878.29     | 368.72     | 4875.23        | 3.23  | 10.89  | 4878.46     | 5.41   | 0.45        | 4878.92          | 0.013       | 0.627         | 4878.60       | 4879.06        | 0.14          |  |
| 20     | 36           | 49.37    | 4875.73                  | 3.00 <sup>3</sup> | 7.07                | 4878.73     | 6.99   | 0.76        | 4879.49     | 22.63      | 4875.82        | 3.00  | 7.07   | 4878.82     | 6.98   | 0.76        | 4879.58          | 0.013       | 0.088         | 4879.04       | 4879.80        | 0.23          |  |
| 21     | 18           | 6.74     | 4876.82                  | 1.50              | 1.77                | 4879.67     | 3.81   | 0.23        | 4879.89     | 7.00       | 4876.89        | 1.50  | 1.77   | 4879.70     | 3.81   | 0.23        | 4879.92          | 0.013       | 0.029         | 4879.74       | 4879.97        | 0.05          |  |
| 22     | 36           | 42.63    | 4875.97                  | 3.00              | 7.07                | 4879.46     | 6.03   | 0.57        | 4880.03     | 232.37     | 4876.90        | 3.00  | 7.07   | 4880.41     | 6.03   | 0.57        | 4880.98          | 0.013       | 0.949         | 4880.68       | 4881.25        | 0.27          |  |
|        |              |          |                          |                   |                     |             |        |             |             |            |                |       |        |             |        |             |                  |             |               |               |                |               |  |
| Notes: | Return Perio | d = 100- | yrs. <sup>2</sup> Critic | al depth          | . <sup>3</sup> Norm | al depth. ‡ | Superc | ritical. r  | = rectang   | ular e = e | elliptical a = | arch  |        |             |        | Pro         | iject File: Pior | neer Villag | e - Networ    | k 21B Storm / | Analysis (2021 | 1-03-14).sws  |  |

# Energy Grade Line Calculations


Project Name: Pioneer Village Storm Network 21B

03-15-2021

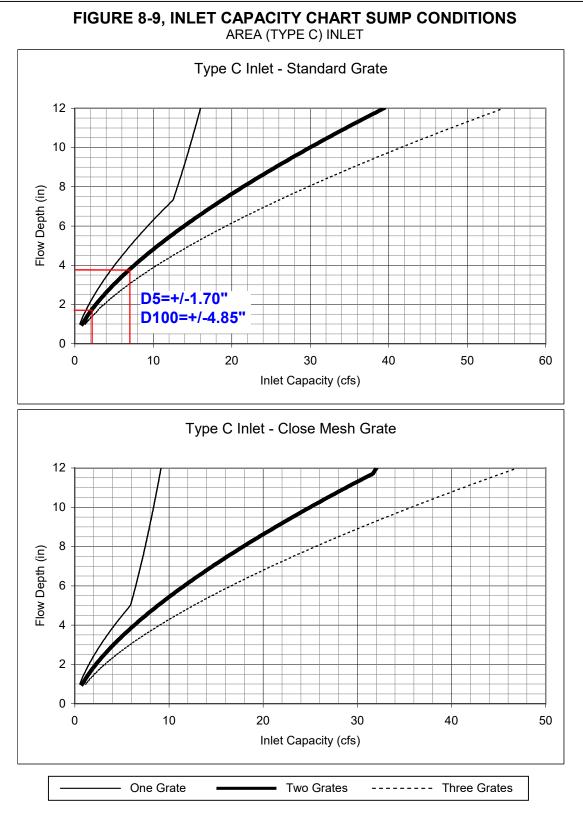
| Line | Line<br>Size |       | Downstream     |                   |        |             | Length | Upstream    |             |        |                |       |        |             | Pi     | ре          | Junction    |            |               |              |              |               |
|------|--------------|-------|----------------|-------------------|--------|-------------|--------|-------------|-------------|--------|----------------|-------|--------|-------------|--------|-------------|-------------|------------|---------------|--------------|--------------|---------------|
| No   |              | Q     | Invert<br>Elev | Depth             | Area   | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | Len    | Invert<br>Elev | Depth | Area   | HGL<br>Elev | Vel    | Vel<br>Head | EGL<br>Elev | n<br>Value | Enrgy<br>Loss | HGLa<br>Elev | EGLa<br>Elev | Enrgy<br>Loss |
|      | (in)         | (cfs) | (ft)           | (ft)              | (sqft) | (ft)        | (ft/s) | (ft)        | (ft)        | (ft)   | (ft)           | (ft)  | (sqft) | (ft)        | (ft/s) | (ft)        | (ft)        |            | (ft)          | (ft)         | (ft)         | (ft)          |
| 23   | 18           | 11.20 | 4877.90        | 1.50 <sup>3</sup> | 1.77   | 4880.87     | 6.34   | 0.62        | 4881.50     | 52.19  | 4878.16        | 1.50  | 1.77   | 4881.47     | 6.34   | 0.62        | 4882.09     | 0.013      | 0.594         | 4881.59      | 4882.22      | 0.13          |
| 24   | 18           | 5.50  | 4878.40        | 1.50              | 1.77   | 4881.16     | 3.11   | 0.15        | 4881.31     | 32.17  | 4878.56        | 1.50  | 1.77   | 4881.25     | 3.11   | 0.15        | 4881.40     | 0.013      | 0.088         | 4881.28      | 4881.43      | 0.03          |
| 25   | 36           | 25.93 | 4877.05        | 3.00              | 7.07   | 4881.12     | 3.67   | 0.21        | 4881.33     | 215.92 | 4877.91        | 3.00  | 7.07   | 4881.45     | 3.67   | 0.21        | 4881.66     | 0.013      | 0.326         | 4881.54      | 4881.75      | 0.09          |
| 26   | 18           | 8.25  | 4878.50        | 1.50 <sup>3</sup> | 1.77   | 4881.54     | 4.67   | 0.34        | 4881.88     | 32.18  | 4878.63        | 1.50  | 1.77   | 4881.74     | 4.67   | 0.34        | 4882.08     | 0.013      | 0.199         | 4881.92      | 4882.26      | 0.18          |
| 27   | 18           | 4.30  | 4878.78        | 1.50              | 1.77   | 4882.20     | 2.43   | 0.09        | 4882.30     | 36.17  | 4878.92        | 1.50  | 1.77   | 4882.26     | 2.43   | 0.09        | 4882.36     | 0.013      | 0.061         | 4882.28      | 4882.38      | 0.02          |
| 28   | 30           | 17.68 | 4878.41        | 2.50              | 4.91   | 4881.62     | 3.60   | 0.20        | 4881.83     | 255.00 | 4879.43        | 2.50  | 4.91   | 4882.10     | 3.60   | 0.20        | 4882.30     | 0.013      | 0.474         | 4882.27      | 4882.47      | 0.17          |
| 29   | 24           | 10.40 | 4879.93        | 2.00              | 3.14   | 4882.37     | 3.31   | 0.17        | 4882.54     | 27.00  | 4880.07        | 2.00  | 3.14   | 4882.42     | 3.31   | 0.17        | 4882.59     | 0.013      | 0.057         | 4882.46      | 4882.63      | 0.03          |
| 30   | 18           | 7.28  | 4880.43        | 1.50              | 1.77   | 4882.31     | 4.12   | 0.26        | 4882.58     | 33.23  | 4880.60        | 1.50  | 1.77   | 4882.47     | 4.12   | 0.26        | 4882.73     | 0.013      | 0.159         | 4882.62      | 4882.88      | 0.15          |
| 31   | 18           | 4.05  | 4880.75        | 1.50              | 1.77   | 4882.83     | 2.29   | 0.08        | 4882.91     | 38.33  | 4880.94        | 1.50  | 1.77   | 4882.89     | 2.29   | 0.08        | 4882.97     | 0.013      | 0.057         | 4882.90      | 4882.99      | 0.02          |
| 32   | 18           | 5.28  | 4876.23        | 1.50              | 1.77   | 4878.98     | 2.99   | 0.14        | 4879.11     | 32.17  | 4876.39        | 1.50  | 1.77   | 4879.06     | 2.99   | 0.14        | 4879.20     | 0.013      | 0.082         | 4879.11      | 4879.25      | 0.05          |
| 33   | 18           | 1.29  | 4876.54        | 1.50              | 1.77   | 4879.24     | 0.73   | 0.01        | 4879.25     | 36.17  | 4876.65        | 1.50  | 1.77   | 4879.25     | 0.73   | 0.01        | 4879.25     | 0.013      | 0.005         | 4879.25      | 4879.26      | 0.00          |
| 34   | 18           | 4.20  | 4877.73        | 1.26              | 1.58   | 4878.99     | 2.66   | 0.11        | 4879.10     | 27.58  | 4877.87        | 1.14  | 1.44   | 4879.01     | 2.91   | 0.13        | 4879.14     | 0.013      | 0.046         | 4879.04      | 4879.17      | 0.03          |
|      |              |       |                |                   |        |             |        |             |             |        |                |       |        |             |        |             |             |            |               |              |              |               |

#### Type C Inlet #4.02 - Capacity Analysis

**Chapter 8. Inlets** 



#### Notes:

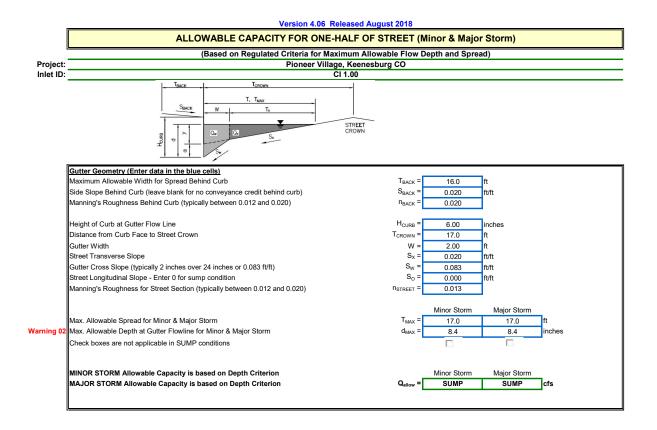

1. SEMSWA standard inlet parameters must apply to use these charts.

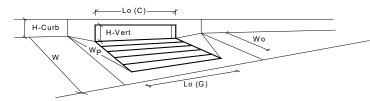
SEMSWA Stormwater Management ManualPage 8-15

Inlet #10 will collect runoff from Basins 07 and 07a. Combining the flow rates of each inlet nets a  $Q_5$  of 1.44 and  $Q_{100}$  of 2.81 CFS. The ponding depths are provided above.

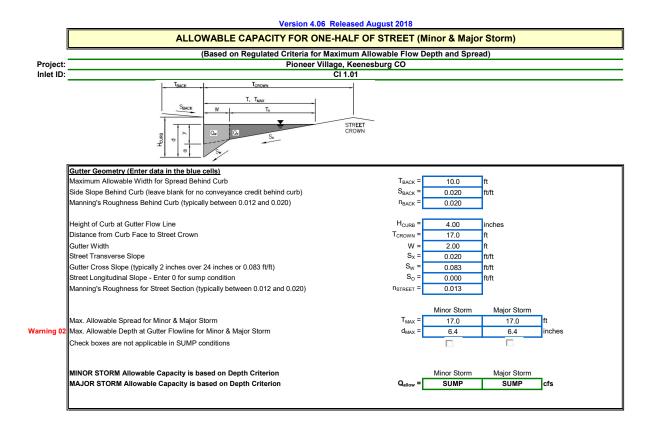
#### Type C Inlet #4.03 - Capacity Analysis

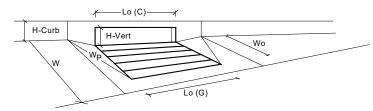
**Chapter 8. Inlets** 



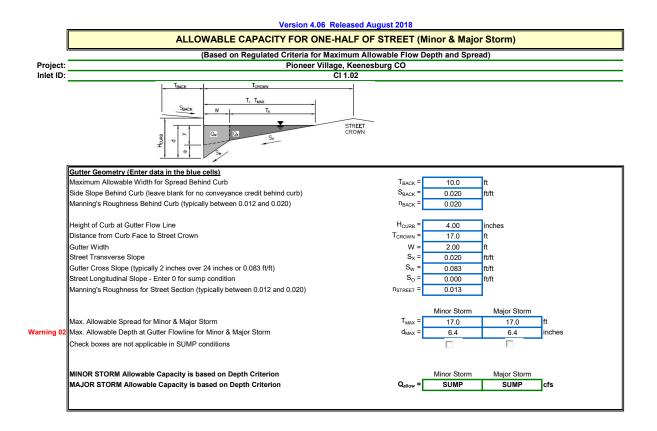


#### Notes:

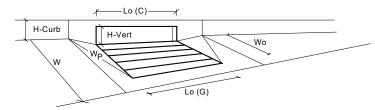
1. SEMSWA standard inlet parameters must apply to use these charts.


SEMSWA Stormwater Management ManualPage 8-15

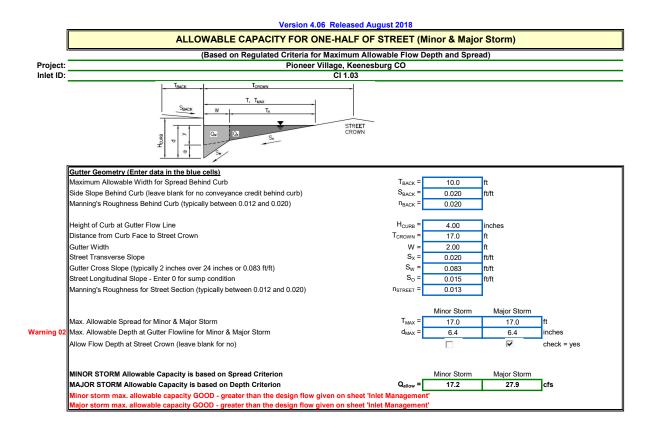

Inlet #10 will collect runoff from Basins 07 and 07a. Combining the flow rates of each inlet nets a  $Q_5$  of 1.44 and  $Q_{100}$  of 2.81 CFS. The ponding depths are provided above.

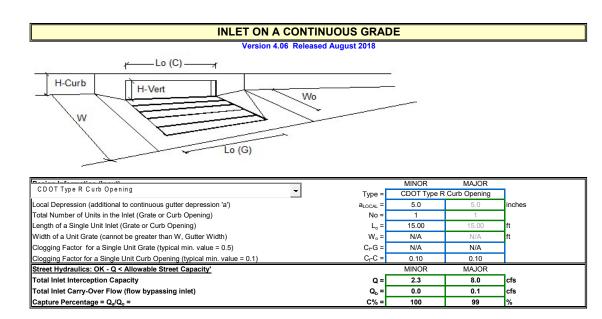


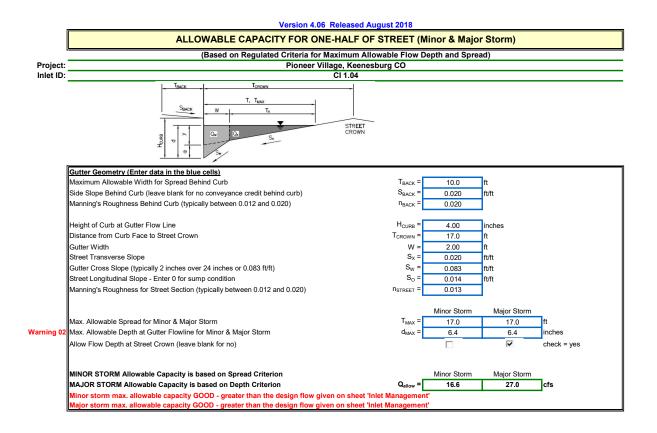


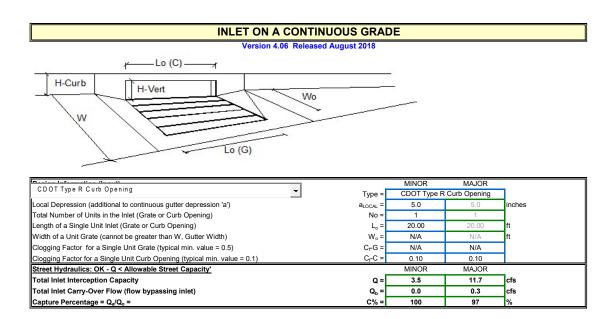


| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                   |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 5.6          | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR        | 🧾 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          | 7                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          | 7                 |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        | -                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 20.00       | 20.00        | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         | 7                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         | 7                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         | ]                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.30         | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.53         |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.76         |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                   |
|                                                                              | _                           | MINOR       | MAJOR        | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 10.3        | 10.3         | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 2.6         | 8.1          | cfs               |

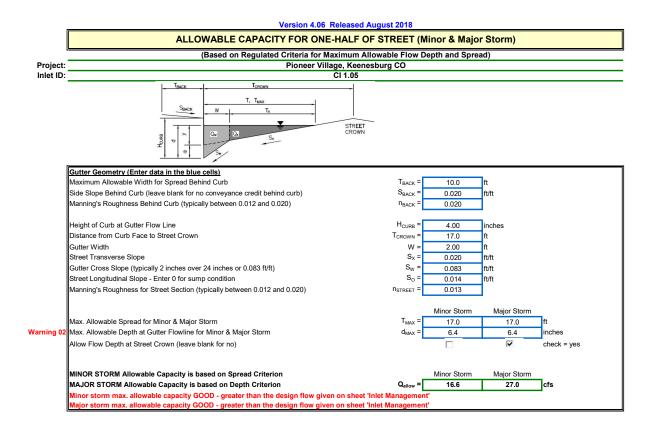


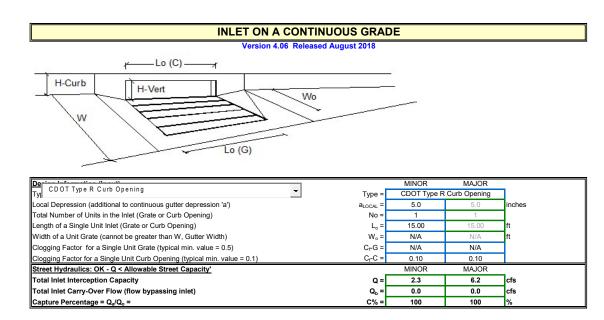


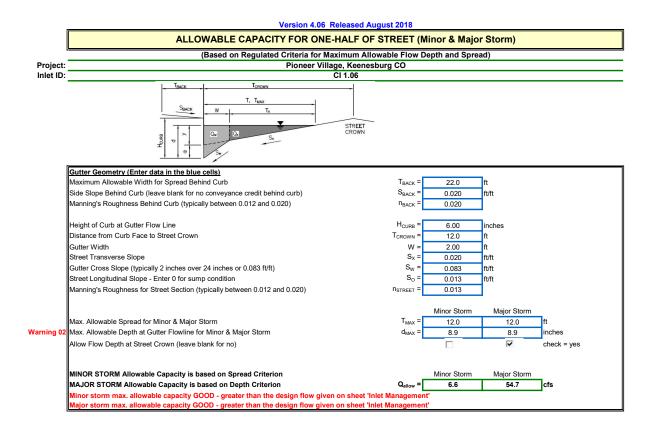


| Design Information (Input)                                                   | _                           | MINOR       | MAJOR          | _                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|----------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type F | R Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 5.00        | 5.00           | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1              |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 5.6            | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR          | 🥅 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A            | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A            | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A            |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A            |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A            |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A            |                   |
| Curb Opening Information                                                     | -                           | MINOR       | MAJOR          | -                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 20.00       | 20.00          | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00           | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00           | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40          | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00           | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10           |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60           | 1                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67           |                   |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR          |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A            | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.30           | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.53           |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.76           |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A            |                   |
|                                                                              | _                           | MINOR       | MAJOR          | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 10.3        | 10.3           | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 0.9         | 3.1            | cfs               |

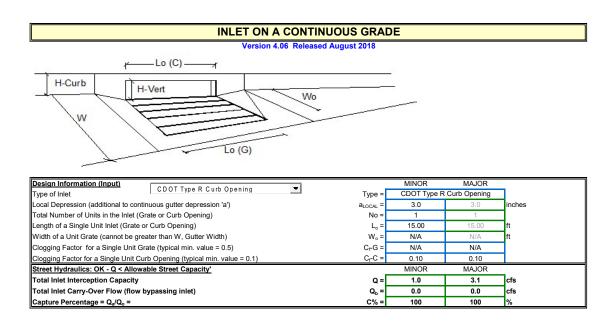


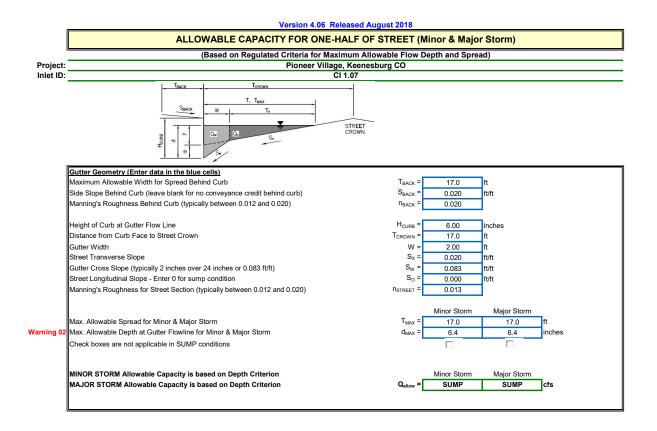



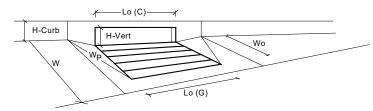


| CDOT Type R Curb Opening                                                     | _                           | MINOR       | MAJOR          | _               |
|------------------------------------------------------------------------------|-----------------------------|-------------|----------------|-----------------|
|                                                                              | Type =                      | CDOT Type F | R Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 5.00        | 5.00           | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1              |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 5.6            | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR          | Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A            |                 |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A            | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A            |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A            |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A            |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A            | 1               |
| Curb Opening Information                                                     | -                           | MINOR       | MAJOR          |                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 20.00       | 20.00          | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00           | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00           | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40          | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00           | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10           |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60           |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67           |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR          |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A            | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.30           | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.53           |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.76           |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A            |                 |
|                                                                              | _                           | MINOR       | MAJOR          | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 10.3        | 10.3           | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 2.5         | 9.1            | cfs             |



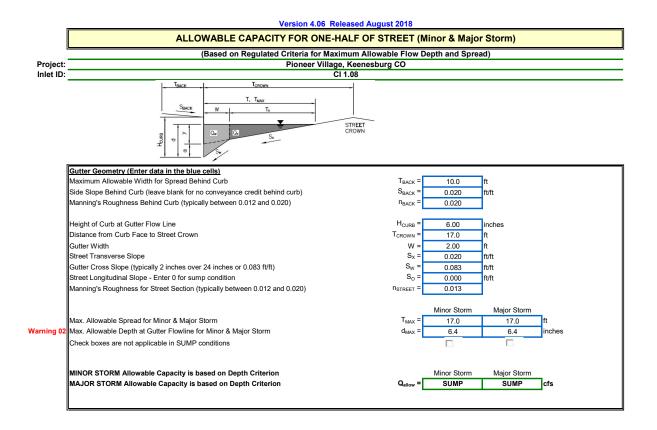



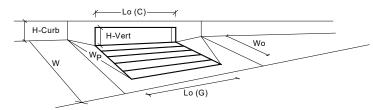



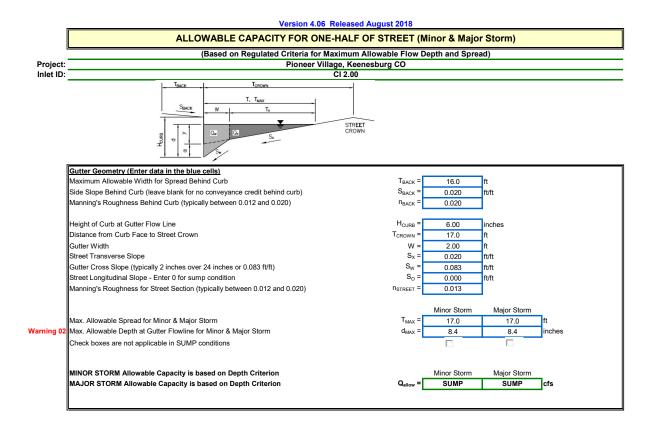



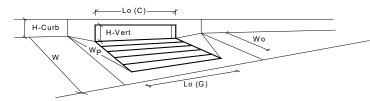


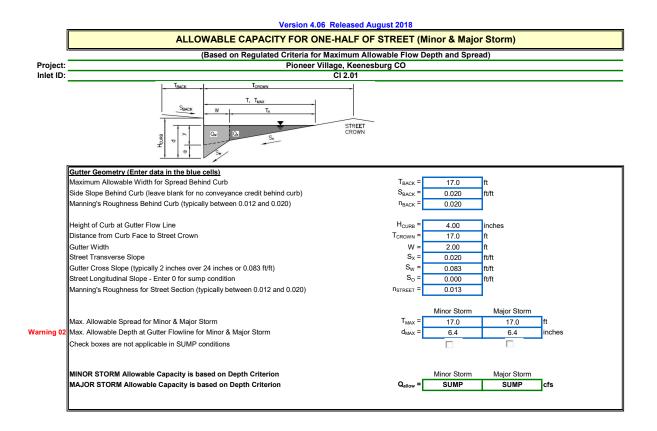



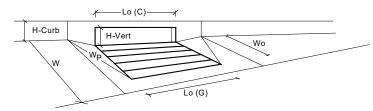




| Design Information (Input) CDOT Type R Curb Opening                          |                             | MINOR       | MAJOR        | _                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type F | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 6.4          | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR        | 🔽 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                   |
| Curb Opening Information                                                     | -                           | MINOR       | MAJOR        | -                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 15.00       | 15.00        | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10         |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                   |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.37         | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.60         |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.81         |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                   |
|                                                                              | _                           | MINOR       | MAJOR        | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 8.0         | 11.6         | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 0.8         | 2.1          | cfs               |

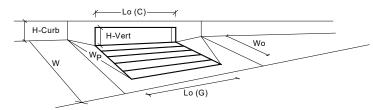




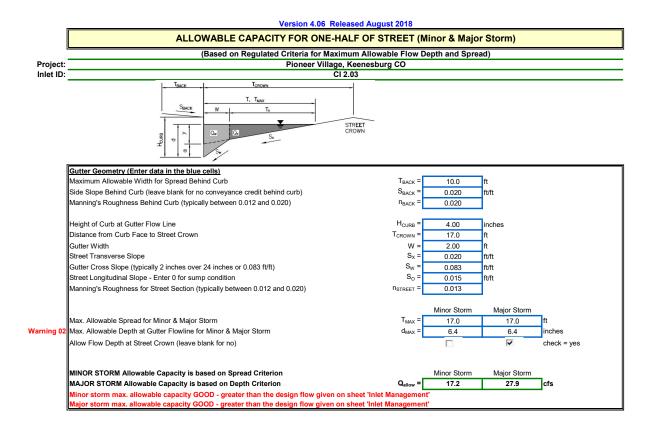


| CDOT Type R Curb Opening                                                     | _                           | MINOR       | MAJOR        | _                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 6.4          | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR        | 🔽 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>0</sub> (G) =        | N/A         | N/A          | -                 |
| Curb Opening Information                                                     | -                           | MINOR       | MAJOR        | -                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 15.00       | 15.00        | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10         |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                   |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.37         | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.60         |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.81         |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                   |
|                                                                              |                             | MINOR       | MAJOR        |                   |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 8.0         | 11.6         | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 1.6         | 4.2          | cfs               |

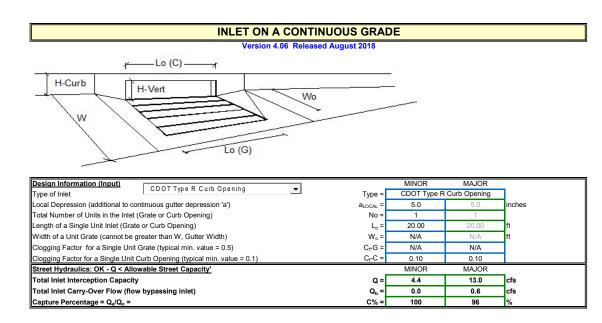


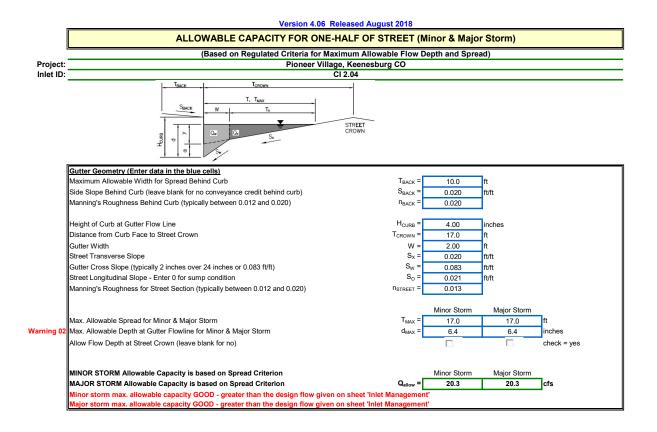


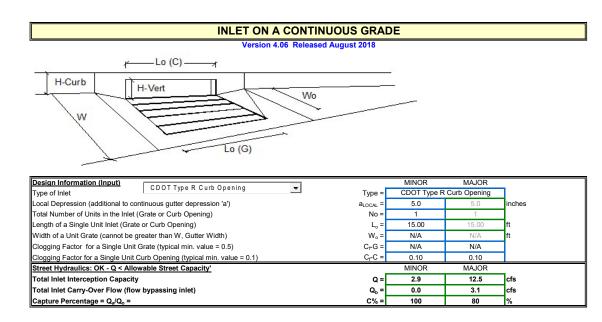

| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                   |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 8.4          | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR        | 🔽 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          | 7                 |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                   |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 20.00       | 20.00        | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10         |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                   |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.53         | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.79         |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.91         |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                   |
|                                                                              |                             | MINOR       | MAJOR        | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 10.3        | 29.2         | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 4.8         | 15.1         | cfs               |

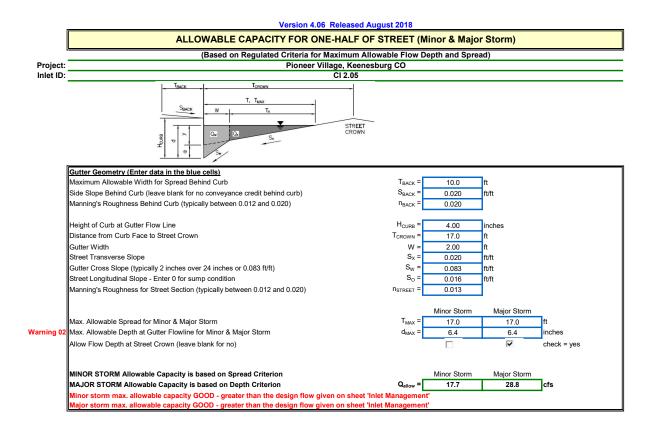


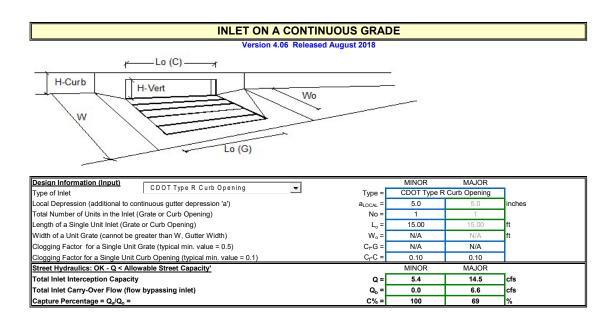


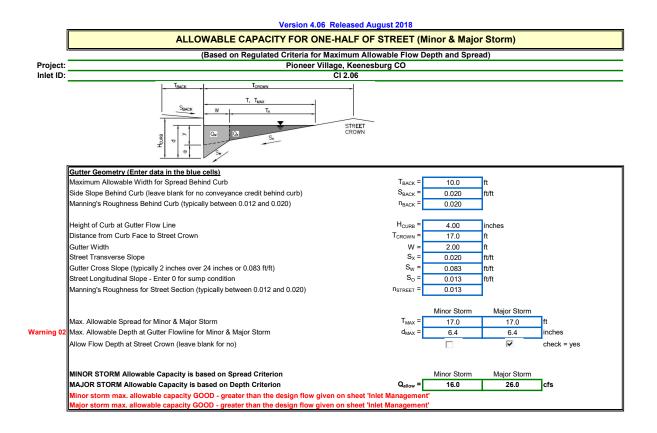


| Design Information (Input) CDOT Type R Curb Openin                   | g 🔫 _                          | MINOR       | MAJOR          |                   |
|----------------------------------------------------------------------|--------------------------------|-------------|----------------|-------------------|
| Type of Inlet                                                        | g Type =                       | CDOT Type I | R Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' fro | om above) a <sub>local</sub> = | 5.00        | 5.00           | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                        | No =                           | 1           | 1              |                   |
| Water Depth at Flowline (outside of local depression)                | Ponding Depth =                | 5.6         | 6.4            | inches            |
| Grate Information                                                    |                                | MINOR       | MAJOR          | 🔽 Override Depths |
| Length of a Unit Grate                                               | L <sub>o</sub> (G) =           | N/A         | N/A            | teet              |
| Width of a Unit Grate                                                | W <sub>o</sub> =               | N/A         | N/A            | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)            | A <sub>ratio</sub> =           | N/A         | N/A            |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)       | C <sub>f</sub> (G) =           | N/A         | N/A            |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                   | C <sub>w</sub> (G) =           | N/A         | N/A            |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                | C <sub>o</sub> (G) =           | N/A         | N/A            | 7                 |
| Curb Opening Information                                             |                                | MINOR       | MAJOR          | -                 |
| Length of a Unit Curb Opening                                        | L <sub>o</sub> (C) =           | 20.00       | 20.00          | feet              |
| Height of Vertical Curb Opening in Inches                            | H <sub>vert</sub> =            | 6.00        | 6.00           | inches            |
| Height of Curb Orifice Throat in Inches                              | H <sub>throat</sub> =          | 6.00        | 6.00           | inches            |
| Angle of Throat (see USDCM Figure ST-5)                              | Theta =                        | 63.40       | 63.40          | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet) | W <sub>p</sub> =               | 2.00        | 2.00           | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)       | $C_{f}(C) =$                   | 0.10        | 0.10           |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                | C <sub>w</sub> (C) =           | 3.60        | 3.60           |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)         | C <sub>o</sub> (C) =           | 0.67        | 0.67           |                   |
| Low Head Performance Reduction (Calculated)                          |                                | MINOR       | MAJOR          |                   |
| Depth for Grate Midwidth                                             | d <sub>Grate</sub> =           | N/A         | N/A            | ft                |
| Depth for Curb Opening Weir Equation                                 | d <sub>Curb</sub> =            | 0.30        | 0.37           | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets       | RF <sub>Combination</sub> =    | 0.53        | 0.60           | 7                 |
| Curb Opening Performance Reduction Factor for Long Inlets            | RF <sub>Curb</sub> =           | 0.76        | 0.81           |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets            | RF <sub>Grate</sub> =          | N/A         | N/A            |                   |
|                                                                      |                                | MINOR       | MAJOR          |                   |
| Total Inlet Interception Capacity (assumes clogge                    | d condition) Q <sub>a</sub> =  | 10.3        | 14.8           | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK            | ) Q <sub>PEAK REQUIRED</sub> = | 3.8         | 12.5           | cfs               |

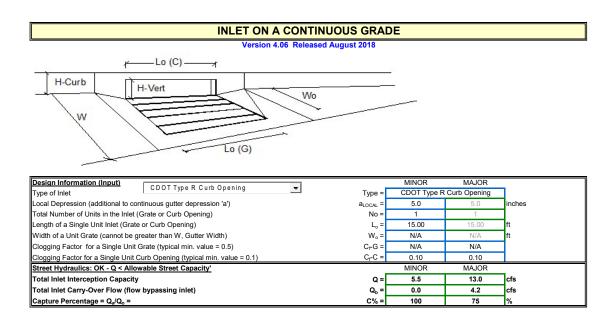


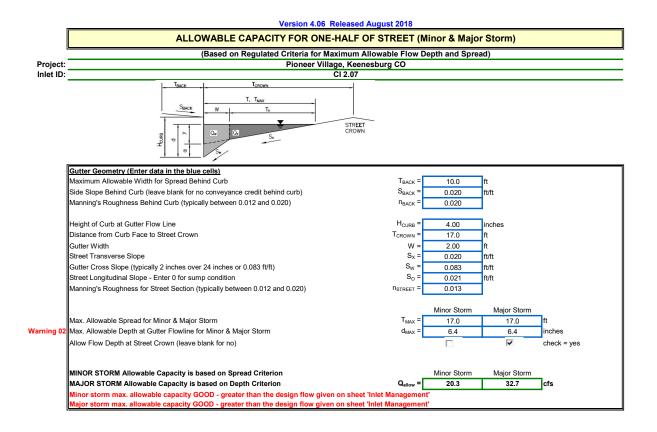





| Design Information (Input) CDOT Type R Curb Opening                         | -                           | MINOR       | MAJOR          | _                 |
|-----------------------------------------------------------------------------|-----------------------------|-------------|----------------|-------------------|
| Type of Inlet                                                               | Type =                      | CDOT Type F | R Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from about | ove) a <sub>local</sub> =   | 5.00        | 5.00           | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                               | No =                        | 1           | 1              |                   |
| Water Depth at Flowline (outside of local depression)                       | Ponding Depth =             | 5.6         | 6.4            | inches            |
| Grate Information                                                           |                             | MINOR       | MAJOR          | 🔽 Override Depths |
| Length of a Unit Grate                                                      | L <sub>o</sub> (G) =        | N/A         | N/A            | teet              |
| Width of a Unit Grate                                                       | W <sub>o</sub> =            | N/A         | N/A            | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                   | A <sub>ratio</sub> =        | N/A         | N/A            |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)              | C <sub>f</sub> (G) =        | N/A         | N/A            |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                          | C <sub>w</sub> (G) =        | N/A         | N/A            |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                       | C <sub>o</sub> (G) =        | N/A         | N/A            | 1                 |
| Curb Opening Information                                                    |                             | MINOR       | MAJOR          |                   |
| Length of a Unit Curb Opening                                               | L <sub>o</sub> (C) =        | 20.00       | 20.00          | feet              |
| Height of Vertical Curb Opening in Inches                                   | H <sub>vert</sub> =         | 6.00        | 6.00           | inches            |
| Height of Curb Orifice Throat in Inches                                     | H <sub>throat</sub> =       | 6.00        | 6.00           | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                     | Theta =                     | 63.40       | 63.40          | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)        | W <sub>p</sub> =            | 2.00        | 2.00           | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)              | C <sub>f</sub> (C) =        | 0.10        | 0.10           |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                       | C <sub>w</sub> (C) =        | 3.60        | 3.60           | 1                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                | C <sub>0</sub> (C) =        | 0.67        | 0.67           | ]                 |
| Low Head Performance Reduction (Calculated)                                 |                             | MINOR       | MAJOR          |                   |
| Depth for Grate Midwidth                                                    | d <sub>Grate</sub> =        | N/A         | N/A            | ft                |
| Depth for Curb Opening Weir Equation                                        | d <sub>Curb</sub> =         | 0.30        | 0.37           | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets              | RF <sub>Combination</sub> = | 0.53        | 0.60           | 7                 |
| Curb Opening Performance Reduction Factor for Long Inlets                   | RF <sub>Curb</sub> =        | 0.76        | 0.81           |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                   | RF <sub>Grate</sub> =       | N/A         | N/A            |                   |
|                                                                             |                             | MINOR       | MAJOR          |                   |
| Total Inlet Interception Capacity (assumes clogged cor                      | ndition) Q <sub>a</sub> =   | 10.3        | 14.8           | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                  | Q PEAK REQUIRED =           | 3.0         | 12.4           | cfs               |



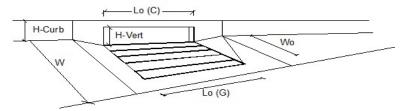



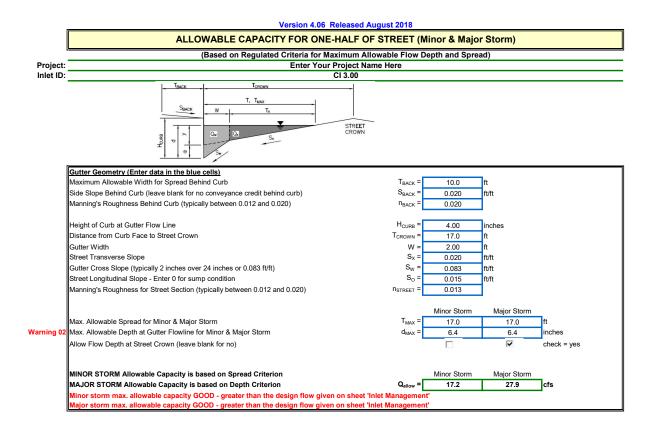







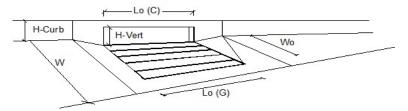





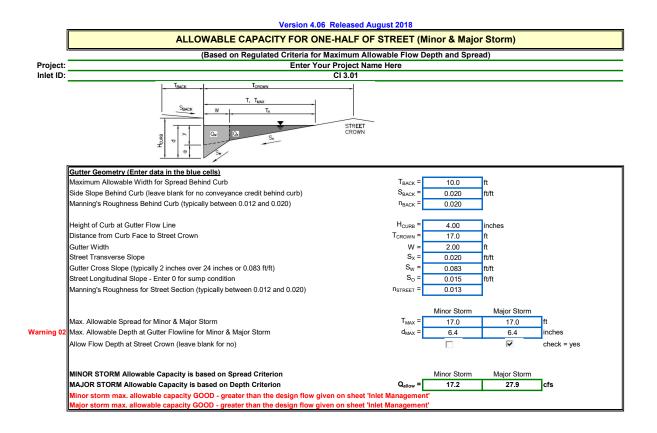







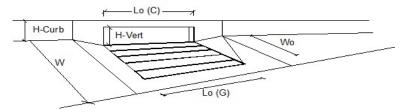




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 1.8         | 5.6            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = $Q_a/Q_o$ =                                          | C% =                 | 100         | 100            | %      |

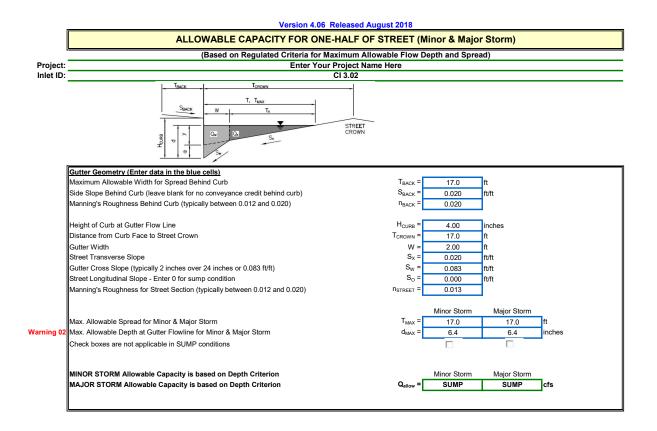


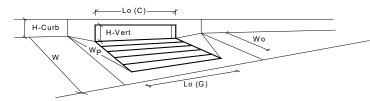




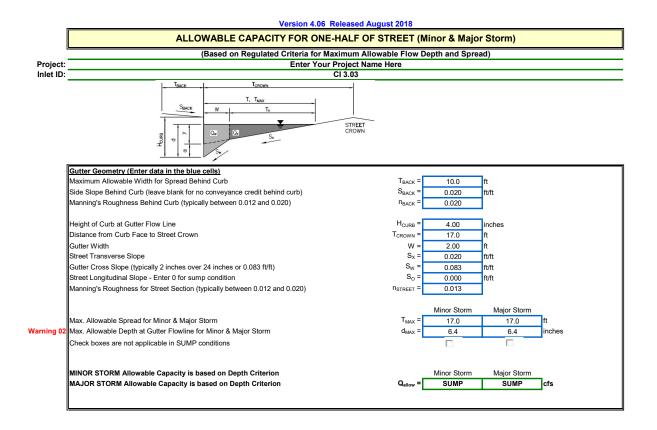



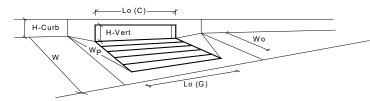

| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                    | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 3.4         | 8.4          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.2          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 98           | %      |



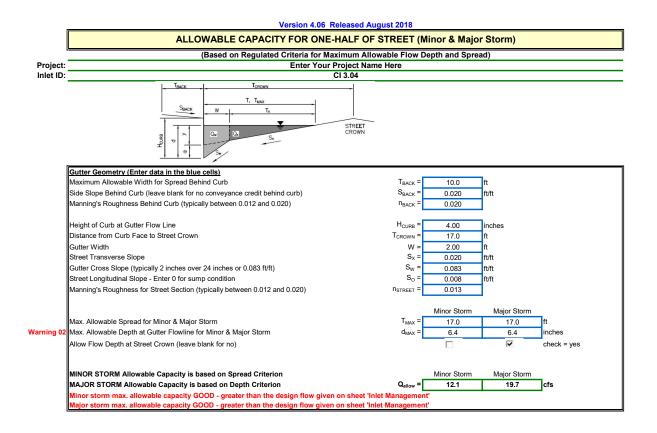





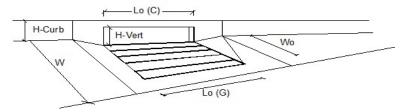


| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 20.00       | 20.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                       | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 5.9         | 13.3         | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.7          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 95           | %      |



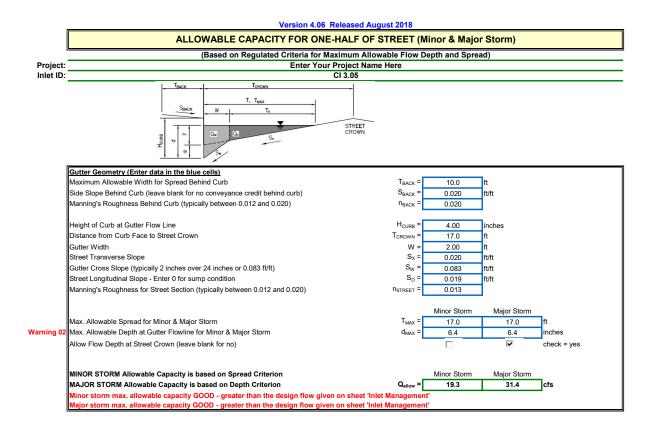



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 5.00        | 5.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 6.4          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 15.00       | 15.00        | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.37         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.60         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.81         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              |                             | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 8.0         | 11.6         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 3.8         | 10.4         | cfs             |



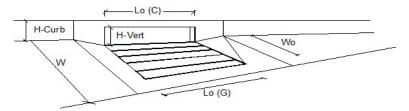



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 5.00        | 5.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 6.0          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 15.00       | 15.00        | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.33         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.57         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.79         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              |                             | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 8.0         | 9.7          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 2.9         | 6.8          | cfs             |

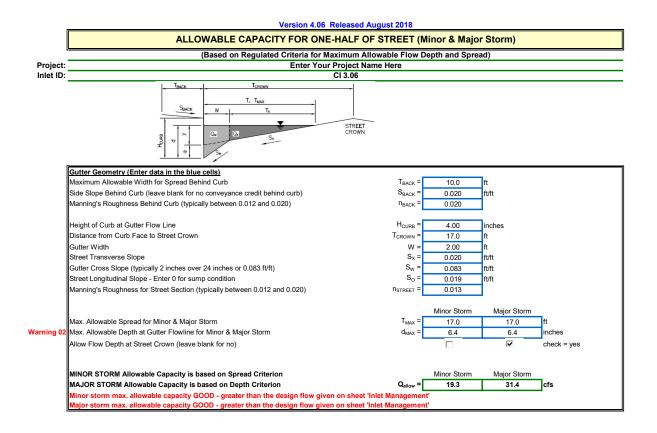






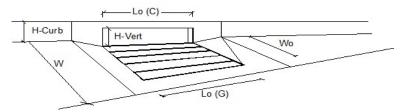




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 5.2         | 10.4           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 1.6            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 87             | %      |

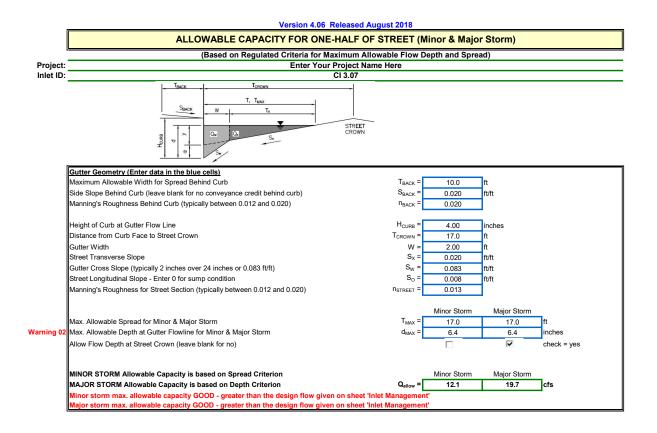






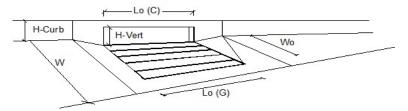




| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                    | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 2.4         | 5.6          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100          | %      |

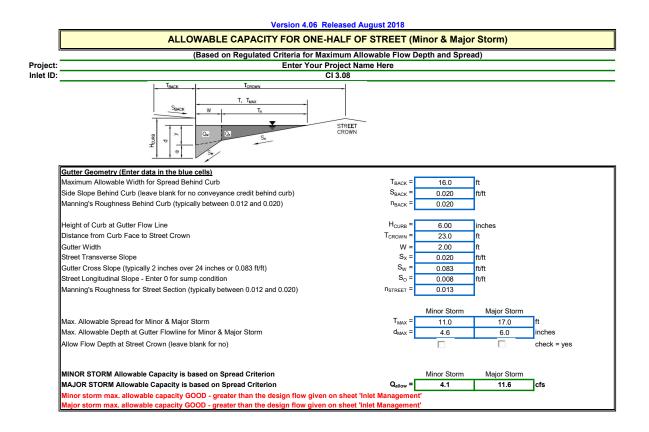






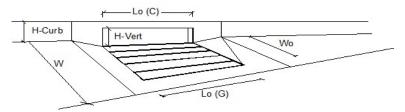




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.2         | 7.5            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q₀ =                                 | C% =                 | 100         | 100            | %      |

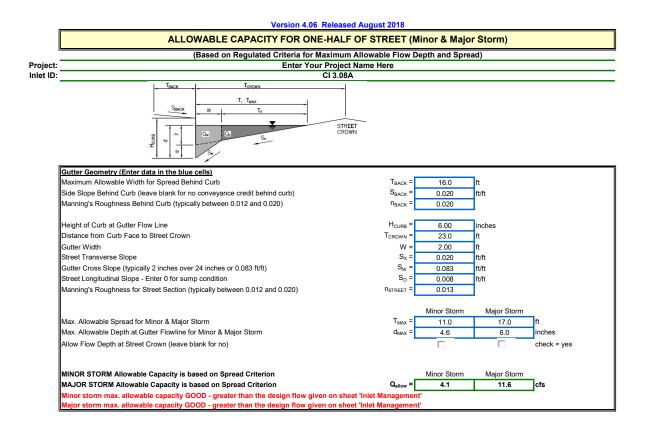






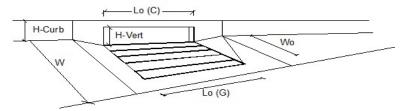




| Design Information (Input)                                                |                         | MINOR                    | MAJOR |        |
|---------------------------------------------------------------------------|-------------------------|--------------------------|-------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R Curb Opening |       |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0                      | 5.0   | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1                        | 1     |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00                    | 15.00 | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A                      | N/A   | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A                      | N/A   |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10                     | 0.10  |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                       | MINOR                    | MAJOR |        |
| Total Inlet Interception Capacity                                         | Q =                     | 2.8                      | 6.5   | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0                      | 0.1   | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100                      | 99    | %      |

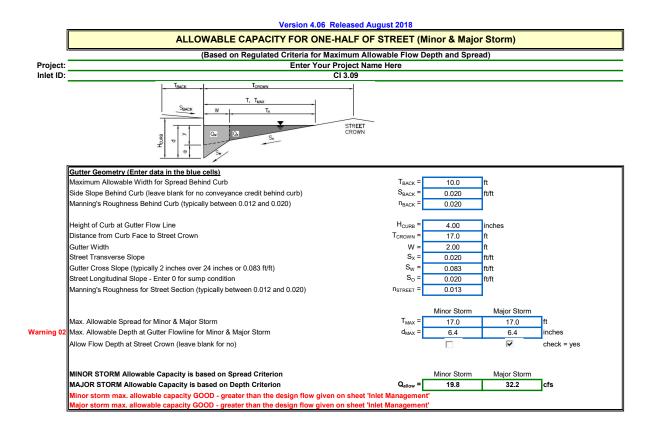






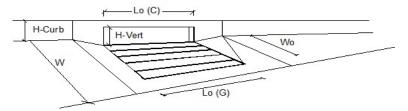




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 1.2         | 2.9            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |

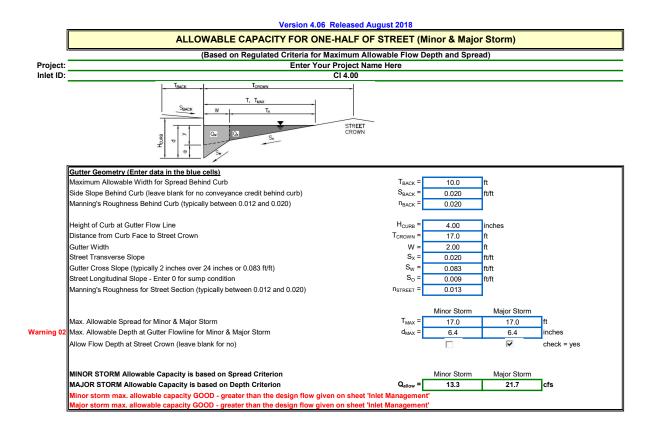






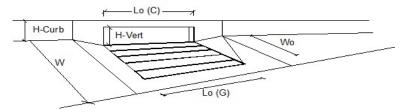




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 0.9         | 2.1            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 100            | %      |

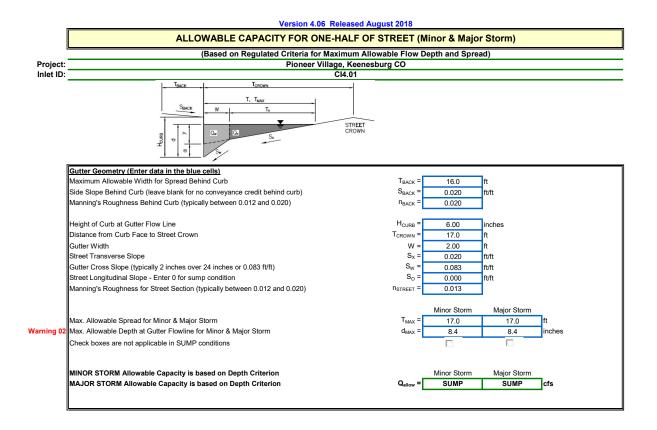


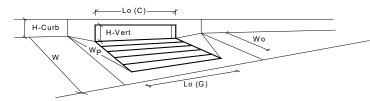




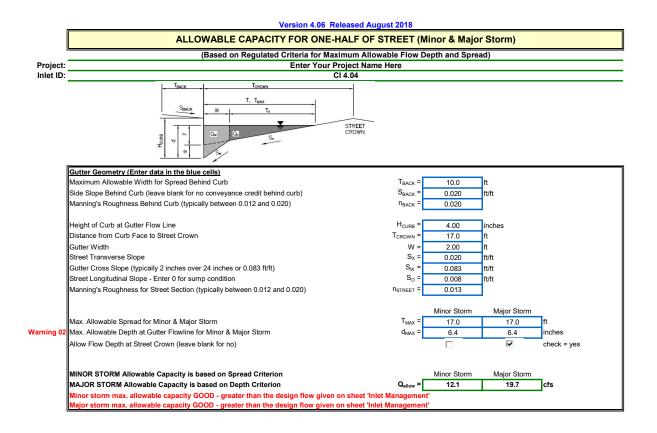




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 4.2         | 9.3            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.4            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 96             | %      |



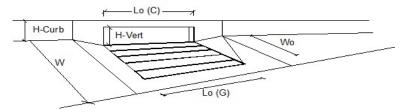





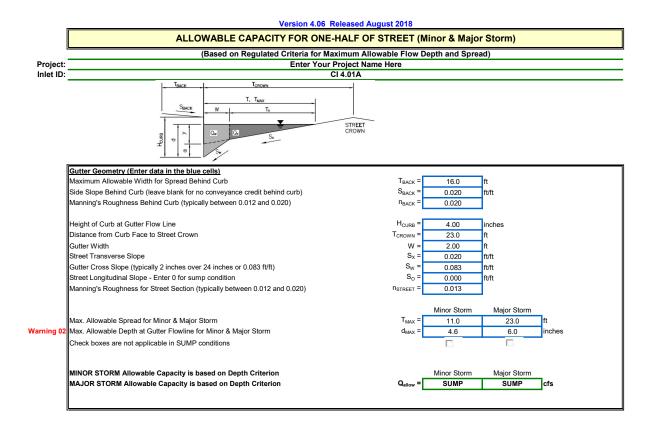



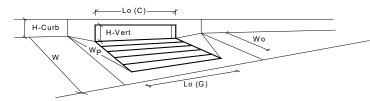

| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 6.7         | 15.5           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.1         | 2.4            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 99          | 87             | %      |



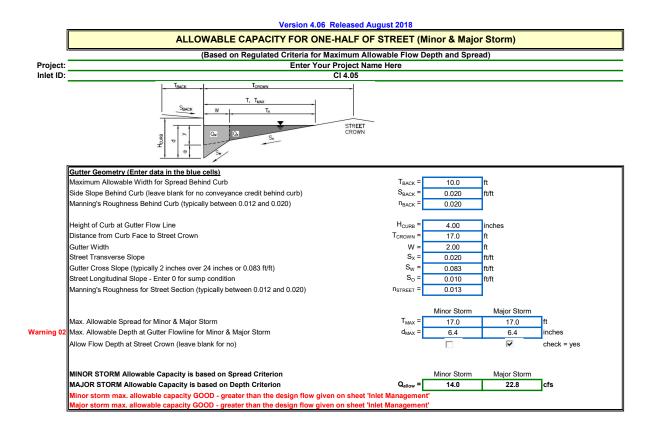



| CDOT Type R Curb Opening                                                     |                             | MINOR       | MAJOR        |                   |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 8.4          | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR        | 🔽 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                   |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                   |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 20.00       | 20.00        | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                   |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.53         | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.79         |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.91         |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          | 1                 |
|                                                                              | _                           | MINOR       | MAJOR        | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 10.3        | 29.2         | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 2.3         | 10.8         | cfs               |



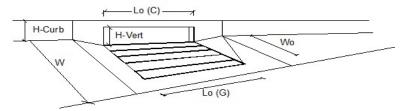





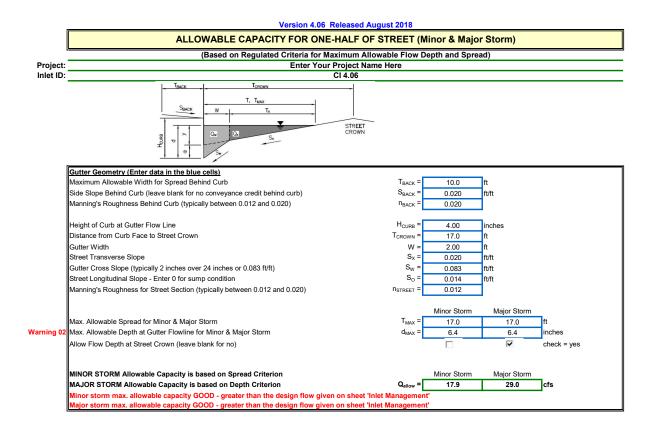




| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 20.00       | 20.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                         | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 7.3         | 15.6         | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.1         | 2.6          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 98          | 86           | %      |



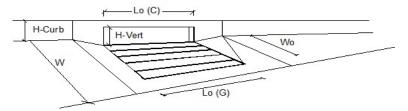



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        | _               |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 5.00        | 5.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 4.2         | 6.0          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        | -               |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 15.00       | 15.00        | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.18        | 0.33         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.39        | 0.57         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.65        | 0.79         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 3.2         | 9.7          | cfs             |
| WARNING: Inlet Capacity less than Q Peak for Minor Storm                     | Q PEAK REQUIRED =           | 3.5         | 8.2          | cfs             |

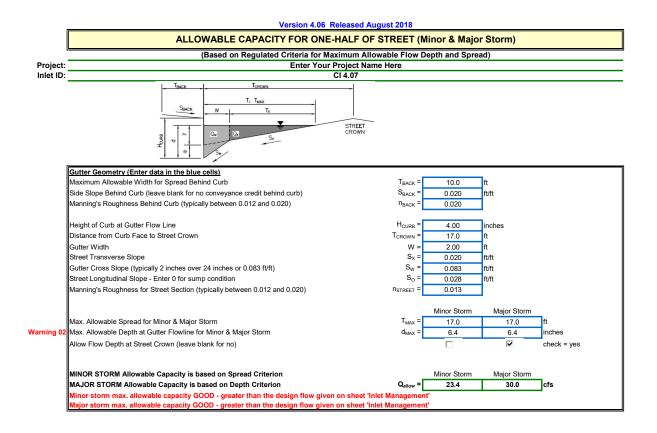






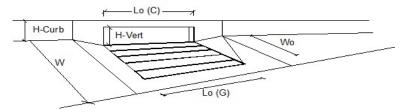




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 4.8         | 10.0           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 1.1            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q₀ =                                 | C% =                 | 100         | 90             | %      |

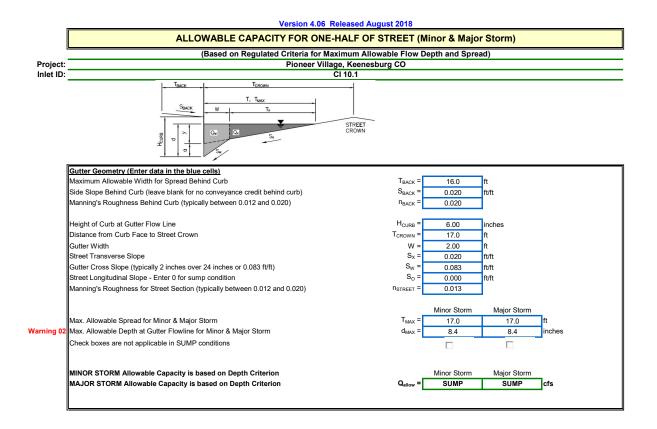


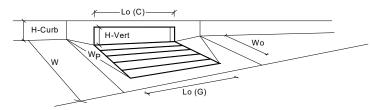




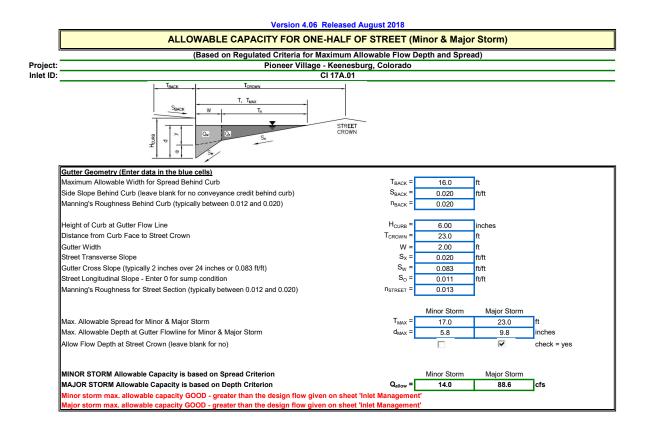




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 1.5         | 3.5            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 100            | %      |



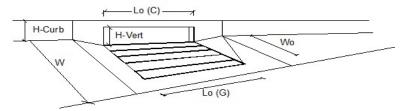





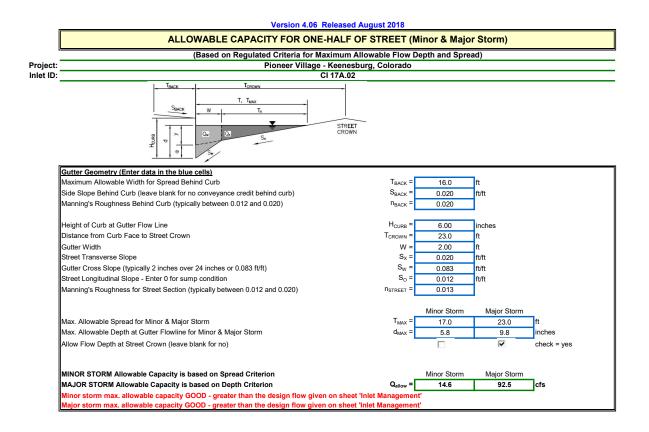




| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                    | MINOR       | MAJOR        | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.7         | 8.5          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100          | %      |



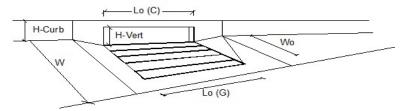



| CDOT Type R Curb Opening                                                     |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
|                                                                              | Type =                      | CDOT Type F | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 5.6          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Curb Opening Information                                                     | _                           | MINOR       | MAJOR        | _               |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 15.00       | 15.00        | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.30         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.53         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.76         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 8.0         | 8.0          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 1.6         | 4.2          | cfs             |

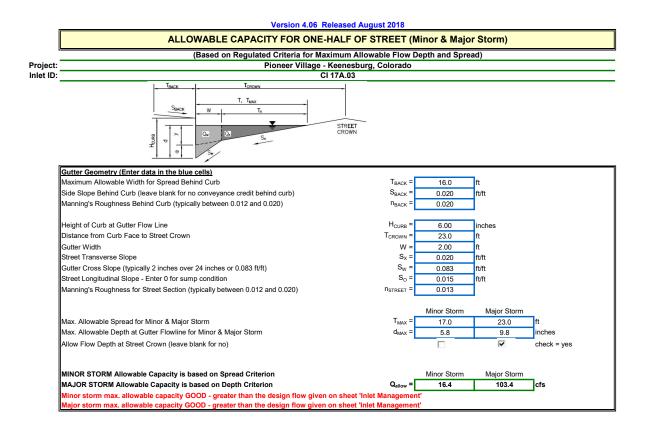






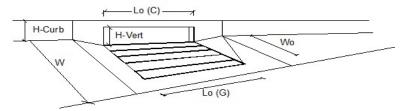




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 8.2         | 15.7           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 3.2            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 83             | %      |

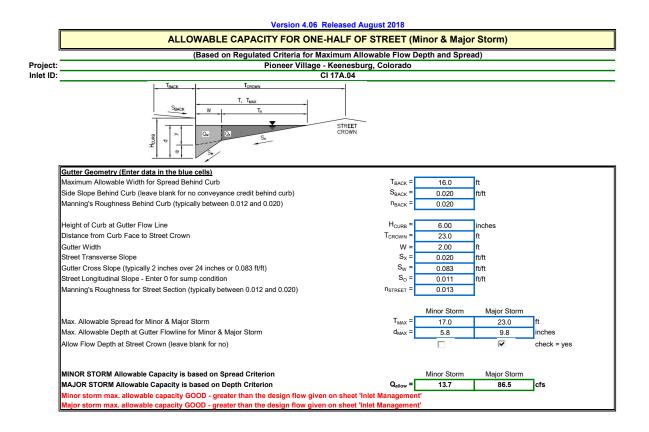






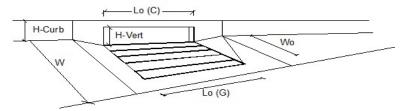




| Design Information (Input) CDOT Type R Curb Opening                       |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                         | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                     | 9.3         | 17.4           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 5.2            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | С% =                    | 100         | 77             | %      |

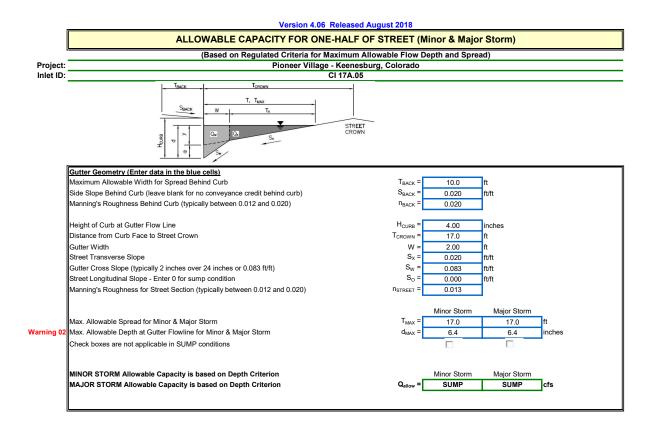


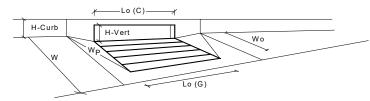




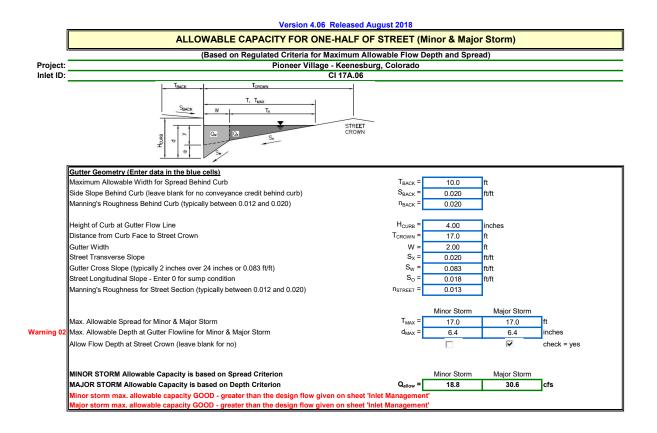




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 2.4         | 13.3           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 1.3            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 91             | %      |



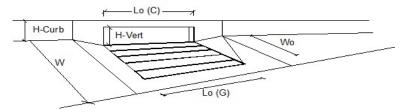





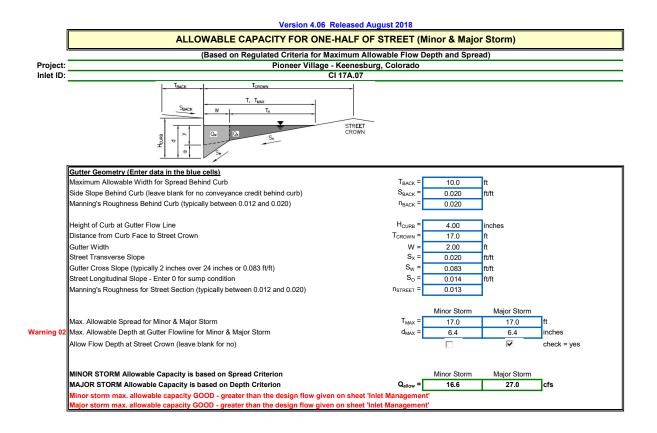




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                       | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 9.0         | 19.3           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 8.2            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 70             | %      |



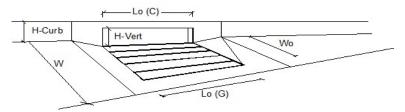



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening | 7               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 5.00        | 5.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 9.0         | 9.0          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          | 1               |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          | 1               |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 20.00       | 20.00        | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         | 1               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.58        | 0.58         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.85        | 0.85         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.93        | 0.93         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 34.3        | 34.3         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 8.4         | 23.8         | cfs             |







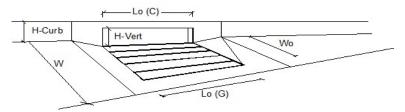




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet CDOT Type R Curb Opening                                    | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 10.4        | 20.2           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.1         | 6.9            | cfs    |
| Capture Percentage = Q₂/Q₀ =                                              | С% =                 | 99          | 75             | %      |

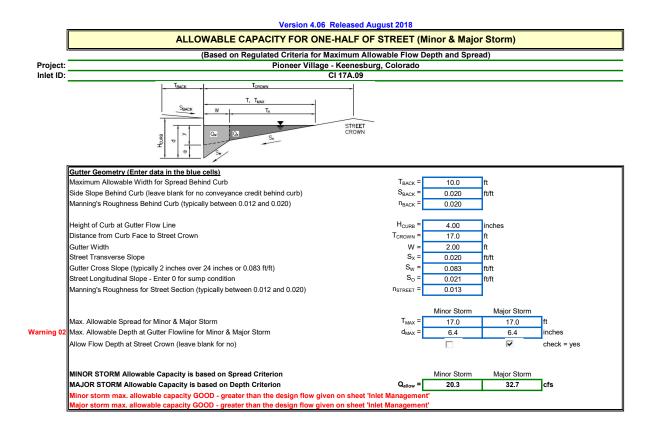






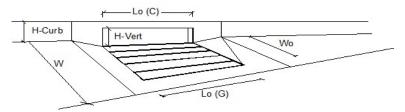



| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet CDOT Type R Curb Opening                                    | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                         | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                     | 6.4         | 12.2           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 3.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | С% =                    | 100         | 80             | %      |

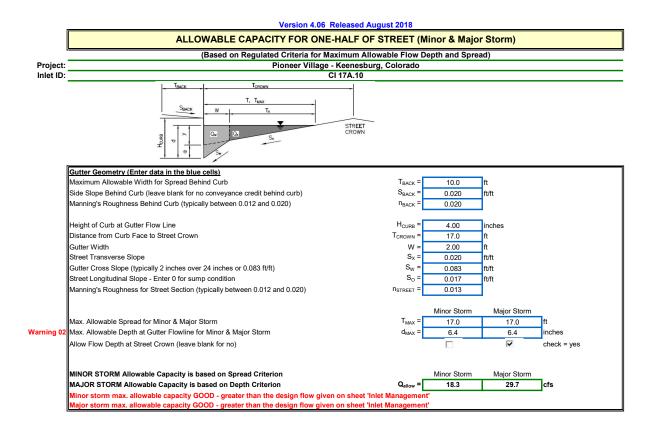






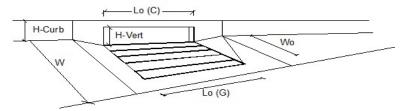




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet CDOT Type R Curb Opening                                    | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 2.4         | 5.6            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | С% =                 | 100         | 100            | %      |

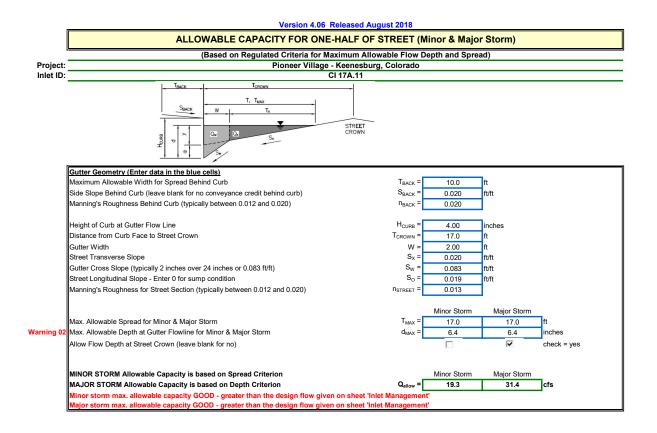






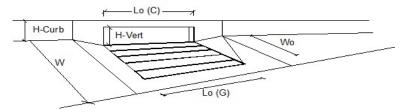




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.1         | 7.4            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q₀ =                                 | C% =                 | 100         | 100            | %      |

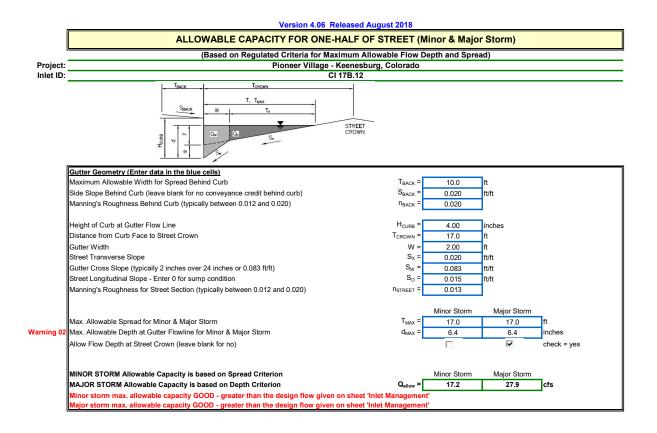






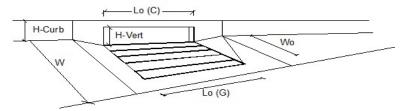




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 7.0         | 16.0           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 2.1            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 88             | %      |

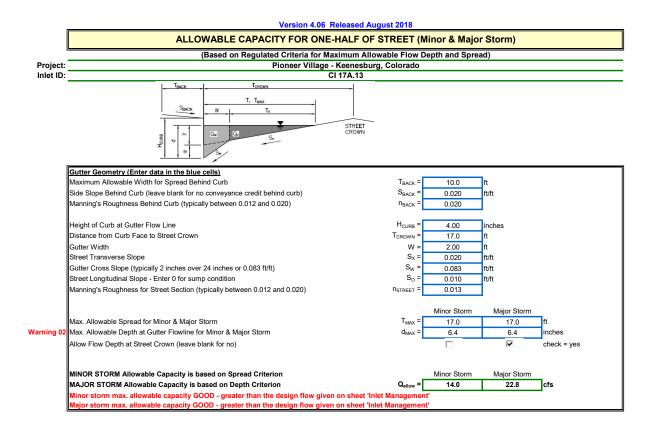






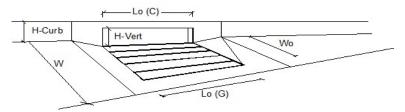




| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                       | MINOR       | MAJOR        | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 5.7         | 11.3         | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 1.8          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 86           | %      |

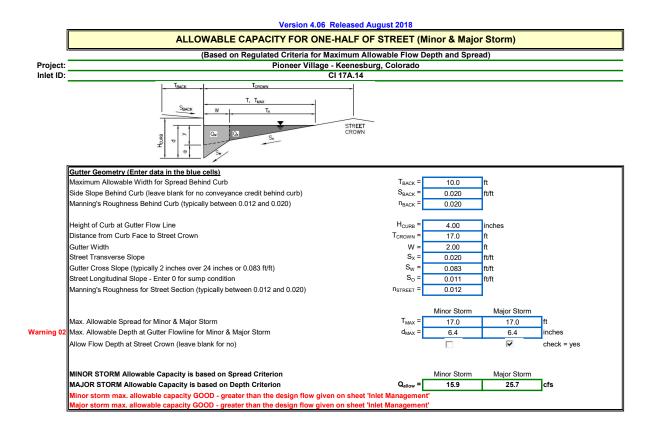






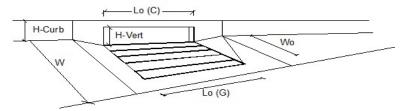




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 7.3         | 15.6           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 2.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 89             | %      |







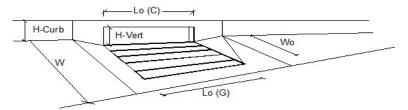




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.8         | 8.6            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.4            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 96             | %      |

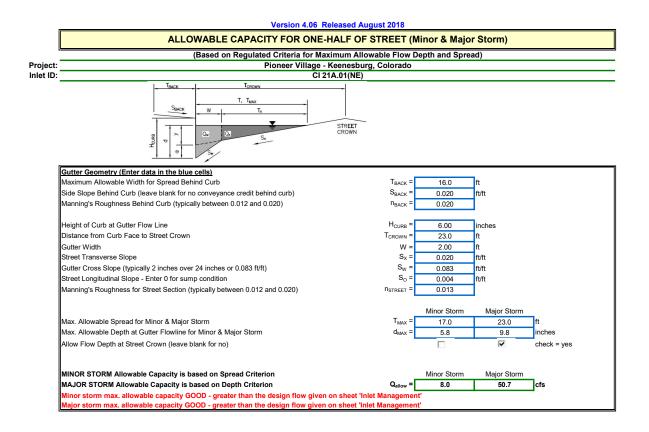






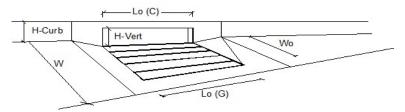



| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 5.7         | 12.7           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.7            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 95             | %      |

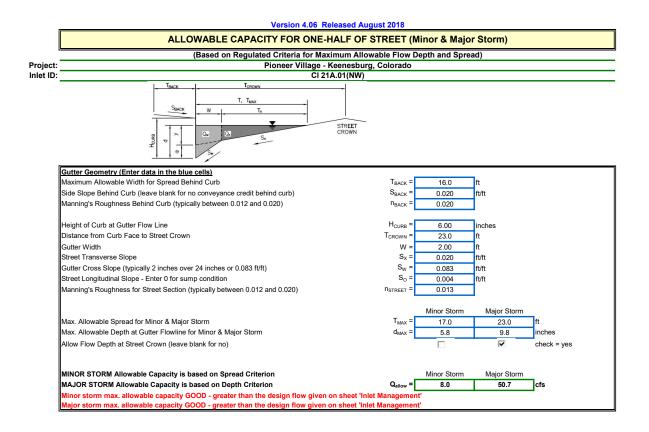

|       | ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)                                                                      |                         |                     |                     |             |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|---------------------|-------------|--|--|
| I     | (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)                                                            |                         |                     |                     |             |  |  |
| ject: |                                                                                                                                      | Keenesburg, Colorado    |                     |                     |             |  |  |
| t ID: |                                                                                                                                      | 21B.13                  |                     |                     |             |  |  |
|       |                                                                                                                                      | STREET<br>CROWN         |                     |                     |             |  |  |
|       | Httee                                                                                                                                | GROWN                   |                     |                     |             |  |  |
|       | Gutter Geometry (Enter data in the blue cells)<br>Maximum Allowable Width for Spread Behind Curb                                     | T <sub>BACK</sub> =     | 10.0                | ft                  |             |  |  |
|       | Side Slope Behind Curb (leave blank for no conveyance credit behind curb)                                                            | S <sub>BACK</sub> =     | 0.020               | ft/ft               |             |  |  |
|       | Manning's Roughness Behind Curb (typically between 0.012 and 0.020)                                                                  | n <sub>BACK</sub> =     | 0.020               |                     |             |  |  |
|       | Height of Curb at Gutter Flow Line                                                                                                   | H <sub>CURB</sub> =     | 4.00                | inches              |             |  |  |
|       | Distance from Curb Face to Street Crown                                                                                              | T <sub>CROWN</sub> =    | 17.0                | ft                  |             |  |  |
|       | Gutter Width                                                                                                                         | W =                     | 2.00                | ft                  |             |  |  |
|       | Street Transverse Slope                                                                                                              | s <sub>x</sub> =        | 0.020               | ft/ft               |             |  |  |
|       | Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)                                                                | S <sub>W</sub> =        |                     | ft/ft               |             |  |  |
|       | Street Longitudinal Slope - Enter 0 for sump condition                                                                               | S <sub>o</sub> =        | 0.008               | ft/ft               |             |  |  |
|       | Manning's Roughness for Street Section (typically between 0.012 and 0.020)                                                           | n <sub>STREET</sub> =   | 0.013               | 1                   |             |  |  |
|       |                                                                                                                                      |                         | Minor Storm         | Major Storm         |             |  |  |
|       | Max. Allowable Spread for Minor & Major Storm                                                                                        | T <sub>MAX</sub> =      | 17.0                | 17.0                | ft          |  |  |
| ng 02 | Max. Allowable Depth at Gutter Flowline for Minor & Major Storm                                                                      | d <sub>MAX</sub> =      | 6.4                 | 6.4                 | inches      |  |  |
|       | Allow Flow Depth at Street Crown (leave blank for no)                                                                                |                         |                     |                     | check = yes |  |  |
|       | Maximum Capacity for 1/2 Street based On Allowable Spread                                                                            |                         | Minor Storm         | Major Storm         |             |  |  |
|       | Water Depth without Gutter Depression (Eq. ST-2)                                                                                     | y =                     | 4.08                | 4.08                | inches      |  |  |
|       | Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")                                                                   | d <sub>c</sub> =        | 2.0                 | 2.0                 | inches      |  |  |
|       | Gutter Depression (d <sub>c</sub> - (W * S <sub>x</sub> * 12))                                                                       | a =                     | 1.51                | 1.51                | inches      |  |  |
|       | Water Depth at Gutter Flowline                                                                                                       | d =                     | 5.59                | 5.59                | inches      |  |  |
|       | Allowable Spread for Discharge outside the Gutter Section W (T - W)                                                                  | T <sub>X</sub> =        | 15.0                | 15.0                | ft          |  |  |
|       | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                    | E <sub>o</sub> =        | 0.350               | 0.350               |             |  |  |
|       | Discharge outside the Gutter Section W, carried in Section $T_X$                                                                     | Q <sub>X</sub> =        | 7.5                 | 7.5                 | cfs         |  |  |
|       | Discharge within the Gutter Section W ( $Q_T - Q_X$ )                                                                                | Q <sub>W</sub> =        | 4.1                 | 4.1                 | cfs         |  |  |
|       | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                       | Q <sub>BACK</sub> =     | 0.6                 | 0.6                 | cfs         |  |  |
|       | Maximum Flow Based On Allowable Spread                                                                                               | Q <sub>T</sub> =        | 12.1                | 12.1                | cfs         |  |  |
|       | Flow Velocity within the Gutter Section                                                                                              | V =                     | 5.3                 | 5.3                 | fps         |  |  |
|       | V*d Product: Flow Velocity times Gutter Flowline Depth                                                                               | V*d =                   | 2.5                 | 2.5                 |             |  |  |
|       | Maximum Capacity for 1/2 Street based on Allowable Depth                                                                             |                         | Minor Storm         | Major Storm         |             |  |  |
|       | Theoretical Water Spread                                                                                                             | Т <sub>тн</sub> =       |                     | 20.4                | ft          |  |  |
|       | Theoretical Spread for Discharge outside the Gutter Section W (T - W)                                                                | T <sub>XTH</sub> =      | 18.4                | 18.4                | ft          |  |  |
|       | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                    | E <sub>0</sub> =        | 0.291               | 0.291               | <b>-</b>    |  |  |
|       | Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>X TH</sub>                                             | Q <sub>X TH</sub> =     | 12.9                | 12.9                | cfs         |  |  |
|       | Actual Discharge outside the Gutter Section W, (limited by distance $T_{CROWN}$ )                                                    | Q <sub>X</sub> =        | 12.8                | 12.8                | cfs         |  |  |
|       | Discharge within the Gutter Section W ( $Q_d - Q_X$ )                                                                                | Q <sub>W</sub> =        | 5.3                 | 5.3                 | cfs         |  |  |
|       | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                       | Q <sub>BACK</sub> =     | 1.7                 | 1.7                 | cfs         |  |  |
|       | Total Discharge for Major & Minor Storm (Pre-Safety Factor)                                                                          | Q =                     | 19.7                | 19.7                | cfs         |  |  |
|       | Average Flow Velocity Within the Gutter Section                                                                                      | V =<br>V*d =            | 5.9                 | 5.9                 | tps         |  |  |
|       | V*d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm | V^d =<br>R =            | 3.1<br>1.00         | 3.1<br>1.00         |             |  |  |
|       | Max Flow Based on Allowable Depth (Safety Factor Applied)                                                                            | R =<br>Q <sub>d</sub> = | 1.00<br>19.7        | 1.00<br>19.7        | cfs         |  |  |
|       | Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)                                                                      |                         | 6.40                | 6.40                | inches      |  |  |
|       | Resultant Flow Depth at Street Crown (Safety Factor Applied)                                                                         | d <sub>CROWN</sub> =    | 0.81                | 0.81                | inches      |  |  |
|       |                                                                                                                                      |                         |                     | Malan Otam          |             |  |  |
|       | IMINOR STORM Allowable Capacity is based on Spread Criterion                                                                         |                         | Minor Storm         | IVIAIOF Storm       |             |  |  |
|       | MINOR STORM Allowable Capacity is based on Spread Criterion<br>MAJOR STORM Allowable Capacity is based on Depth Criterion            | Q <sub>allow</sub> =    | Minor Storm<br>12.1 | Major Storm<br>19.7 | cfs         |  |  |





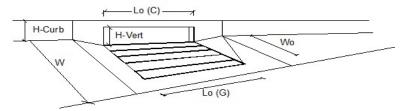



| CDOT Type R Curb Opening                                                  |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                    | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.4         | 3.2          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100          | %      |

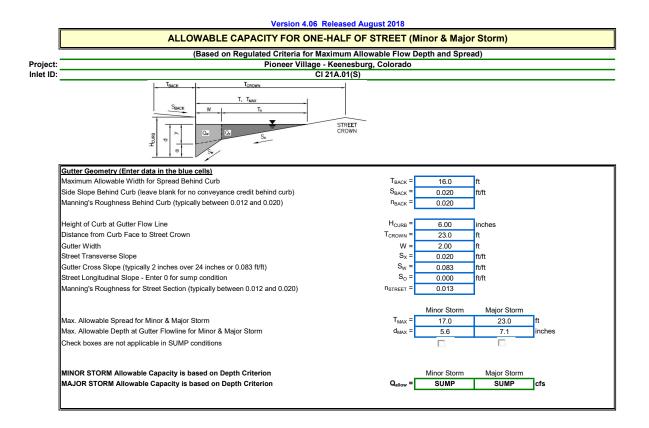






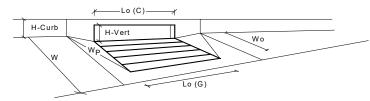




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet CDOT Type R Curb Opening                                    | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 4.1         | 9.5            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | С% =                 | 100         | 100            | %      |

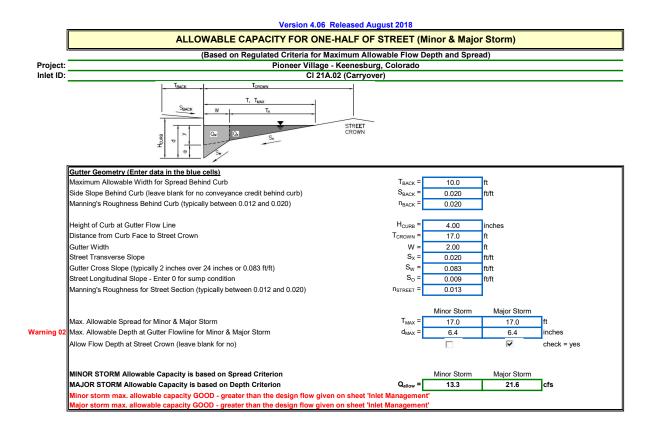






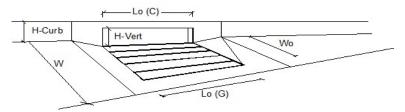




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 4.7         | 10.9           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.3            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 97             | %      |

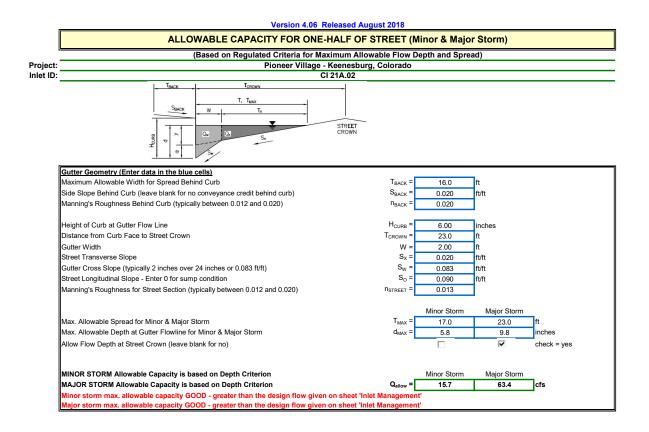



## INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

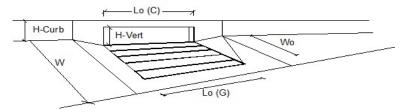



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                 |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 7.1          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          | 1               |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 20.00       | 20.00        | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.43         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.67         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.76        | 0.85         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              |                             | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 10.3        | 19.4         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 8.3         | 19.1         | cfs             |

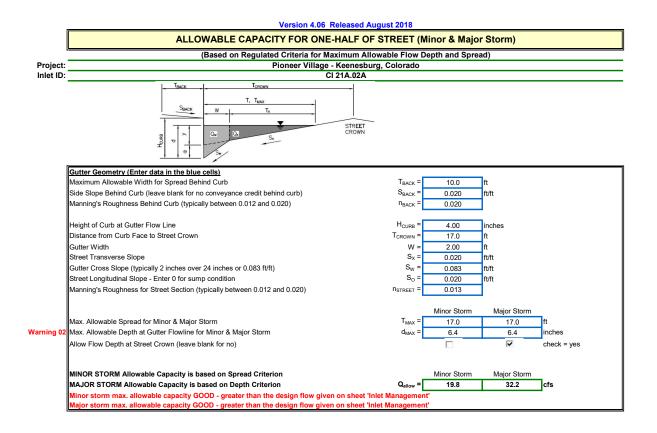






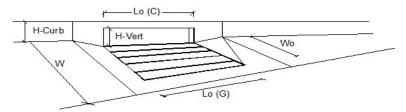




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =                  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                     | 0.0         | 5.1            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 0           | 100            | %      |

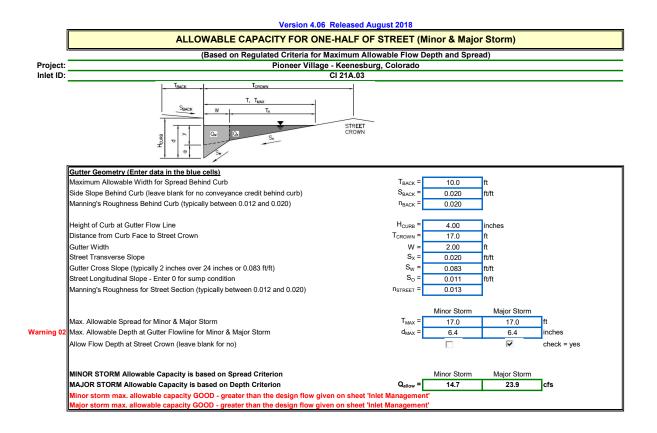






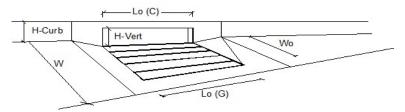




| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 9.6         | 17.9         | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 5.1          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 78           | %      |

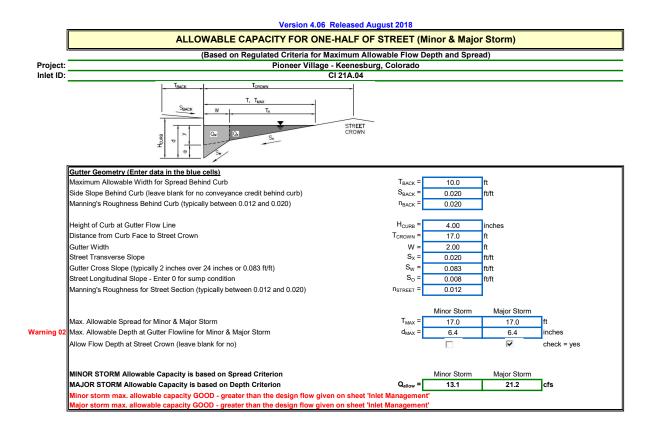






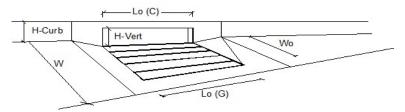




| Design Information (Input)                                                | Ĩ                    | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr−G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.0         | 3.3            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |

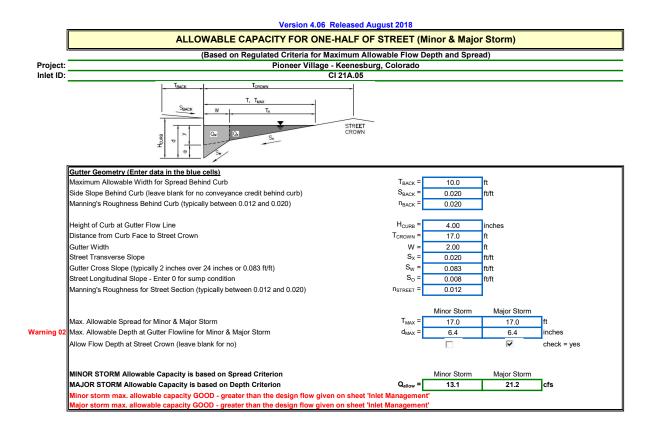






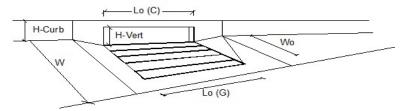




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet CDOT Type R Curb Opening                                    | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                         | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                     | 4.2         | 9.6            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.8            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | С% =                    | 100         | 92             | %      |

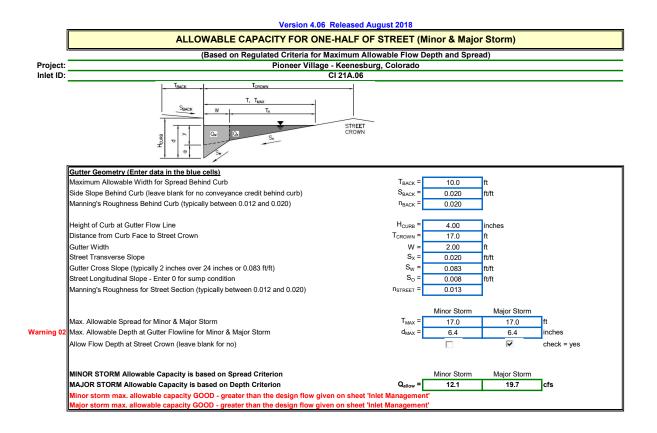






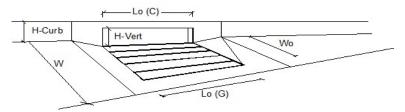




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 4.3         | 9.3            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.8            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 92             | %      |

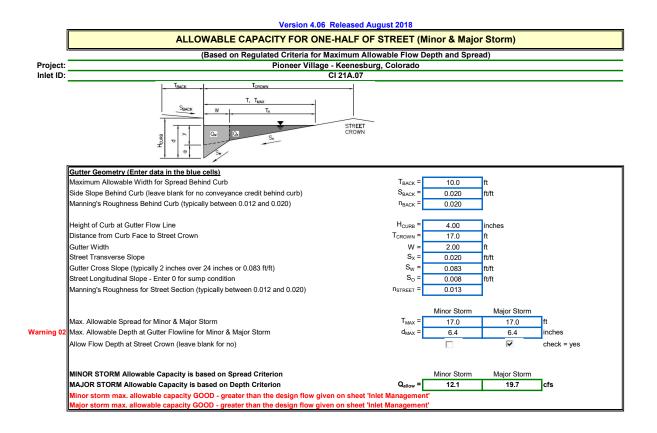






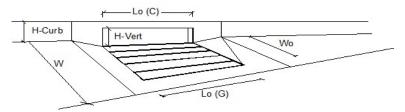




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr−G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 6.0         | 11.3           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 2.7            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 81             | %      |

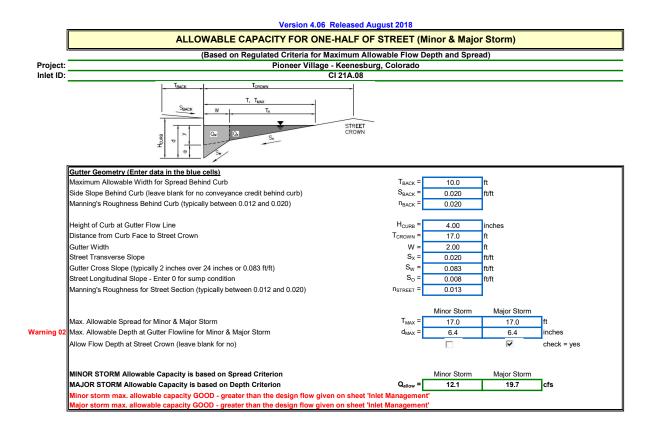






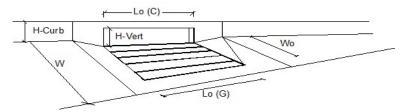




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =                  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 2.0         | 6.1            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 1.2            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 84             | %      |

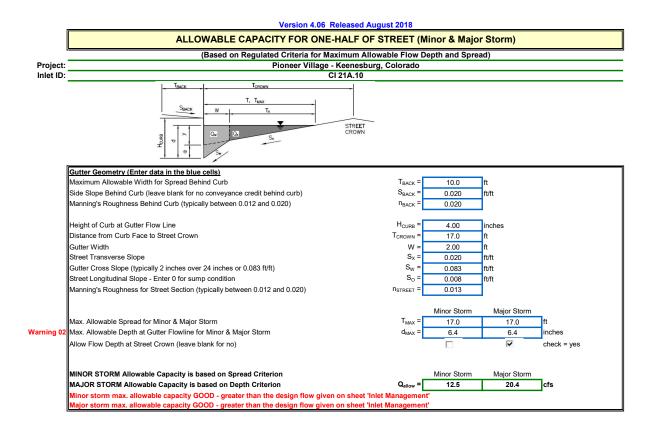






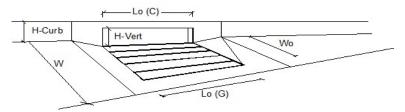




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.3         | 8.2            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.3            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 96             | %      |

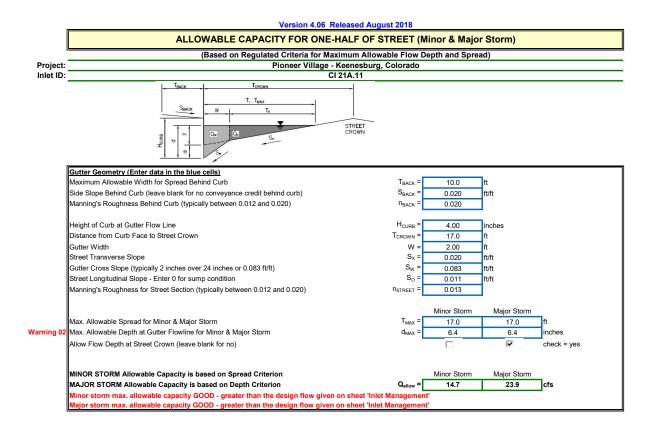






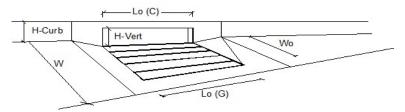




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 4.0         | 9.4            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.9            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 91             | %      |

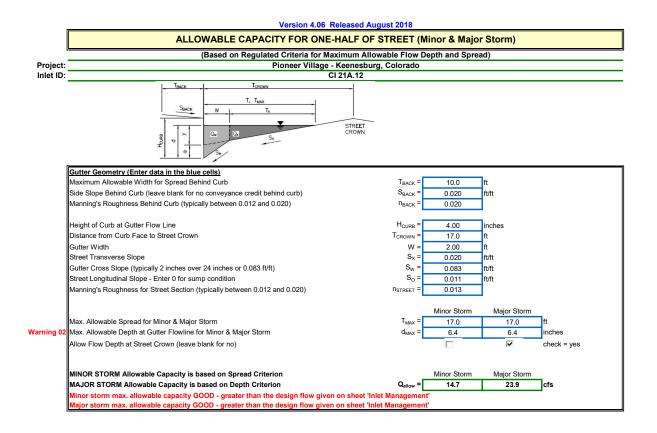






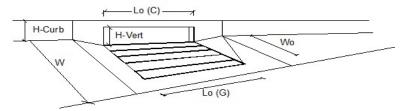




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 6.2         | 11.9           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.1         | 3.2            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 99          | 79             | %      |

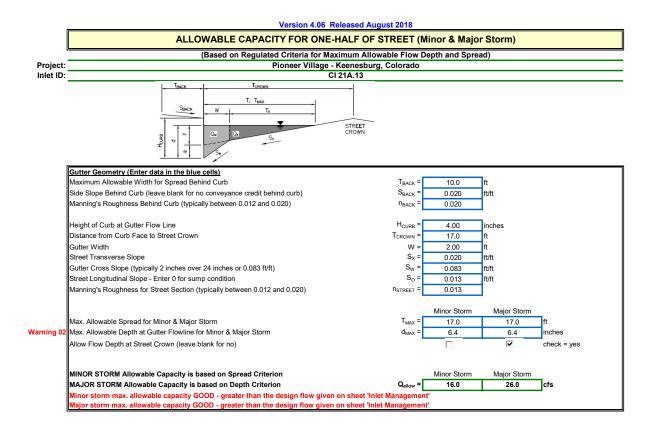






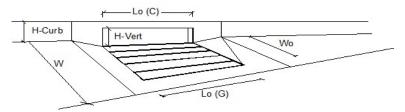




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.1         | 9.4            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.7            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 93             | %      |

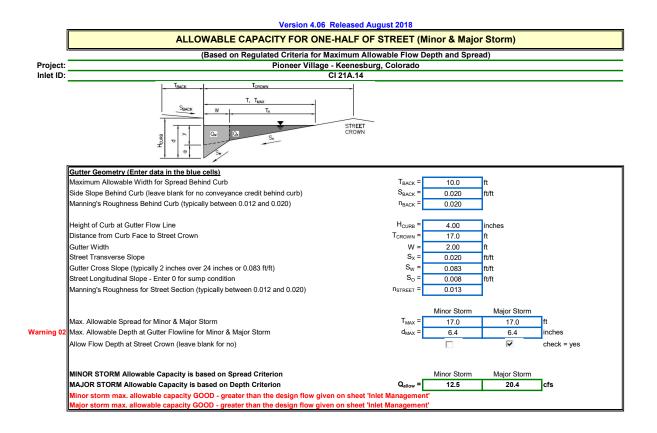






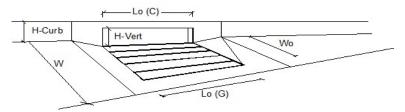




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 6.4         | 11.8           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 2.8            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 81             | %      |

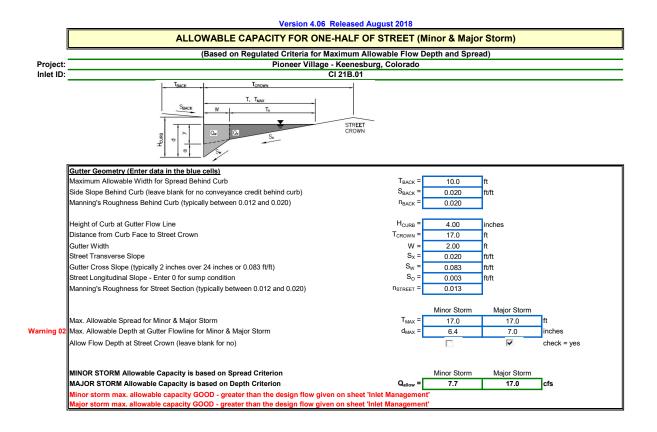






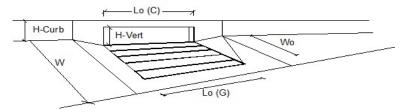




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.8         | 8.5            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.2            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 97             | %      |

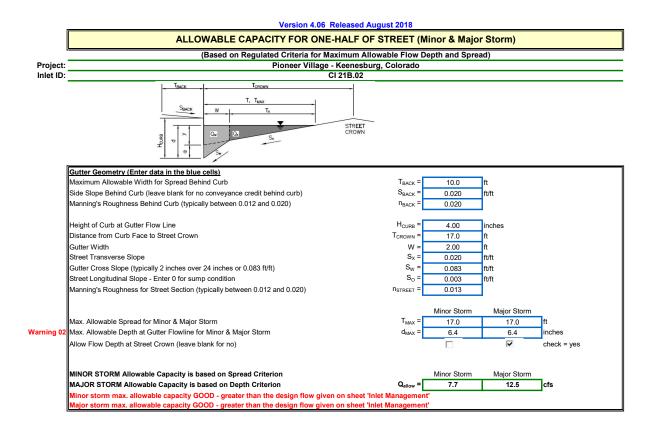






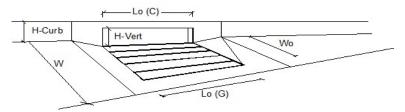




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =                  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                     | 2.4         | 5.8            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q₀/Q₀ =                                              | C% =                    | 100         | 99             | %      |

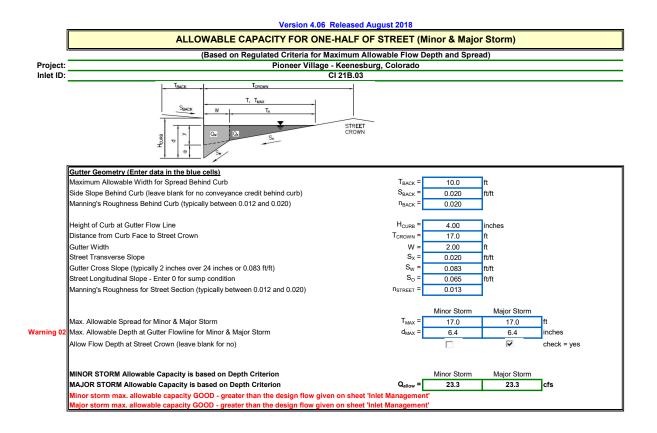






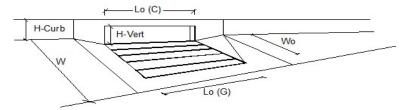




| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                    | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 5.5         | 11.9         | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.1         | 1.2          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 97          | 91           | %      |

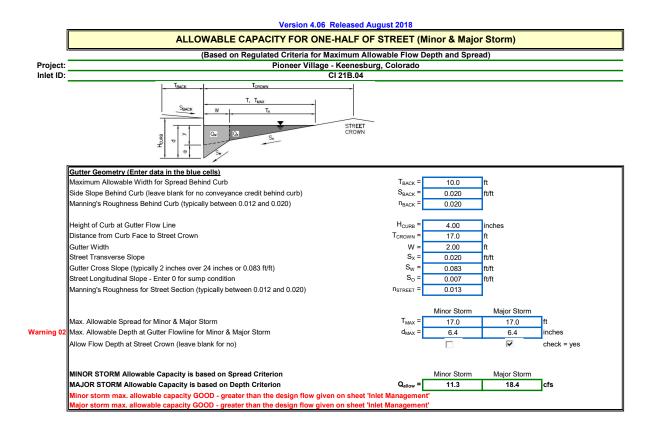






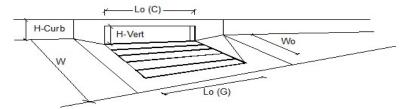




| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =                  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 2.9         | 6.7            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.3            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 96             | %      |

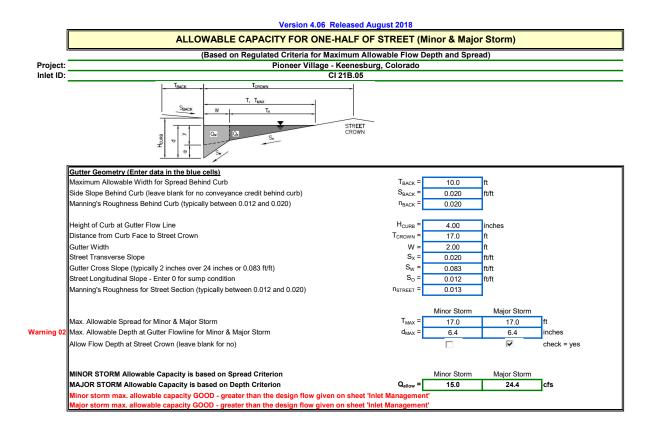






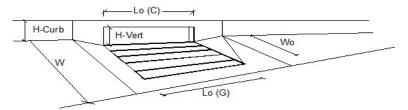




| CDOT Type R Curb Opening                                                  |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =               | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                    | MINOR       | MAJOR        | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 3.5         | 8.3          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100          | %      |

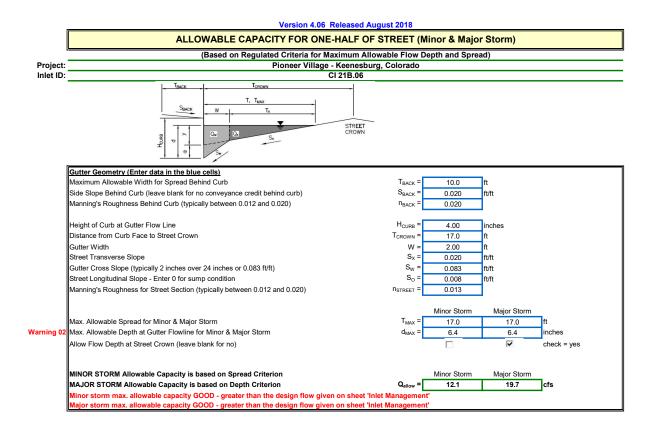






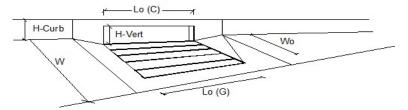




| CDOT Type R Curb Opening                                                  |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR        | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 3.6         | 8.1          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.3          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 96           | %      |

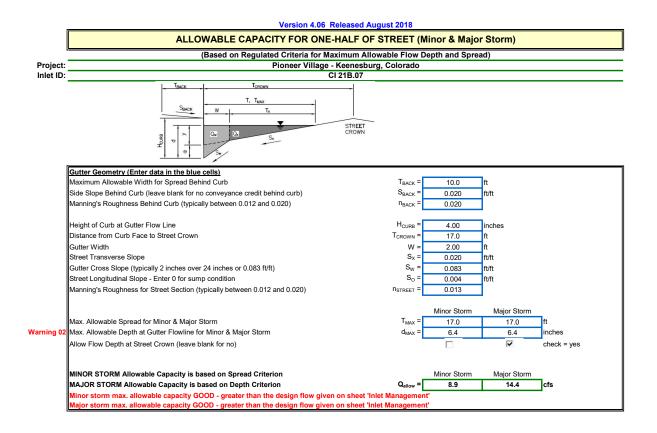






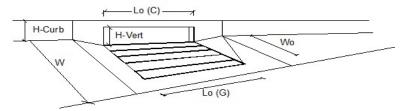




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.7         | 4.0            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |







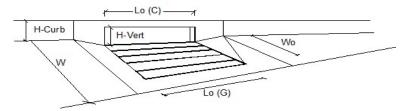




| Design Information (Input)                                                | Ĩ                    | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 5.00        | 5.00           | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr−G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 0.6         | 1.3            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |

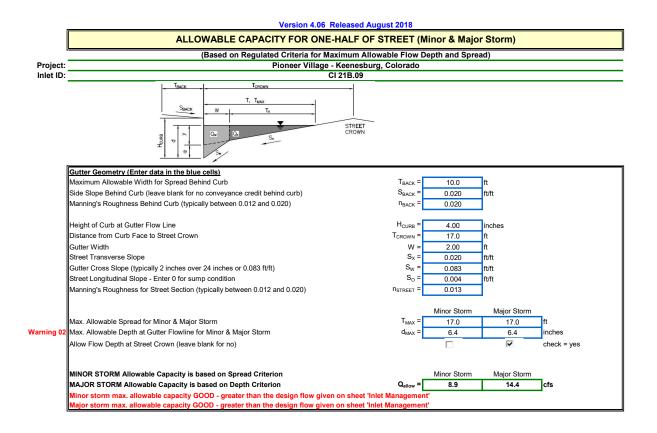






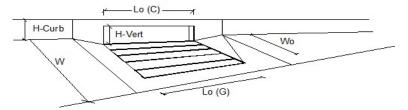



| CDOT Type R Curb Opening                                                  |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                    | MINOR       | MAJOR        | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 1.5         | 4.2          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.1          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 98           | %      |

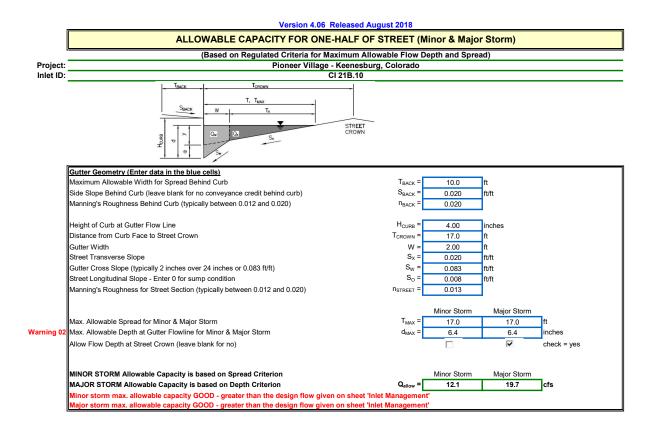

|                  | ALLOWABLE CAPACITY FOR ONE                                                                                                                                                                   | -HALF OF STREET (                   | Minor & Majo        | r Storm)     |                  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------|--------------|------------------|--|--|
|                  | Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)                                                                                                                     |                                     |                     |              |                  |  |  |
| oject:<br>et ID: |                                                                                                                                                                                              | - Keenesburg, Colorado<br>CI 21B.08 |                     |              |                  |  |  |
|                  | TBACK TCROWN                                                                                                                                                                                 |                                     |                     |              |                  |  |  |
|                  | T, T <sub>MAX</sub>                                                                                                                                                                          |                                     |                     |              |                  |  |  |
|                  | Seack W Tx                                                                                                                                                                                   |                                     |                     |              |                  |  |  |
|                  |                                                                                                                                                                                              | STREET                              |                     |              |                  |  |  |
|                  |                                                                                                                                                                                              | CROWN                               |                     |              |                  |  |  |
|                  | P S                                                                                                                                                                                          |                                     |                     |              |                  |  |  |
|                  | Gutter Geometry (Enter data in the blue cells)                                                                                                                                               |                                     |                     |              |                  |  |  |
|                  | Maximum Allowable Width for Spread Behind Curb                                                                                                                                               | T <sub>BACK</sub> =                 | 10.0                | ft           |                  |  |  |
|                  | Side Slope Behind Curb (leave blank for no conveyance credit behind curb)                                                                                                                    | S <sub>BACK</sub> =                 | 0.020               | ft/ft        |                  |  |  |
|                  | Manning's Roughness Behind Curb (typically between 0.012 and 0.020)                                                                                                                          | n <sub>BACK</sub> =                 | 0.020               |              |                  |  |  |
|                  | Height of Curb at Gutter Flow Line                                                                                                                                                           | H <sub>CURB</sub> =                 | 4.00                | inches       |                  |  |  |
|                  | Distance from Curb Face to Street Crown                                                                                                                                                      | T <sub>CROWN</sub> =                | 17.0                | ft           |                  |  |  |
|                  | Gutter Width                                                                                                                                                                                 | W =                                 |                     | ft           |                  |  |  |
|                  | Street Transverse Slope                                                                                                                                                                      | S <sub>X</sub> =                    |                     | ft/ft        |                  |  |  |
|                  | Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)                                                                                                                        | S <sub>w</sub> =                    |                     | ft/ft        |                  |  |  |
|                  | Street Longitudinal Slope - Enter 0 for sump condition                                                                                                                                       | S <sub>o</sub> =                    |                     | ft/ft        |                  |  |  |
|                  | Manning's Roughness for Street Section (typically between 0.012 and 0.020)                                                                                                                   | n <sub>STREET</sub> =               | 0.013               | 1            |                  |  |  |
|                  |                                                                                                                                                                                              | -                                   | Minor Storm         | Major Storm  |                  |  |  |
|                  | Max. Allowable Spread for Minor & Major Storm                                                                                                                                                | T <sub>MAX</sub> =                  |                     | 17.0         | ft               |  |  |
| ing 02           | Max. Allowable Depth at Gutter Flowline for Minor & Major Storm                                                                                                                              | d <sub>MAX</sub> =                  |                     | 6.4          | inches           |  |  |
|                  | Allow Flow Depth at Street Crown (leave blank for no)                                                                                                                                        |                                     |                     |              | check = yes      |  |  |
|                  | Maximum Capacity for 1/2 Street based On Allowable Spread                                                                                                                                    |                                     | Minor Storm         | Major Storm  |                  |  |  |
|                  | Water Depth without Gutter Depression (Eq. ST-2)                                                                                                                                             | y =                                 |                     | 4.08         | inches           |  |  |
|                  | Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")<br>Gutter Depression ( $d_c$ - (W * S <sub>x</sub> * 12))                                                                 | d <sub>C</sub> =<br>a =             |                     | 2.0          | inches<br>inches |  |  |
|                  | Water Depth at Gutter Flowline                                                                                                                                                               | a -<br>d =                          | 1.51<br>5.59        | 1.51<br>5.59 | inches           |  |  |
|                  | Allowable Spread for Discharge outside the Gutter Section W (T - W)                                                                                                                          | u -<br>T <sub>x</sub> =             |                     | 15.0         | ft               |  |  |
|                  | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                            | Ê0 =                                |                     | 0.350        | -                |  |  |
|                  | Discharge outside the Gutter Section W, carried in Section $T_X$                                                                                                                             | Q <sub>x</sub> =                    |                     | 75.2         | cfs              |  |  |
|                  | Discharge within the Gutter Section W $(Q_T - Q_X)$                                                                                                                                          | Q <sub>w</sub> =                    | 40.5                | 40.5         | cfs              |  |  |
|                  | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                               | Q <sub>BACK</sub> =                 |                     | 5.6          | cfs              |  |  |
|                  | Maximum Flow Based On Allowable Spread                                                                                                                                                       | Q <sub>T</sub> =                    |                     | 121.3        | cfs              |  |  |
|                  | Flow Velocity within the Gutter Section                                                                                                                                                      | V =                                 | 52.9                | 52.9         | fps              |  |  |
|                  | V*d Product: Flow Velocity times Gutter Flowline Depth                                                                                                                                       | V*d =                               | 24.7                | 24.7         |                  |  |  |
|                  | Maximum Capacity for 1/2 Street based on Allowable Depth                                                                                                                                     |                                     | Minor Storm         | Major Storm  |                  |  |  |
|                  | Theoretical Water Spread                                                                                                                                                                     | T <sub>TH</sub> =                   | 20.4                | 20.4         | ft               |  |  |
|                  | Theoretical Spread for Discharge outside the Gutter Section W (T - W)                                                                                                                        | Т <sub>х тн</sub> =                 | 18.4                | 18.4         | ft               |  |  |
|                  | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                            | E <sub>o</sub> =                    | 0.291               | 0.291        |                  |  |  |
|                  | Theoretical Discharge outside the Gutter Section W, carried in Section $T_{XTH}$                                                                                                             | Q <sub>X TH</sub> =                 | 129.1               | 129.1        | cfs              |  |  |
|                  | Actual Discharge outside the Gutter Section W, (limited by distance T <sub>CROWN</sub> )                                                                                                     | Q <sub>X</sub> =                    |                     | 127.7        | cfs              |  |  |
|                  | Discharge within the Gutter Section W (Q <sub>d</sub> - Q <sub>X</sub> )                                                                                                                     | Q <sub>W</sub> =                    | 53.0                | 53.0         | cfs              |  |  |
|                  | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                               | Q <sub>BACK</sub> =                 | 16.6                | 16.6         | cfs              |  |  |
|                  | Total Discharge for Major & Minor Storm (Pre-Safety Factor)                                                                                                                                  | Q =                                 |                     | 197.3        | cfs              |  |  |
|                  | Average Flow Velocity Within the Gutter Section                                                                                                                                              | V =                                 | 58.8                | 58.8         | fps              |  |  |
|                  | V*d Product: Flow Velocity Times Gutter Flowline Depth                                                                                                                                       | V*d =                               |                     | 31.4         |                  |  |  |
|                  |                                                                                                                                                                                              | R=                                  |                     | 0.06         | cfs              |  |  |
|                  | Slope-Based Depth Safety Reduction Factor for Major & Minor ( $d \ge 6^{\circ}$ ) Storm                                                                                                      |                                     | 11.2                | 11.2         | inches           |  |  |
|                  | Max Flow Based on Allowable Depth (Safety Factor Applied)                                                                                                                                    | Q <sub>d</sub> =                    | 2.87                |              |                  |  |  |
|                  |                                                                                                                                                                                              | Qd =<br>d =<br>d <sub>CROWN</sub> = |                     | 2.87<br>0.00 | inches           |  |  |
|                  | Max Flow Based on Allowable Depth (Safety Factor Applied)<br>Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)<br>Resultant Flow Depth at Street Crown (Safety Factor Applied) | d =                                 | 0.00                | 0.00         | inches           |  |  |
|                  | Max Flow Based on Allowable Depth (Safety Factor Applied)<br>Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)                                                                 | d =                                 | 0.00<br>Minor Storm |              | inches           |  |  |



Version 4.06 Released August 2018

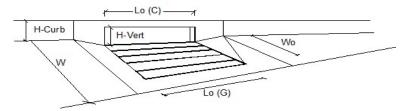



| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 2.6         | 6.7            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |

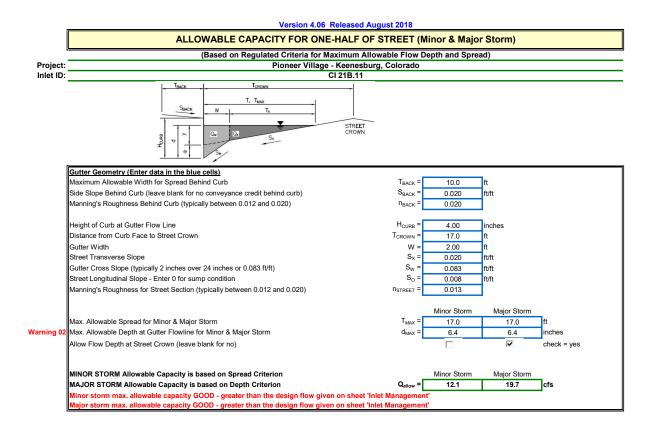






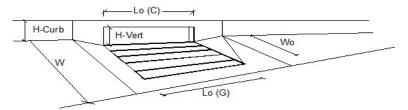




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 20.00       | 20.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 4.3         | 11.2           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.8            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q₀ =                                 | C% =                 | 99          | 93             | %      |






Version 4.06 Released August 2018

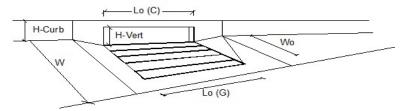



| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =                  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                     | 2.7         | 5.5            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.6            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 90             | %      |







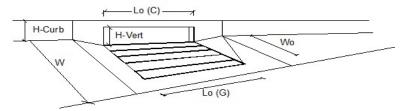



| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.7         | 4.0            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |

| 10       |                                                                                                                                             | ximum Allowable Flow I<br>Keenesburg, Colorado<br>I 21B.12 | Depth and Spre      | ad)                 |                  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------|---------------------|------------------|
| ilet ID: | C                                                                                                                                           |                                                            |                     |                     |                  |
| -        |                                                                                                                                             | 1218.12                                                    |                     |                     |                  |
|          |                                                                                                                                             |                                                            |                     |                     |                  |
|          |                                                                                                                                             | STREET<br>CROWN                                            |                     |                     |                  |
|          | H H H H H H H H H H H H H H H H H H H                                                                                                       |                                                            |                     |                     |                  |
|          | Gutter Geometry (Enter data in the blue cells)                                                                                              | -                                                          |                     | 1.                  |                  |
|          | Maximum Allowable Width for Spread Behind Curb                                                                                              | T <sub>BACK</sub> =                                        | 10.0                | ft                  |                  |
|          | Side Slope Behind Curb (leave blank for no conveyance credit behind curb)                                                                   | S <sub>BACK</sub> =                                        | 0.020               | ft/ft               |                  |
| ľ        | Manning's Roughness Behind Curb (typically between 0.012 and 0.020)                                                                         | n <sub>BACK</sub> =                                        | 0.020               | 1                   |                  |
|          | Height of Curb at Gutter Flow Line                                                                                                          | H <sub>CURB</sub> =                                        | 4.00                | inches              |                  |
|          | Distance from Curb Face to Street Crown                                                                                                     | T <sub>CROWN</sub> =                                       | 17.0                | ft                  |                  |
|          | Gutter Width                                                                                                                                | W =                                                        | 2.00                | ft                  |                  |
|          | Street Transverse Slope                                                                                                                     | S <sub>X</sub> =                                           | 0.020               | ft/ft               |                  |
|          | Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)                                                                       | S <sub>W</sub> =                                           | 0.083               | ft/ft               |                  |
|          | Street Longitudinal Slope - Enter 0 for sump condition                                                                                      | S <sub>o</sub> =                                           | 0.008               | ft/ft               |                  |
|          | Manning's Roughness for Street Section (typically between 0.012 and 0.020)                                                                  | n <sub>STREET</sub> =                                      | 0.020               |                     |                  |
|          |                                                                                                                                             |                                                            | Minor Storm         | Major Storm         |                  |
| I        | Max. Allowable Spread for Minor & Major Storm                                                                                               | T <sub>MAX</sub> =                                         | 17.0                | 17.0                | ft               |
| ning 02  | Max. Allowable Depth at Gutter Flowline for Minor & Major Storm                                                                             | d <sub>MAX</sub> =                                         | 6.4                 | 6.4                 | inches           |
| ŀ        | Allow Flow Depth at Street Crown (leave blank for no)                                                                                       |                                                            |                     | V                   | check = yes      |
|          | Maximum Capacity for 1/2 Street based On Allowable Spread                                                                                   |                                                            | Minor Starm         | Majar Starm         |                  |
|          | Water Depth without Gutter Depression (Eq. ST-2)                                                                                            | v =                                                        | Minor Storm<br>4.08 | Major Storm<br>4.08 | inches           |
|          | Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")                                                                          | y =<br>d <sub>C</sub> =                                    | 2.0                 | 2.0                 | inches           |
|          | Gutter Depression ( $d_c - (W * S_x * 12)$ )                                                                                                | a =                                                        | 1.51                | 1.51                | inches           |
|          | Water Depth at Gutter Flowline                                                                                                              | d =                                                        | 5.59                | 5.59                | inches           |
|          | Allowable Spread for Discharge outside the Gutter Section W (T - W)                                                                         | т <sub>х</sub> =                                           | 15.0                | 15.0                | ft               |
|          | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                           | E <sub>0</sub> =                                           | 0.350               | 0.350               | -                |
|          | Discharge outside the Gutter Section W, carried in Section T <sub>x</sub>                                                                   | Q <sub>x</sub> =                                           | 4.9                 | 4.9                 | cfs              |
|          | Discharge within the Gutter Section W ( $Q_T - Q_X$ )                                                                                       | Q <sub>W</sub> =                                           | 2.6                 | 2.6                 | cfs              |
|          | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                              | Q <sub>BACK</sub> =                                        | 0.6                 | 0.6                 | cfs              |
| 1        | Maximum Flow Based On Allowable Spread                                                                                                      | Q <sub>T</sub> =                                           | 8.1                 | 8.1                 | cfs              |
| 1        | Flow Velocity within the Gutter Section                                                                                                     | V =                                                        | 3.4                 | 3.4                 | fps              |
| ľ        | V*d Product: Flow Velocity times Gutter Flowline Depth                                                                                      | V*d =                                                      | 1.6                 | 1.6                 |                  |
|          | Maximum Capacity for 1/2 Street based on Allowable Depth                                                                                    |                                                            | Minor Storm         | Major Storm         |                  |
|          | Theoretical Water Spread                                                                                                                    | Т <sub>тн</sub> =                                          | 20.4                | 20.4                | ft               |
|          | Theoretical Spread for Discharge outside the Gutter Section W (T - W)                                                                       | Т <sub>х тн</sub> =                                        | 18.4                | 18.4                | ft               |
|          | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                           | E <sub>o</sub> =                                           | 0.291               | 0.291               |                  |
| ŀ        | Theoretical Discharge outside the Gutter Section W, carried in Section $T_{XTH}$                                                            | Q <sub>X TH</sub> =                                        | 8.4                 | 8.4                 | cfs              |
|          | Actual Discharge outside the Gutter Section W, (limited by distance $T_{CROWN}$ )                                                           | Q <sub>X</sub> =                                           | 8.3                 | 8.3                 | cfs              |
|          | Discharge within the Gutter Section W $(Q_d - Q_X)$                                                                                         | Q <sub>W</sub> =                                           | 3.4                 | 3.4                 | cfs              |
|          | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                              | Q <sub>BACK</sub> =                                        | 1.7                 | 1.7                 | cfs              |
| ŀ        | Total Discharge for Major & Minor Storm (Pre-Safety Factor)                                                                                 | Q =                                                        | 13.4                | 13.4                | cfs              |
| ŀ        | Average Flow Velocity Within the Gutter Section                                                                                             | V =                                                        | 3.8                 | 3.8                 | fps              |
|          | V*d Product: Flow Velocity Times Gutter Flowline Depth                                                                                      | V*d =                                                      | 2.0                 | 2.0                 | 4                |
|          | Slope-Based Depth Safety Reduction Factor for Major & Minor ( $d \ge 6$ ") Storm                                                            | R=                                                         | 1.00                | 1.00                |                  |
|          | Max Flow Based on Allowable Depth (Safety Factor Applied)                                                                                   | Q <sub>d</sub> =                                           | 13.4                | 13.4                | cfs              |
|          | Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)<br>Resultant Flow Depth at Street Crown (Safety Factor Applied)             | d =<br>d <sub>CROWN</sub> =                                | 6.40<br>0.81        | 6.40<br>0.81        | inches<br>inches |
|          | ·                                                                                                                                           | -chown                                                     | 0.01                | 0.01                |                  |
|          | MINOR STORM Allowable Capacity is based on Spread Criterion                                                                                 |                                                            | Minor Storm         | Major Storm         |                  |
|          | MAJOR STORM Allowable Capacity is based on Depth Criterion<br>Minor storm max. allowable capacity GOOD - greater than the design flow given | Q <sub>allow</sub> =                                       | 8.1                 | 13.4                | cfs              |





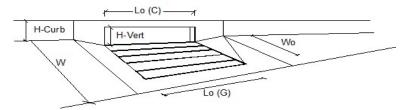



| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr−G =               | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.9         | 4.3            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.1            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 98             | %      |

|          | ALLOWABLE CAPACITY FOR ONE-HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LF OF STREET (M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /linor & Majo                                                                                                                           | r Storm)                                                                                                                                 |                                                                                       |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|          | (Based on Regulated Criteria for Maxim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | um Allowable Flow I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depth and Spre                                                                                                                          | ad)                                                                                                                                      |                                                                                       |
| roject:  | Pioneer Village - Kee<br>CI 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                                          |                                                                                       |
| nlet ID: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                         |                                                                                                                                          |                                                                                       |
|          | Seace W Tx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                                                                          |                                                                                       |
|          | H P P S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                                          |                                                                                       |
|          | Gutter Geometry (Enter data in the blue cells)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                         | 1.                                                                                                                                       |                                                                                       |
|          | Maximum Allowable Width for Spread Behind Curb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T <sub>BACK</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0                                                                                                                                    | ft                                                                                                                                       |                                                                                       |
|          | Side Slope Behind Curb (leave blank for no conveyance credit behind curb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S <sub>BACK</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.020                                                                                                                                   | ft/ft                                                                                                                                    |                                                                                       |
|          | Manning's Roughness Behind Curb (typically between 0.012 and 0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n <sub>BACK</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.020                                                                                                                                   | 1                                                                                                                                        |                                                                                       |
|          | Height of Curb at Gutter Flow Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>CURB</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.00                                                                                                                                    | inches                                                                                                                                   |                                                                                       |
|          | Distance from Curb Face to Street Crown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T <sub>CROWN</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.0                                                                                                                                    | ft                                                                                                                                       |                                                                                       |
|          | Gutter Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.00                                                                                                                                    | ft                                                                                                                                       |                                                                                       |
|          | Street Transverse Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S <sub>X</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.020                                                                                                                                   | ft/ft                                                                                                                                    |                                                                                       |
|          | Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S <sub>W</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.083                                                                                                                                   | ft/ft                                                                                                                                    |                                                                                       |
|          | Street Longitudinal Slope - Enter 0 for sump condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S <sub>o</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.750                                                                                                                                   | ft/ft                                                                                                                                    |                                                                                       |
|          | Manning's Roughness for Street Section (typically between 0.012 and 0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n <sub>STREET</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013                                                                                                                                   | 1                                                                                                                                        |                                                                                       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                                          |                                                                                       |
|          | May Allewahle Coreed for Minor 9 Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | т -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Minor Storm                                                                                                                             | Major Storm                                                                                                                              |                                                                                       |
| mina 02  | Max. Allowable Spread for Minor & Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>MAX</sub> =<br>d <sub>MAX</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.0                                                                                                                                    | 17.0<br>6.4                                                                                                                              | ft<br>inches                                                                          |
| ning 02  | Max. Allowable Depth at Gutter Flowline for Minor & Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UMAX -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.4                                                                                                                                     | 0.4                                                                                                                                      |                                                                                       |
|          | Allow Flow Depth at Street Crown (leave blank for no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                                          | check = yes                                                                           |
|          | Maximum Capacity for 1/2 Street based On Allowable Spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minor Storm                                                                                                                             | Major Storm                                                                                                                              |                                                                                       |
|          | Water Depth without Gutter Depression (Eq. ST-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.08                                                                                                                                    | 4.08                                                                                                                                     | inches                                                                                |
|          | Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d <sub>c</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.0                                                                                                                                     | 2.0                                                                                                                                      | inches                                                                                |
|          | Gutter Depression (d <sub>c</sub> - (W * S <sub>x</sub> * 12))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.51                                                                                                                                    | 1.51                                                                                                                                     | inches                                                                                |
|          | Water Depth at Gutter Flowline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.59                                                                                                                                    | 5.59                                                                                                                                     | inches                                                                                |
|          | Allowable Spread for Discharge outside the Gutter Section W (T - W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T <sub>X</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.0                                                                                                                                    | 15.0                                                                                                                                     | ft                                                                                    |
|          | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E <sub>o</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.350                                                                                                                                   | 0.350                                                                                                                                    |                                                                                       |
|          | Discharge outside the Gutter Section W, carried in Section T <sub>x</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q <sub>X</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.2                                                                                                                                    | 75.2                                                                                                                                     | cfs                                                                                   |
|          | Discharge within the Gutter Section W $(Q_T - Q_X)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q <sub>W</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.5                                                                                                                                    | 40.5                                                                                                                                     | cfs                                                                                   |
|          | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q <sub>BACK</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.6                                                                                                                                     | 5.6                                                                                                                                      | cfs                                                                                   |
|          | Mandanana Flam Daard On Allamakia Onesad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         | 121.3                                                                                                                                    | cfs                                                                                   |
|          | Maximum Flow Based On Allowable Spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>T</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121.3                                                                                                                                   |                                                                                                                                          |                                                                                       |
|          | Flow Velocity within the Gutter Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q <sub>T</sub> =<br>V =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>121.3</b><br>52.9                                                                                                                    | 52.9                                                                                                                                     | fps                                                                                   |
|          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                                          |                                                                                       |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 52.9<br>24.7                                                                                                                            | 52.9<br>24.7                                                                                                                             |                                                                                       |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V =<br>V*d =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52.9<br>24.7<br>Minor Storm                                                                                                             | 52.9<br>24.7<br>Major Storm                                                                                                              | fps                                                                                   |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V =<br>V*d =<br>T <sub>TH</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.9<br>24.7<br>Minor Storm<br>20.4                                                                                                     | 52.9<br>24.7<br>Major Storm<br>20.4                                                                                                      | fps<br>ft                                                                             |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V =<br>V*d =<br>Т <sub>ТН</sub> =<br>Т <sub>Х ТН</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4                                                                                             | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4                                                                                              | fps                                                                                   |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V =<br>V*d =<br>Т <sub>ттн</sub> =<br>Т <sub>х тн</sub> =<br>Е <sub>о</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291                                                                                    | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291                                                                                     | fps<br>ft<br>ft                                                                       |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>X TH</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V =<br>V*d =<br>T <sub>TH</sub> =<br>T <sub>XTH</sub> =<br>E <sub>0</sub> =<br>Q <sub>XTH</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1                                                                           | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1                                                                            | fps<br>ft<br>ft<br>cfs                                                                |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>XTH</sub><br>Actual Discharge outside the Gutter Section W, (limited by distance T <sub>CROWN</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $V = V^*d =$ $T_{TH} =$ $T_{XTH} =$ $E_0 =$ $Q_{XTH} =$ $Q_X =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7                                                                  | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7                                                                   | fps<br>ft<br>ft<br>cfs<br>cfs                                                         |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>X TH</sub><br>Actual Discharge outside the Gutter Section W, (Imitted by distance T <sub>CROWN</sub> )<br>Discharge within the Gutter Section W (Q <sub>d</sub> - Q <sub>x</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V = V^* d = T_{TTH} = T_{XTH} = E_O = Q_{XTH} = Q_{YTH} = Q_{YTH$ | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0                                                          | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0                                                           | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs                                           |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>x TH</sub><br>Actual Discharge outside the Gutter Section W, (limited by distance T <sub>CROWN</sub> )<br>Discharge within the Gutter Section W (Q <sub>d</sub> - Q <sub>x</sub> )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                                                                                                                                                                                                                                                                | $V = V^* d =$ $T_{TH} =$ $T_{XTH} =$ $E_0 =$ $Q_{XTH} =$ $Q_W =$ $Q_{BACK} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6                                                  | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6                                                   | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs                             |
|          | Flow Velocity within the Gutter Section         V*d Product: Flow Velocity times Gutter Flowline Depth         Maximum Capacity for 1/2 Street based on Allowable Depth         Theoretical Water Spread         Theoretical Spread for Discharge outside the Gutter Section W (T - W)         Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)         Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>XTH</sub> Actual Discharge outside the Gutter Section W (Q <sub>d</sub> - Q <sub>x</sub> )         Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)         Total Discharge for Major & Minor Storm (Pre-Safety Factor)                                                                                                                                                                                                                                                                                                                                                 | $V = V^* d = T_{TTH} = T_{XTH} = E_O = Q_{XTH} = Q_{YTH} = Q_{YTH$ | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3                                         | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3                                          | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>X TH</sub><br>Actual Discharge outside the Gutter Section W, carried in Section T <sub>X TH</sub><br>Actual Discharge outside the Gutter Section W ( $Q_d - Q_X$ )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section                                                                                                                                                                                                                                                              | $V = V^* d = V^* d = T_{TTH} = E_0 = Q_{TTH} = Q_X = Q_{W} = Q_{BACK} = Q_{BACK} = Q = V = V = V = V = V = V = V = V = V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8                                 | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8                                  | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs                             |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>X TH</sub><br>Actual Discharge outside the Gutter Section W, (Imitted by distance T <sub>CROWN</sub> )<br>Discharge within the Gutter Section W ( $Q_d - Q_x$ )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V*d Product: Flow Velocity Times Gutter Flowline Depth                                                                                                                                                                                                       | $V = V^* d = V^* d = T_{TTH} = E_0 = Q_{TTH} = Q_X TH = Q_X TH = Q_X = Q_{BACK} = Q_BACK = Q = V = V^* d = V^* V^* V = V^$ | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4                         | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4                          | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>x TH</sub><br>Actual Discharge outside the Gutter Section W, (limited by distance T <sub>CROWN</sub> )<br>Discharge within the Gutter Section W (Q <sub>d</sub> - Q <sub>x</sub> )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge flow Velocity Within the Gutter Section<br>V*d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d ≥ 6") Storm                                                                                                                                                             | $V = V^* d =$ $T_{TH} =$ $T_{XTH} =$ $E_0 =$ $Q_{XTH} =$ $Q_{W} =$ $Q_{BACK} =$ $Q =$ $V =$ $V^* d =$ $R =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06        | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06                  | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>fps               |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>XTH</sub><br>Actual Discharge outside the Gutter Section W, (Imited by distance T <sub>CROWN</sub> )<br>Discharge within the Gutter Section W ( $Q_4 - Q_X$ )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V*d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d $\geq 6^*$ ) Storm<br>Max Flow Based on Allowable Depth (Safety Factor Applied)                                                       | $V = V^* d =$ $T_{TH} =$ $T_{XTH} =$ $C_0 =$ $Q_{XTH} =$ $Q_W =$ $Q_{BACK} =$ $Q =$ $V =$ $V^* d =$ $R =$ $Q_d =$ $Q_d =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52.9<br>24.7<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06<br><b>11.2</b>                 | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06<br>11.2          | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section $T_{XTH}$<br>Actual Discharge outside the Gutter Section W, carried in Section $T_{XTH}$<br>Actual Discharge outside the Gutter Section W ( $Q_a - Q_x$ )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V"d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d $\geq$ 6") Storm<br>Max Flow Based on Allowable Depth (Safety Factor Applied)<br>Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) | $V = V^*d = V^*d = T_{TH} = E_0 = Q_{XTH} = Q_X = Q_{ACK} = Q_{ACK} = Q_{ACK} = V = V^*d = R = Q_d = Q_d = Q_d = d = d = d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06<br>11.2<br>2.87 | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06                  | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>fps               |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section T <sub>XTH</sub><br>Actual Discharge outside the Gutter Section W, (Imited by distance T <sub>CROWN</sub> )<br>Discharge within the Gutter Section W ( $Q_4 - Q_X$ )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V*d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d $\geq 6^*$ ) Storm<br>Max Flow Based on Allowable Depth (Safety Factor Applied)                                                       | $V = V^* d =$ $T_{TH} =$ $T_{XTH} =$ $C_0 =$ $Q_{XTH} =$ $Q_W =$ $Q_{BACK} =$ $Q =$ $V =$ $V^* d =$ $R =$ $Q_d =$ $Q_d =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 52.9<br>24.7<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06<br><b>11.2</b>                 | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06<br>111.2<br>2.87 | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs |
|          | Flow Velocity within the Gutter Section<br>V*d Product: Flow Velocity times Gutter Flowline Depth<br>Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread<br>Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)<br>Theoretical Discharge outside the Gutter Section W, carried in Section $T_{XTH}$<br>Actual Discharge outside the Gutter Section W, carried in Section $T_{XTH}$<br>Actual Discharge outside the Gutter Section W ( $Q_a - Q_x$ )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V"d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d $\geq$ 6") Storm<br>Max Flow Based on Allowable Depth (Safety Factor Applied)<br>Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) | $V = V^*d = V^*d = T_{TH} = E_0 = Q_{XTH} = Q_X = Q_{ACK} = Q_{ACK} = Q_{ACK} = V = V^*d = R = Q_d = Q_d = Q_d = d = d = d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.9<br>24.7<br>Minor Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06<br>11.2<br>2.87 | 52.9<br>24.7<br>Major Storm<br>20.4<br>18.4<br>0.291<br>129.1<br>127.7<br>53.0<br>16.6<br>197.3<br>58.8<br>31.4<br>0.06<br>111.2<br>2.87 | fps<br>ft<br>ft<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs<br>cfs |





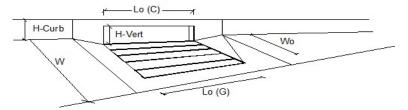



| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.7         | 4.0            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |

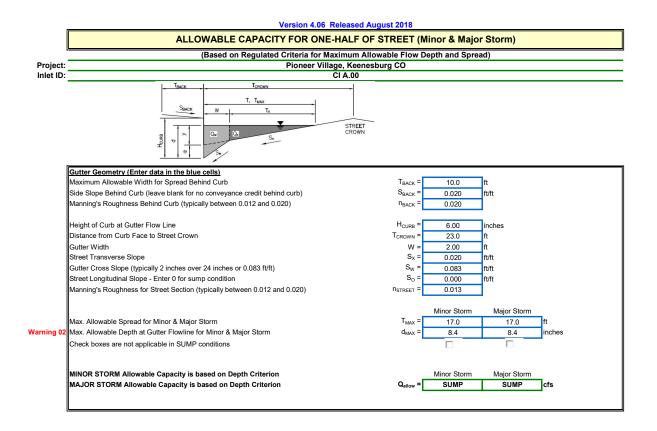
|        | Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        |                                                                                 |                                                          |                             |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|--|--|--|--|--|
|        | (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                 |                                                          |                             |  |  |  |  |  |
| ject:  | Pioneer Village - Ke                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        |                                                                                 |                                                          |                             |  |  |  |  |  |
| et ID: | CI21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B.15                                                                                                   |                                                                                 |                                                          |                             |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STREET<br>CROWN                                                                                        |                                                                                 |                                                          |                             |  |  |  |  |  |
|        | 2 0 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                        |                                                                                 |                                                          |                             |  |  |  |  |  |
|        | Gutter Geometry (Enter data in the blue cells)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ŧ                                                                                                      |                                                                                 | ٦.                                                       |                             |  |  |  |  |  |
|        | Maximum Allowable Width for Spread Behind Curb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T <sub>BACK</sub> =                                                                                    | 10.0                                                                            | ft                                                       |                             |  |  |  |  |  |
|        | Side Slope Behind Curb (leave blank for no conveyance credit behind curb)                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S <sub>BACK</sub> =                                                                                    | 0.020                                                                           | ft/ft                                                    |                             |  |  |  |  |  |
|        | Manning's Roughness Behind Curb (typically between 0.012 and 0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n <sub>BACK</sub> =                                                                                    | 0.020                                                                           |                                                          |                             |  |  |  |  |  |
|        | Height of Curb at Gutter Flow Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H <sub>CURB</sub> =                                                                                    | 4.00                                                                            | inches                                                   |                             |  |  |  |  |  |
|        | Distance from Curb Face to Street Crown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T <sub>CROWN</sub> =                                                                                   | 17.0                                                                            | ft                                                       |                             |  |  |  |  |  |
|        | Gutter Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W =                                                                                                    | 2.00                                                                            | ft                                                       |                             |  |  |  |  |  |
|        | Street Transverse Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S <sub>X</sub> =                                                                                       |                                                                                 | ft/ft                                                    |                             |  |  |  |  |  |
|        | Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S <sub>W</sub> =                                                                                       |                                                                                 | ft/ft                                                    |                             |  |  |  |  |  |
|        | Street Longitudinal Slope - Enter 0 for sump condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S <sub>o</sub> =                                                                                       | 0.008                                                                           | ft/ft                                                    |                             |  |  |  |  |  |
|        | Manning's Roughness for Street Section (typically between 0.012 and 0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n <sub>STREET</sub> =                                                                                  | 0.013                                                                           |                                                          |                             |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | Minor Storm                                                                     | Major Storm                                              |                             |  |  |  |  |  |
|        | Max. Allowable Spread for Minor & Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T <sub>MAX</sub> =                                                                                     | 17.0                                                                            | 17.0                                                     | ft                          |  |  |  |  |  |
| ng 02  | Max. Allowable Depth at Gutter Flowline for Minor & Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d <sub>MAX</sub> =                                                                                     | 6.4                                                                             | 6.4                                                      | inches                      |  |  |  |  |  |
|        | Allow Flow Depth at Street Crown (leave blank for no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                 | V                                                        | check = yes                 |  |  |  |  |  |
|        | Mavimum Canadity for 1/2 Street based On Allowable Sureed                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | Miner Sterm                                                                     | Majar Ctarm                                              |                             |  |  |  |  |  |
|        | Maximum Capacity for 1/2 Street based On Allowable Spread<br>Water Depth without Gutter Depression (Eq. ST-2)                                                                                                                                                                                                                                                                                                                                                                                                                       | v -                                                                                                    | Minor Storm<br>4.08                                                             | Major Storm<br>4.08                                      | inches                      |  |  |  |  |  |
|        | Vertical Depth without Gutter Depression (Eq. 51-2)<br>Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")                                                                                                                                                                                                                                                                                                                                                                                                           | y =<br>d <sub>c</sub> =                                                                                | 2.0                                                                             | 2.0                                                      | inches                      |  |  |  |  |  |
|        | Gutter Depression ( $d_c - (W * S_x * 12)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a=                                                                                                     | 1.51                                                                            | 1.51                                                     | inches                      |  |  |  |  |  |
|        | Water Depth at Gutter Flowline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d =                                                                                                    | 5.59                                                                            | 5.59                                                     | inches                      |  |  |  |  |  |
|        | Allowable Spread for Discharge outside the Gutter Section W (T - W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | u -<br>T <sub>X</sub> =                                                                                | 15.0                                                                            | 15.0                                                     | ft                          |  |  |  |  |  |
|        | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ê0 =                                                                                                   | 0.350                                                                           | 0.350                                                    | -                           |  |  |  |  |  |
|        | Discharge outside the Gutter Section W, carried in Section $T_x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q <sub>x</sub> =                                                                                       |                                                                                 | 7.5                                                      | cfs                         |  |  |  |  |  |
|        | Discharge within the Gutter Section W ( $Q_T - Q_X$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q <sub>W</sub> =                                                                                       | 4.1                                                                             | 4.1                                                      | cfs                         |  |  |  |  |  |
|        | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q <sub>BACK</sub> =                                                                                    | 0.6                                                                             | 0.6                                                      | cfs                         |  |  |  |  |  |
|        | Maximum Flow Based On Allowable Spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q <sub>T</sub> =                                                                                       | 12.1                                                                            | 12.1                                                     | cfs                         |  |  |  |  |  |
|        | Flow Velocity within the Gutter Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V =                                                                                                    | 5.3                                                                             | 5.3                                                      | fps                         |  |  |  |  |  |
|        | V*d Product: Flow Velocity times Gutter Flowline Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V*d =                                                                                                  | 2.5                                                                             | 2.5                                                      |                             |  |  |  |  |  |
|        | Maximum Capacity for 1/2 Street based on Allowable Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        | Minor Storm                                                                     | Major Storm                                              |                             |  |  |  |  |  |
|        | Theoretical Water Spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T <sub>TH</sub> =                                                                                      |                                                                                 | 20.4                                                     | ft                          |  |  |  |  |  |
|        | Theoretical Spread for Discharge outside the Gutter Section W (T - W)                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Т <sub>х тн</sub> =                                                                                    | 18.4                                                                            | 18.4                                                     | ft                          |  |  |  |  |  |
|        | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E <sub>o</sub> =                                                                                       | 0.291                                                                           | 0.291                                                    |                             |  |  |  |  |  |
|        | Theoretical Discharge outside the Gutter Section W, carried in Section $T_{XTH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q <sub>X TH</sub> =                                                                                    | 12.9                                                                            | 12.9                                                     | cfs                         |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q <sub>X</sub> =                                                                                       | 12.8                                                                            | 12.8                                                     | cfs                         |  |  |  |  |  |
|        | Actual Discharge outside the Gutter Section W, (limited by distance T <sub>CROWN</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                            | -^                                                                                                     |                                                                                 | 5.3                                                      | cfs                         |  |  |  |  |  |
|        | Actual Discharge outside the Gutter Section W, (limited by distance $\Gamma_{CROWN}$ )<br>Discharge within the Gutter Section W (Q <sub>d</sub> - Q <sub>X</sub> )                                                                                                                                                                                                                                                                                                                                                                  | Q <sub>W</sub> =                                                                                       | 5.3                                                                             | 0.0                                                      |                             |  |  |  |  |  |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | 5.3<br>1.7                                                                      | 1.7                                                      | cfs                         |  |  |  |  |  |
|        | Discharge within the Gutter Section W $(Q_d - Q_X)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q <sub>W</sub> =                                                                                       | 1.7<br>19.7                                                                     |                                                          | cfs<br>cfs                  |  |  |  |  |  |
|        | Discharge within the Gutter Section W ( $Q_d$ - $Q_x$ )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                                                                                                                                                                                                                                                                                                           | Q <sub>W</sub> =<br>Q <sub>BACK</sub> =                                                                | 1.7                                                                             | 1.7                                                      |                             |  |  |  |  |  |
|        | Discharge within the Gutter Section W (Q <sub>d</sub> - Q <sub>x</sub> )<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V*d Product: Flow Velocity Times Gutter Flowline Depth                                                                                                                                                                                                              | Q <sub>W</sub> =<br>Q <sub>BACK</sub> =<br>Q =<br>V =<br>V*d =                                         | 1.7<br>19.7<br>5.9<br>3.1                                                       | 1.7<br>19.7                                              | cfs                         |  |  |  |  |  |
|        | Discharge within the Gutter Section W $(Q_d - Q_x)$<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V'd Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d $\geq$ 6") Storm                                                                                                                                                | Q <sub>W</sub> =<br>Q <sub>BACK</sub> =<br>Q =<br>V =<br>V*d =<br>R =                                  | 1.7<br>19.7<br>5.9<br>3.1<br>1.00                                               | 1.7<br>19.7<br>5.9<br>3.1<br>1.00                        | cfs<br>fps                  |  |  |  |  |  |
|        | Discharge within the Gutter Section W $(Q_d - Q_x)$<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V <sup>+</sup> d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d $\geq 6^{\circ}$ ) Storm<br><b>Max Flow Based on Allowable Depth (Safety Factor Applied)</b>                                                       | Q <sub>W</sub> =<br>Q <sub>BACK</sub> =<br>Q =<br>V =<br>V*d =<br>R =<br>Q <sub>d</sub> =              | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b>                                | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b>         | cfs<br>fps<br>cfs           |  |  |  |  |  |
|        | Discharge within the Gutter Section W $(Q_d - Q_x)$<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V*d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor ( $d \ge 6^{\circ}$ ) Storm<br><b>Max Flow Based on Allowable Depth (Safety Factor Applied)</b><br>Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) | Q <sub>W</sub> =<br>Q <sub>BACK</sub> =<br>Q =<br>V =<br>V*d =<br>R =<br><b>Q<sub>d</sub> =</b><br>d = | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b><br>6.40                        | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b><br>6.40 | cfs<br>fps<br>cfs<br>inches |  |  |  |  |  |
|        | Discharge within the Gutter Section W $(Q_d - Q_x)$<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V <sup>+</sup> d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor (d $\geq 6^{\circ}$ ) Storm<br><b>Max Flow Based on Allowable Depth (Safety Factor Applied)</b>                                                       | Q <sub>W</sub> =<br>Q <sub>BACK</sub> =<br>Q =<br>V =<br>V*d =<br>R =<br>Q <sub>d</sub> =              | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b>                                | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b>         | cfs<br>fps<br>cfs           |  |  |  |  |  |
|        | Discharge within the Gutter Section W $(Q_d - Q_x)$<br>Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)<br>Total Discharge for Major & Minor Storm (Pre-Safety Factor)<br>Average Flow Velocity Within the Gutter Section<br>V*d Product: Flow Velocity Times Gutter Flowline Depth<br>Slope-Based Depth Safety Reduction Factor for Major & Minor ( $d \ge 6^{\circ}$ ) Storm<br><b>Max Flow Based on Allowable Depth (Safety Factor Applied)</b><br>Resultant Flow Depth at Gutter Flowline (Safety Factor Applied) | Q <sub>W</sub> =<br>Q <sub>BACK</sub> =<br>Q =<br>V =<br>V*d =<br>R =<br><b>Q<sub>d</sub> =</b><br>d = | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b><br>6.40<br>0.81<br>Minor Storm | 1.7<br>19.7<br>5.9<br>3.1<br>1.00<br><b>19.7</b><br>6.40 | cfs<br>fps<br>cfs<br>inches |  |  |  |  |  |



Version 4.06 Released August 2018

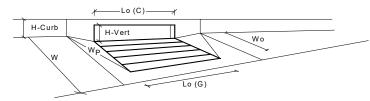



| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type F | Curb Opening | 7      |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                       | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 2.6         | 5.5          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.6          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 91           | %      |

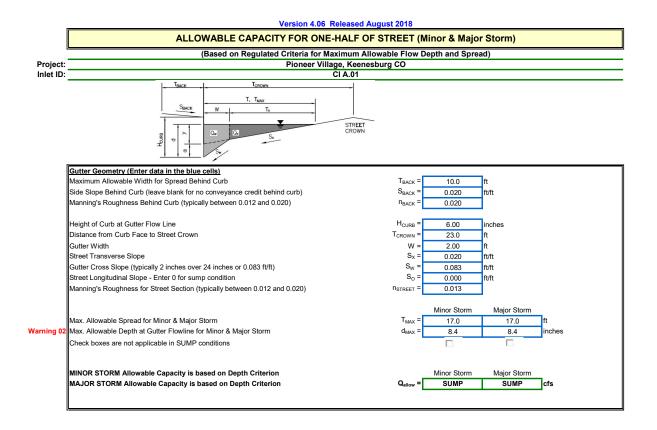

|         | Version 4.06 Released August 2018 ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--|--|--|--|--|
|         | (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
| oject:  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Keenesburg, Colorado<br>21B.16               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
| let ID: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 218.10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
|         | SEACK W Tx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
|         | Provide the second seco | STREET<br>CROWN                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
|         | Gutter Geometry (Enter data in the blue cells)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ٦.                  |                  |  |  |  |  |  |
|         | Maximum Allowable Width for Spread Behind Curb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T <sub>BACK</sub> =                          | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft                  |                  |  |  |  |  |  |
|         | Side Slope Behind Curb (leave blank for no conveyance credit behind curb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S <sub>BACK</sub> =                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft/ft               |                  |  |  |  |  |  |
|         | Manning's Roughness Behind Curb (typically between 0.012 and 0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n <sub>BACK</sub> =                          | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |  |  |  |  |  |
|         | Height of Curb at Gutter Flow Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H <sub>CURB</sub> =                          | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inches              |                  |  |  |  |  |  |
|         | Distance from Curb Face to Street Crown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T <sub>CROWN</sub> =                         | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft                  |                  |  |  |  |  |  |
|         | Gutter Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | W =                                          | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft                  |                  |  |  |  |  |  |
|         | Street Transverse Slope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S <sub>X</sub> =                             | 0.020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft/ft               |                  |  |  |  |  |  |
|         | Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S <sub>W</sub> =                             | and the second se | ft/ft               |                  |  |  |  |  |  |
|         | Street Longitudinal Slope - Enter 0 for sump condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S <sub>o</sub> =                             | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft/ft               |                  |  |  |  |  |  |
|         | Manning's Roughness for Street Section (typically between 0.012 and 0.020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n <sub>STREET</sub> =                        | 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |                  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | Minor Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major Storm         |                  |  |  |  |  |  |
|         | Max. Allowable Spread for Minor & Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T <sub>MAX</sub> =                           | 17.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.0                | ft               |  |  |  |  |  |
| ning 02 | Max. Allowable Depth at Gutter Flowline for Minor & Major Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d <sub>MAX</sub> =                           | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4                 | inches           |  |  |  |  |  |
|         | Allow Flow Depth at Street Crown (leave blank for no)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                   | check = yes      |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
|         | Maximum Capacity for 1/2 Street based On Allowable Spread<br>Water Depth without Gutter Depression (Eq. ST-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | Minor Storm<br>4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Major Storm<br>4.08 | inchos           |  |  |  |  |  |
|         | Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | y =<br>d <sub>C</sub> =                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.0                 | inches<br>inches |  |  |  |  |  |
|         | Gutter Depression ( $d_c$ - (W * $S_x$ * 12))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | a=                                           | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.51                | inches           |  |  |  |  |  |
|         | Water Depth at Gutter Flowline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a =<br>d =                                   | 5.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.59                | inches           |  |  |  |  |  |
|         | Allowable Spread for Discharge outside the Gutter Section W (T - W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u -<br>T <sub>X</sub> =                      | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15.0                | ft               |  |  |  |  |  |
|         | Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ê0 =                                         | 0.350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.350               | -                |  |  |  |  |  |
|         | Discharge outside the Gutter Section W, carried in Section $T_X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Q <sub>x</sub> =                             | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5                 | cfs              |  |  |  |  |  |
|         | Discharge within the Gutter Section W ( $Q_T - Q_X$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q <sub>W</sub> =                             | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0                 | cfs              |  |  |  |  |  |
|         | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q <sub>BACK</sub> =                          | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.4                 | cfs              |  |  |  |  |  |
|         | Maximum Flow Based On Allowable Spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Q <sub>T</sub> =                             | 8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.9                 | cfs              |  |  |  |  |  |
|         | Flow Velocity within the Gutter Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V =                                          | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.9                 | fps              |  |  |  |  |  |
|         | V*d Product: Flow Velocity times Gutter Flowline Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V*d =                                        | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.8                 |                  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
|         | Maximum Capacity for 1/2 Street based on Allowable Depth<br>Theoretical Water Spread                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T <sub>TH</sub> =                            | Minor Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major Storm         | ft               |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | т <sub>н</sub> =<br>Т <sub>х тн</sub> =      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.4                | ft               |  |  |  |  |  |
|         | Theoretical Spread for Discharge outside the Gutter Section W (T - W)<br>Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 'хтн –<br>Ео =                               | 18.4<br>0.291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.4<br>0.291       |                  |  |  |  |  |  |
|         | Theoretical Discharge outside the Gutter Section W, carried in Section $T_{XTH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | с <sub>о</sub> –<br>Q <sub>X TH</sub> =      | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.4                 | cfs              |  |  |  |  |  |
|         | Actual Discharge outside the Gutter Section W, Climited by distance T <sub>CROWN</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Q <sub>X</sub> 1H =<br>Q <sub>X</sub> =      | 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.4                 | cfs              |  |  |  |  |  |
|         | Discharge within the Gutter Section W ( $Q_d - Q_X$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Q <sub>W</sub> =                             | 3.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.9                 | cfs              |  |  |  |  |  |
|         | Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Q <sub>BACK</sub> =                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.2                 | cfs              |  |  |  |  |  |
|         | Total Discharge for Major & Minor Storm (Pre-Safety Factor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Q =                                          | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.2                 | cfs              |  |  |  |  |  |
|         | Average Flow Velocity Within the Gutter Section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q -<br>V =                                   | 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.3                 | fina             |  |  |  |  |  |
|         | V*d Product: Flow Velocity Times Gutter Flowline Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V*d =                                        | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3                 | ips              |  |  |  |  |  |
|         | Slope-Based Depth Safety Reduction Factor for Major & Minor ( $d \ge 6$ ") Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R=                                           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00                | -                |  |  |  |  |  |
|         | Max Flow Based on Allowable Depth (Safety Factor Applied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Q <sub>d</sub> =                             | 14.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.4                | cfs              |  |  |  |  |  |
|         | Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d =                                          | 6.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.40                | inches           |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.81                | inches           |  |  |  |  |  |
|         | Resultant Flow Depth at Street Crown (Safety Factor Applied)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | d <sub>CROWN</sub> =                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |                  |  |  |  |  |  |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a <sub>crown</sub> =                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maire Ote           |                  |  |  |  |  |  |
|         | Resultant Flow Depth at Street Crown (Safety Factor Applied)<br>MINOR STORM Allowable Capacity is based on Spread Criterion<br>MAJOR STORM Allowable Capacity is based on Depth Criterion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a <sub>CROWN</sub> =<br>Q <sub>allow</sub> = | Minor Storm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Major Storm<br>14.4 | cfs              |  |  |  |  |  |





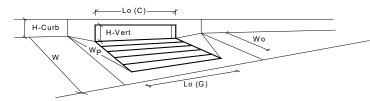



| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type I | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 5.3         | 10.4           | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.1         | 2.1            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 98          | 83             | %      |

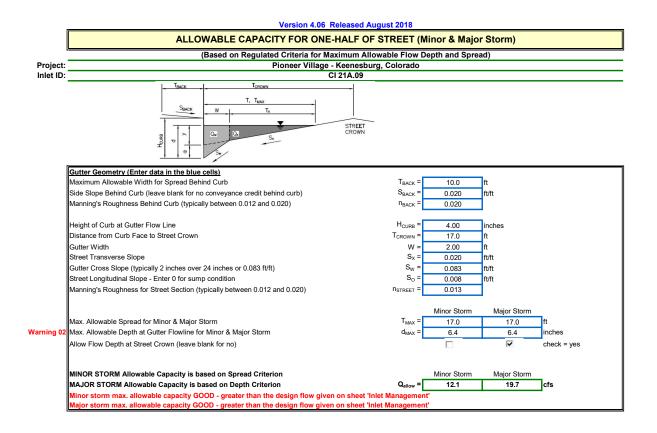



#### INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

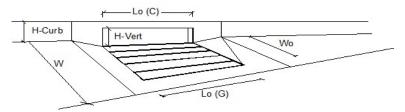



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                   |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 8.4          | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR        | 🔽 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                   |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                   |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 10.00       | 10.00        | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | C <sub>f</sub> (C) =        | 0.10        | 0.10         |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                   |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.53         | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.79         |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.91        | 1.00         |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                   |
|                                                                              | _                           | MINOR       | MAJOR        | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 6.9         | 17.9         | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 0.7         | 2.8          | cfs               |




#### INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018




| Design Information (Input) CDOT Type R Curb Opening                          |                             | MINOR       | MAJOR        |                   |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-------------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening |                   |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches            |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                   |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 5.6         | 5.6          | inches            |
| Grate Information                                                            |                             | MINOR       | MAJOR        | 🧾 Override Depths |
| Length of a Unit Grate                                                       | L <sub>o</sub> (G) =        | N/A         | N/A          | feet              |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet              |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                   |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                   |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                   |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          | 1                 |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                   |
| Length of a Unit Curb Opening                                                | L <sub>o</sub> (C) =        | 10.00       | 10.00        | feet              |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches            |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches            |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees           |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet              |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                   |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | 3.60        | 3.60         |                   |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                   |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                   |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft                |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.30        | 0.30         | ft                |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.53        | 0.53         |                   |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.91        | 0.91         |                   |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                   |
|                                                                              | _                           | MINOR       | MAJOR        | _                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 6.9         | 6.9          | cfs               |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 0.6         | 2.1          | cfs               |



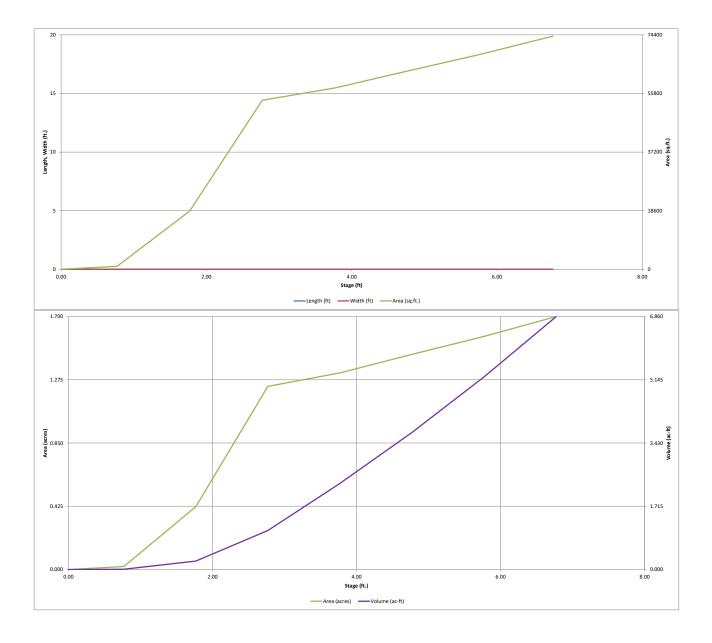






| Design Information (Input)                                                |                         | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type I | R Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 5.0         | 5.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | Cr-G =                  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                     | 3.1         | 9.5            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.9            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 91             | %      |




MHFD-Detention, Version 4.03 (May 2020)

| Project:         | Pioneer Village |
|------------------|-----------------|
| Basin ID:        | Pond 1 and 2    |
|                  | 1 AND 2 ORFICE  |
| PERMANENT ORIFIC |                 |

Depth Increment = 0.10 ft

| ZONE                                                    | 1 AND 2        | ORIFICE         |              |             | Depth Increment = | 0.10  | ft                   |        |       |                    | Optional                |        |         |         |
|---------------------------------------------------------|----------------|-----------------|--------------|-------------|-------------------|-------|----------------------|--------|-------|--------------------|-------------------------|--------|---------|---------|
| PERMANENT ORIFIC<br>POOL Example Zone                   |                | on (Retentio    | n Pond)      |             | Stage - Storage   | Stage | Optional<br>Override | Length | Width | Area               | Override                | Area   | Volume  | Volume  |
| Example 2016                                            | comgulatio     |                 | n Fond)      |             | Description       | (ft)  | Stage (ft)           | (ft)   | (ft)  | (ft <sup>2</sup> ) | Area (ft <sup>2</sup> ) | (acre) | (ft 3)  | (ac-ft) |
| Wetenshed Tefermetics                                   |                |                 |              |             |                   |       |                      |        |       |                    |                         |        | (10)    | (de te) |
| Watershed Information                                   |                | -               |              |             | Top of Micropool  |       | 0.00                 |        |       |                    | 0                       | 0.000  |         |         |
| Selected BMP Type =                                     | EDB            |                 |              |             | 4879              |       | 0.77                 |        |       |                    | 888                     | 0.020  | 342     | 0.008   |
| Watershed Area -                                        | CC AC          |                 |              |             | 4000              |       | 1.77                 |        |       |                    | 19.406                  | 0.422  | 0.090   | 0.220   |
| Watershed Area =                                        | 66.46          | acres           |              |             | 4880              |       | 1.77                 |        |       |                    | 18,406                  | 0.423  | 9,989   | 0.229   |
| Watershed Length =                                      | 3,508          | ft              |              |             | 4881              |       | 2.77                 |        |       |                    | 53,622                  | 1.231  | 46,002  | 1.056   |
| Watershed Length to Centroid =                          | 1,872          | ft              |              |             | 4882              |       | 3.77                 |        |       |                    | 57,524                  | 1.321  | 101,575 | 2.332   |
| •                                                       |                |                 |              |             | 4883              |       |                      |        |       |                    |                         |        |         |         |
| Watershed Slope =                                       | 0.011          | ft/ft           |              |             |                   |       | 4.77                 |        |       |                    | 62,952                  | 1.445  | 161,813 | 3.715   |
| Watershed Imperviousness =                              | 47.87%         | percent         |              |             | 4884              |       | 5.77                 |        |       |                    | 68,243                  | 1.567  | 227,411 | 5.221   |
| Percentage Hydrologic Soil Group A =                    | 100.0%         | percent         |              |             | 4885              |       | 6.77                 |        |       |                    | 74,017                  | 1.699  | 298,541 | 6.854   |
| Percentage Hydrologic Soil Group B =                    | 0.0%           | percent         |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Percentage Hydrologic Soil Groups C/D =                 | 0.0%           | percent         |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Target WQCV Drain Time =                                | 40.0           | hours           |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Location for 1-hr Rainfall Depths =                     | User Input     | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| After providing required inputs above inc               |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| depths, click 'Run CUHP' to generate run                |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| the embedded Colorado Urban Hydro                       | igraph Procedu | ire.            | Optional Use | r Overrides |                   |       |                      |        |       |                    |                         |        |         |         |
| Water Quality Capture Volume (WQCV) =                   | 1.111          | acre-feet       |              | acre-feet   |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              | -           |                   |       |                      |        |       |                    |                         |        |         |         |
| Excess Urban Runoff Volume (EURV) =                     | 3.624          | acre-feet       |              | acre-feet   |                   |       |                      |        |       |                    |                         |        |         |         |
| 2-yr Runoff Volume (P1 = 0.86 in.) =                    | 1.448          | acre-feet       | 0.86         | inches      |                   |       |                      |        |       |                    |                         |        |         |         |
| 5-yr Runoff Volume (P1 = 1.14 in.) =                    | 1.973          | acre-feet       | 1.14         | inches      |                   |       |                      |        |       |                    |                         |        |         |         |
| 10-yr Runoff Volume (P1 = 1.41 in.) =                   | 2.612          | acre-feet       | 1.41         | inches      |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              | -           |                   |       |                      |        |       |                    |                         |        |         |         |
| 25-yr Runoff Volume (P1 = 1.85 in.) =                   | 3.910          | acre-feet       | 1.85         | inches      |                   |       |                      |        |       |                    |                         |        |         |         |
| 50-yr Runoff Volume (P1 = 2.23 in.) =                   | 5.523          | acre-feet       | 2.23         | inches      |                   |       |                      |        |       |                    |                         |        |         |         |
| 100-yr Runoff Volume (P1 = 2.66 in.) =                  | 7.670          | acre-feet       | 2.66         | inches      |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              | -           |                   |       |                      |        |       |                    |                         |        |         |         |
| 500-yr Runoff Volume (P1 = 3.83 in.) =                  | 13.699         | acre-feet       | 3.83         | inches      |                   |       |                      |        |       |                    |                         |        |         |         |
| Approximate 2-yr Detention Volume =                     | 1.681          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Approximate 5-yr Detention Volume =                     | 2.330          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Approximate 10-yr Detention Volume =                    | 3.020          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Approximate 25-yr Detention Volume =                    | 4.253          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Approximate 50-yr Detention Volume =                    | 5.099          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Approximate 100-yr Detention Volume =                   | 6.152          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| supposition to yi Detenuori voidille =                  | 0.102          | 1.00 C 10CL     |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Define Zones and Basin Geometry                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Zone 1 Volume (WQCV) =                                  | 1.111          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Zone 2 Volume (EURV - Zone 1) =                         | 2.513          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Zone 3 Volume (100-year - Zones 1 & 2) =                | 2.528          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Total Detention Basin Volume =                          | 6.152          | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Initial Surcharge Volume (ISV) =                        | user           | ft <sup>3</sup> |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Initial Surcharge Depth (ISD) =                         | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Total Available Detention Depth (H <sub>total</sub> ) = | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Depth of Trickle Channel $(H_{TC}) =$                   | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Slope of Trickle Channel (S <sub>TC</sub> ) =           | user           | ft/ft           |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Slopes of Main Basin Sides (Smain) =                    | user           | H:V             |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Basin Length-to-Width Ratio (RL/W) =                    | user           | 1               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| basin Eerigan to Widan (dato (rt_/w) =                  | usei           | 1               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Initial Surcharge Area (A <sub>ISV</sub> ) =            | user           | ft <sup>2</sup> |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Surcharge Volume Length $(L_{ISV}) =$                   | user           | lft.            |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Surcharge Volume Width (W <sub>ISV</sub> ) =            |                | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         | user           |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Depth of Basin Floor $(H_{FLOOR}) =$                    | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Length of Basin Floor (L <sub>FLOOR</sub> ) =           | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Width of Basin Floor $(W_{FLOOR}) =$                    | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Area of Basin Floor $(A_{FLOOR}) =$                     | user           | ft <sup>2</sup> |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) =           | user           | ft <sup>3</sup> |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Depth of Main Basin (H <sub>MAIN</sub> ) =              | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Length of Main Basin (L <sub>MAIN</sub> ) =             | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Width of Main Basin (W <sub>MAIN</sub> ) =              | user           | ft              |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Area of Main Basin (A <sub>MAIN</sub> ) =               | user           | ft <sup>2</sup> |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Volume of Main Basin (V <sub>MAIN</sub> ) =             | user           | ft <sup>3</sup> |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                | -               |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
| Calculated Total Basin Volume (V <sub>total</sub> ) =   | user           | acre-feet       |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |
|                                                         |                |                 |              |             |                   |       |                      |        |       |                    |                         |        |         |         |

MHFD-Detention, Version 4.03 (May 2020)



#### DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.03 (May 2020 Project: Pioneer Village Basin ID: Pond 1 and 2 Estimated Estimated ZONE Volume (ac-ft) Stage (ft) Outlet Type VOLUME EURV WQCV Zone 1 (WQCV) 2.82 1.111 Orifice Plate 100-YEAF Zone 2 (EURV) 4.71 2.513 Orifice Plate ZONE 1 AND 2 Zone 3 (100-year) 6.36 2.528 Weir&Pipe (Restrict) Example Zone Configuration (Retention Pond) Total (all zones) 6.152 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain ft (distance below the filtration media surface) Underdrain Orifice Area Underdrain Orifice Invert Depth = N/A N/A ft<sup>2</sup> Underdrain Orifice Centroid = Underdrain Orifice Diameter = N/A inches N/A feet Calculated Parameters for Plate User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Invert of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) WO Orifice Area per Row = 3.472E-02 0.00 lft<sup>2</sup> Depth at top of Zone using Orifice Plate = 4.71 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 18.84 inches Elliptical Slot Centroid = N/A feet ft<sup>2</sup> Orifice Plate: Orifice Area per Row = 5.00 Elliptical Slot Area = sq. inches (use rectangular openings) N/A User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 1.60 3.20 Orifice Area (sq. inches) 5.00 5.00 5.00 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sg. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Not Selected Not Selected Not Selected Not Selected ft<sup>2</sup> Invert of Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area N/A N/A Depth at top of Zone using Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Centroid = N/A N/A feet inches Vertical Orifice Diameter = N/A N/A User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 4.71 ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t$ = N/A 5.88 N/A feet Overflow Weir Slope Length = Overflow Weir Front Edge Length = 8.00 N/A feet 4.81 N/A feet Overflow Weir Grate Slope = 4.00 N/A H:V Grate Open Area / 100-yr Orifice Area = 15.87 N/A Horiz. Length of Weir Sides = feet Overflow Grate Open Area w/o Debris = 28.88 ft<sup>2</sup> 4.67 N/A N/A Overflow Grate Open Area % = Overflow Grate Open Area w/ Debris = 75% N/A %, grate open area/total area 28.88 N/A fť Debris Clogging % = 0% N/A User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe = 2.50 Outlet Orifice Area = ft<sup>2</sup> N/A ft (distance below basin bottom at Stage = 0 ft) 1.82 N/A Outlet Pipe Diameter = 24.00 N/A inches Outlet Orifice Centroid : 0.64 N/A feet Restrictor Plate Height Above Pipe Invert = 13.50 . inches Half-Central Angle of Restrictor Plate on Pipe = 1.70 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= 6.36 ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 0.41 feet Spillway Crest Length = Stage at Top of Freeboard = 100.00 feet 7.77 feet Spillway End Slopes : 4.00 H:V Basin Area at Top of Freeboard 1.70 acres Freeboard above Max Water Surface = 1.00 feet Basin Volume at Top of Freeboard = 6.85 acre-ft Routed Hydrograph Results in the Inflow Hv phs table (Co nns W throu The user can override the o ring new valu EURV Design Storm Return Period = WQCV 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) = 0.86 1.14 1.41 N/A N/A 1.85 2.23 2.66 3.83 13.699 CUHP Runoff Volume (acre-ft) 1.111 3.624 1.448 1.973 2.612 3.910 5.523 7.670 Inflow Hydrograph Volume (acre-ft) = N/A N/A 1.448 1.973 2.612 3.910 5.523 7.670 13.699 CUHP Predevelopment Peak O (cfs) : N/A N/A 0.0 0.2 0.4 14.0 29.1 71.4 3.1 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A Predevelopment Unit Peak Flow, g (cfs/acre) : 0.00 N/A N/A 0.00 0.01 0.05 0.21 0.44 1.07 Peak Inflow Q (cfs) 57.0 81.9 146.2 N/A 22.0 38.0 N/A 12.5 16.5 Peak Outflow Q (cfs) : 0.5 0.9 0.5 0.6 0.7 14.3 24.2 100.6 1.2 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A 0.4 0.8 1.6 1.0 Structure Controlling Flow : Plate Overflow Weir 1 Plate Plate Plate Overflow Weir 1 Overflow Weir 1 Outlet Plate Spillway Max Velocity through Grate 1 (fps) = N/A N/A N/A N/A N/A 0.0 0.5 0.8 0.9 Max Velocity through Grate 2 (fps) = N/A N/A N/A N/A N/A N/A N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) = 80 67 83 82 73 Time to Drain 99% of Inflow Volume (hours) 40 49 60 84 84 71 88 89 87

Maximum Ponding Depth (ft) =

Maximum Volume Stored (acre-ft) =

Area at Maximum Ponding Depth (acres)

2.82

1.24

4.71

1.44

2.99

1.25

3.39

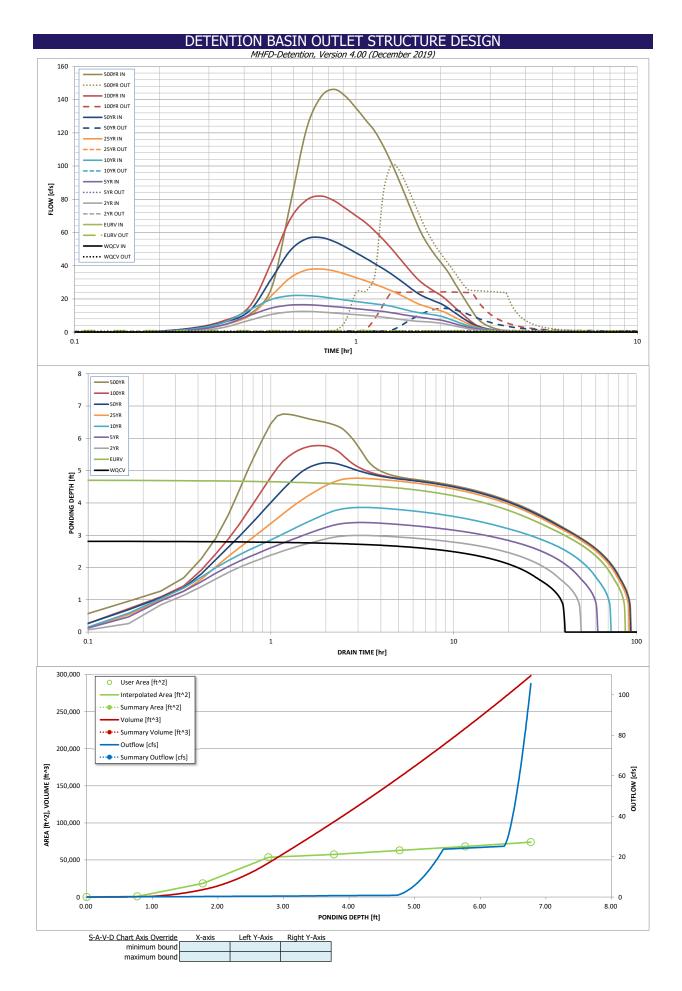
1.29

1 837

3.86

1.33

4.76


1.44 3.700 5.24

1.50

5.78

1.57

6.75 1.70 6.820



Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

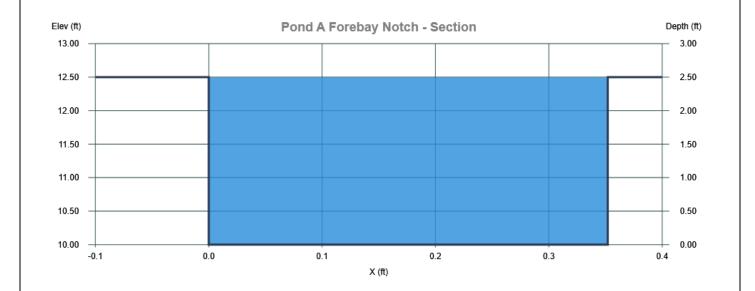
| SOURCE         CUHP         < | Icfs         500 Year [cfs]           00         0.00           00         0.00           00         0.00           00         0.00           00         0.04           01         0.056           10         10.56           12         26.25           36         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           95         120.91           85         120.91           85         120.91           85         122.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           52         46.11           15         42.00           21         38.20 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.00 min         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         | 0         0.00           00         0.00           00         0.00           00         0.00           0         0.00           0         0.84           77         4.12           00         10.56           12         26.25           36         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                 |
| 0.05:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00          | 0         0.00           0         0.84           17         4.12           10         10.56           12         26.25           86         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0         0.84           17         4.12           10         10.56           12         26.25           86         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7         4.12           00         10.56           12         26.25           86         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i0         10.56           12         26.25           86         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         127.65           85         120.91           85         112.00           72         102.26           49         92.14           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                           |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12         26.25           86         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 86         76.61           96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96         122.26           48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48         141.63           93         146.22           19         142.07           56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19         142.07           56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 56         134.91           05         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D5         127.65           85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85         120.91           85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 85         112.00           72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72         102.26           49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49         92.14           21         81.94           19         72.31           49         63.36           52         56.13           50         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21         81.94           19         72.31           49         63.36           52         56.13           60         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49         63.36           52         56.13           60         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1:40:00 $0.00$ $0.00$ $6.53$ $9.12$ $11.75$ $17.00$ $23.14$ $31.11$ $1:45:00$ $0.00$ $0.00$ $6.29$ $8.61$ $11.22$ $15.70$ $21.26$ $28.11$ $1:50:00$ $0.00$ $0.00$ $6.08$ $8.14$ $10.73$ $14.67$ $19.76$ $26.11$ $1:55:00$ $0.00$ $0.00$ $5.75$ $7.69$ $10.23$ $13.75$ $18.42$ $24.11$ $2:00:00$ $0.00$ $0.00$ $5.35$ $7.24$ $9.64$ $12.90$ $17.16$ $22.11$ $2:05:00$ $0.00$ $0.00$ $4.24$ $5.78$ $7.67$ $10.28$ $13.54$ $17.12$ $2:105:00$ $0.00$ $0.00$ $4.24$ $5.78$ $7.67$ $10.28$ $13.54$ $17.12$ $2:105:00$ $0.00$ $0.00$ $3.67$ $5.01$ $6.64$ $8.89$ $11.63$ $14.12$ $2:20:00$ $0.00$ $0.00$ $3.67$ $5.01$ $6.64$ $8.89$ $11.63$ $14.12$ $2:20:00$ $0.00$ $0.00$ $2.65$ $3.60$ $4.76$ $6.31$ $8.08$ $10.12$ $2:25:00$ $0.00$ $0.00$ $1.77$ $2.42$ $3.21$ $4.08$ $5.01$ $6.64$ $2:30:00$ $0.00$ $0.00$ $1.77$ $2.42$ $3.21$ $4.08$ $5.01$ $6.64$ $2:40:00$ $0.00$ $0.00$ $1.77$ $2.42$ $3.21$ $4.08$ $5.01$ $6.64$ $2:40:00$ $0.00$ $0.00$ $1.77$ $2.42$ $3.21$ </td <td>52         56.13           60         50.68           25         46.11           15         42.00           21         38.20</td>                                                                                                                                 | 52         56.13           60         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60         50.68           25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25         46.11           15         42.00           21         38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15 42.00<br>21 38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21 38.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 85 33.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27 29.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2:25:00         0.00         0.00         2.65         3.60         4.76         6.31         8.08         10.           2:30:00         0.00         0.00         2.18         2.97         3.94         5.15         6.48         7.5           2:35:00         0.00         0.00         1.77         2.42         3.21         4.08         5.01         6.0           2:40:00         0.00         0.00         1.45         1.99         2.64         3.16         3.77         4.4           2:45:00         0.00         0.00         1.20         1.66         2.21         2.50         2.97         3.3           2:50:00         0.00         0.00         1.00         1.40         1.86         2.03         2.39         2.6           2:55:00         0.00         0.00         1.00         1.40         1.86         2.03         2.39         2.6           3:00:00         0.00         0.00         0.70         0.97         1.30         1.35         1.58         1.0           3:00:00         0.00         0.00         0.79         0.81         1.08         1.10         1.29         1.3           3:10:00         0.00         0.49<                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2:30:00         0.00         0.00         2.18         2.97         3.94         5.15         6.48         7.5           2:35:00         0.00         0.00         1.77         2.42         3.21         4.08         5.01         6.0           2:40:00         0.00         0.00         1.45         1.99         2.64         3.16         3.77         4.4           2:45:00         0.00         0.00         1.20         1.66         2.21         2.50         2.97         3.3           2:50:00         0.00         0.00         1.00         1.40         1.86         2.03         2.39         2.6           2:55:00         0.00         0.00         0.84         1.17         1.56         1.66         1.95         2.0           3:00:00         0.00         0.00         0.70         0.97         1.30         1.35         1.58         1.6           3:05:00         0.00         0.00         0.49         0.67         0.89         0.90         1.05         1.0           3:10:00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.33         0.45<                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2:40:00         0.00         0.00         1.45         1.99         2.64         3.16         3.77         4.4           2:45:00         0.00         0.00         1.20         1.66         2.21         2.50         2.97         3.3           2:50:00         0.00         0.00         1.00         1.40         1.86         2.03         2.39         2.6           2:55:00         0.00         0.00         0.84         1.17         1.56         1.66         1.95         2.0           3:00:00         0.00         0.00         0.70         0.97         1.30         1.35         1.58         1.6           3:00:00         0.00         0.00         0.59         0.81         1.08         1.10         1.29         1.3           3:10:00         0.00         0.049         0.67         0.89         0.90         1.05         1.0           3:15:00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.33         0.45         0.60         0.60         0.55         0.5                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2:45:00         0.00         0.00         1.20         1.66         2.21         2.50         2.97         3.3           2:50:00         0.00         0.00         1.00         1.40         1.86         2.03         2.39         2.6           2:55:00         0.00         0.00         0.84         1.17         1.56         1.66         1.95         2.0           3:00:00         0.00         0.00         0.70         0.97         1.30         1.35         1.58         1.6           3:00:00         0.00         0.00         0.59         0.81         1.08         1.10         1.29         1.3           3:10:00         0.00         0.09         0.67         0.89         0.90         1.05         1.0           3:15:00         0.00         0.49         0.67         0.89         0.90         1.05         1.0           3:15:00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.33         0.45         0.60         0.60         0.5           3:22:00         0.00         0.00         0.27         0.36         0.48         0.49         0.56<                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2:55:00         0.00         0.00         0.84         1.17         1.56         1.66         1.95         2.0           3:00:00         0.00         0.00         0.70         0.97         1.30         1.35         1.58         1.6           3:05:00         0.00         0.00         0.59         0.81         1.08         1.10         1.29         1.3           3:10:00         0.00         0.00         0.49         0.67         0.89         0.90         1.05         1.0           3:15:00         0.00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.00         0.33         0.45         0.60         0.60         0.70         0.6           3:25:00         0.00         0.00         0.27         0.36         0.48         0.49         0.56         0.5                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:00:00         0.00         0.00         0.70         0.97         1.30         1.35         1.58         1.6           3:05:00         0.00         0.00         0.59         0.81         1.08         1.10         1.29         1.3           3:10:00         0.00         0.00         0.49         0.67         0.89         0.90         1.05         1.0           3:15:00         0.00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.00         0.33         0.45         0.60         0.60         0.70         0.6           3:25:00         0.00         0.00         0.27         0.36         0.48         0.49         0.56         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3:05:00         0.00         0.00         0.59         0.81         1.08         1.10         1.29         1.3           3:10:00         0.00         0.00         0.49         0.67         0.89         0.90         1.05         1.0           3:15:00         0.00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.00         0.33         0.45         0.60         0.60         0.70         0.6           3:25:00         0.00         0.00         0.27         0.36         0.48         0.49         0.56         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:10:00         0.00         0.00         0.49         0.67         0.89         0.90         1.05         1.0           3:15:00         0.00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.00         0.33         0.45         0.60         0.60         0.70         0.6           3:25:00         0.00         0.00         0.27         0.36         0.48         0.49         0.56         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:15:00         0.00         0.00         0.41         0.55         0.74         0.74         0.86         0.8           3:20:00         0.00         0.00         0.33         0.45         0.60         0.60         0.70         0.6           3:25:00         0.00         0.00         0.27         0.36         0.48         0.49         0.56         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:20:00         0.00         0.00         0.33         0.45         0.60         0.60         0.70         0.6           3:25:00         0.00         0.00         0.27         0.36         0.48         0.49         0.56         0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:25:00 0.00 0.00 0.27 0.36 0.48 0.49 0.56 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:30:00 0.00 0.22 0.28 0.38 0.39 0.44 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>3:35:00</u> 0.00 0.00 0.17 0.22 0.30 0.30 0.34 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:40:00         0.00         0.00         0.12         0.16         0.23         0.22         0.25         0.2           3:45:00         0.00         0.00         0.09         0.12         0.16         0.16         0.18         0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:45:00         0.00         0.00         0.09         0.12         0.16         0.16         0.18         0.1           3:50:00         0.00         0.00         0.06         0.08         0.11         0.11         0.12         0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3:55:00 0.00 0.00 0.03 0.05 0.07 0.07 0.07 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4:00:00 0.00 0.00 0.02 0.03 0.04 0.03 0.03 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4:05:00         0.00         0.01         0.01         0.02         0.01         0.01         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4:10:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           4:15:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4:13:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4:25:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4:30:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           4:35:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4:40:00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>4:45:00</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4:50:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           4:55:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>5:00:00</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5:05:00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5:10:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           5:15:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u>5:20:00</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5:25:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5:30:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           5:35:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u>5:40:00</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5:45:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 0.00<br>0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5:50:00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00          | 0 0.00<br>10 0.00<br>10 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5:55:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00         0:00          | 0 0.00<br>10 0.00<br>10 0.00<br>10 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

MHFD-Detention, Version 4.03 (May 2020) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| Stage - Storage<br>Description | Stage<br>[ft] | Area<br>[ft <sup>2</sup> ] | Area<br>[acres] | Volume<br>[ft <sup>3</sup> ] | Volume<br>[ac-ft] | Total<br>Outflow<br>[cfs] |                                                                                      |
|--------------------------------|---------------|----------------------------|-----------------|------------------------------|-------------------|---------------------------|--------------------------------------------------------------------------------------|
|                                |               |                            |                 |                              |                   |                           | For best results, include the                                                        |
|                                |               |                            |                 |                              |                   |                           | stages of all grade slope<br>changes (e.g. ISV and Floor)<br>from the S-A-V table on |
|                                |               |                            |                 |                              |                   |                           | changes (e.g. ISV and Floor)                                                         |
|                                |               |                            |                 |                              |                   |                           | Sheet 'Basin'.                                                                       |
|                                |               |                            |                 |                              |                   |                           | Sheet Basin.                                                                         |
|                                |               |                            |                 |                              |                   |                           | Also include the inverts of all                                                      |
|                                |               |                            |                 |                              |                   |                           | outlets (e.g. vertical orifice,                                                      |
|                                |               |                            |                 |                              |                   |                           | overflow grate, and spillway,                                                        |
|                                |               |                            |                 |                              |                   |                           | where applicable).                                                                   |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                | -             |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           | ]                                                                                    |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | ]                                                                                    |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | ]                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | _                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 4                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           | 1                                                                                    |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           | -                                                                                    |
|                                |               |                            |                 |                              |                   |                           |                                                                                      |

## Pond A Forebay Notch


04-01-2021

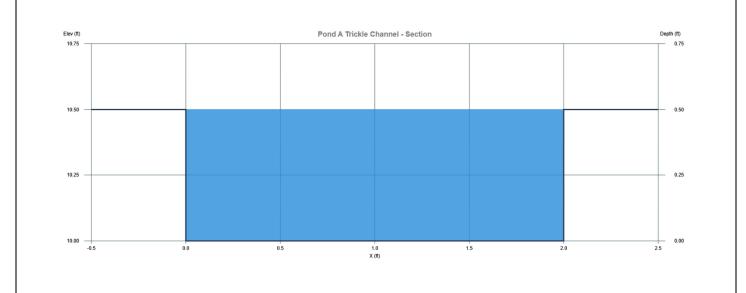
## Channel 1

Project Name: New Project

| RECTANGULAR      |            | DISCHARGE |            |
|------------------|------------|-----------|------------|
| Bottom Width     | = 0.35 ft  | Method    | = Known Q  |
| Total Depth      | = 2.50 ft  | Known Q   | = 1.64 cfs |
| Invert Elevation | = 10.00 ft |           |            |
| Channel Slope    | = 0.300 %  |           |            |
| Manning's n      | = 0.013    |           |            |

| Flow  | Depth | Area   | Velocity | WP   | n-value | Crit Depth | HGL   | EGL   | Max Shear | Top Width |
|-------|-------|--------|----------|------|---------|------------|-------|-------|-----------|-----------|
| (cfs) | (ft)  | (sqft) | (ft/s)   | (ft) |         | (ft)       | (ft)  | (ft)  | (lb/sqft) | (ft)      |
| 1.64  | 2.49  | 0.88   | 1.87     | 5.33 | 0.013   | 0.88       | 12.49 | 12.54 | 0.47      | 0.35      |




## **Pond A Trickle Channel**

04-09-2021

## **Channel 1**

| RECTANGULAR      |            | DISCHARGE  |              |
|------------------|------------|------------|--------------|
| Bottom Width     | = 2.00 ft  | Method     | = Q vs Depth |
| Total Depth      | = 0.50 ft  | Q Min      | = 0.11 cfs   |
| Invert Elevation | = 10.00 ft | Q Max      | = 3.88 cfs   |
| Channel Slope    | = 0.500 %  | Increments | = 10         |
| Manning's n      | = 0.013    |            |              |

| Flow  | Depth | Area   | Velocity | WP   | n-value | Crit Depth | HGL   | EGL   | Max Shear | Top Width |
|-------|-------|--------|----------|------|---------|------------|-------|-------|-----------|-----------|
| (cfs) | (ft)  | (sqft) | (ft/s)   | (ft) |         | (ft)       | (ft)  | (ft)  | (lb/sqft) | (ft)      |
| 3.88  | 0.50  | 1.00   | 3.88     | 3.00 | 0.013   | 0.49       | 10.50 | 10.73 | 0.16      | 2.00      |



MHFD-Detention, Version 4.04 (February 2021)

| Basin ID: Pond B                                           |                     |
|------------------------------------------------------------|---------------------|
| ZONE 2<br>ZONE 2<br>ZONE 1<br>ZONE 1 AND 2<br>ZONE 1 AND 2 | 100-YEAR<br>ORIFICE |

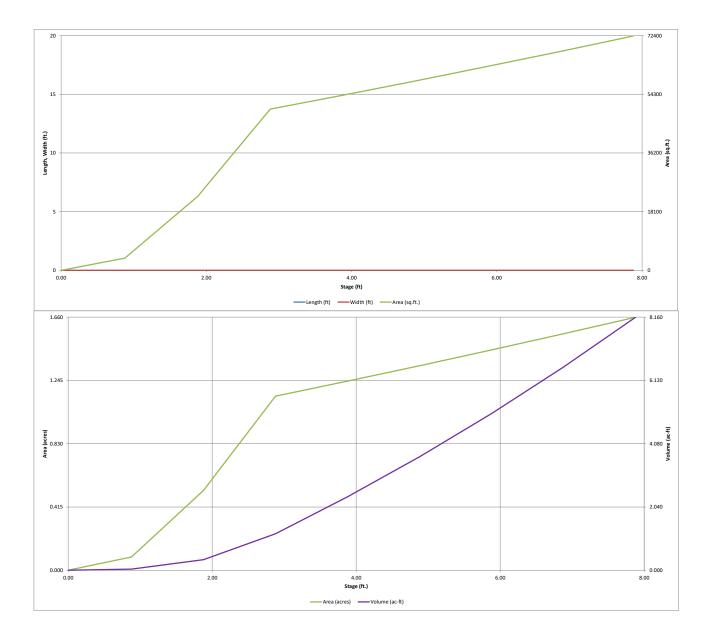
Watershed Information

| Selected BMP Type =                     | EDB        |         |
|-----------------------------------------|------------|---------|
| Watershed Area =                        | 51.64      | acres   |
| Watershed Length =                      | 4,072      | ft      |
| Watershed Length to Centroid =          | 1,942      | ft      |
| Watershed Slope =                       | 0.014      | ft/ft   |
| Watershed Imperviousness =              | 58.00%     | percent |
| Percentage Hydrologic Soil Group A =    | 50.0%      | percent |
| Percentage Hydrologic Soil Group B =    | 50.0%      | percent |
| Percentage Hydrologic Soil Groups C/D = | 0.0%       | percent |
| Target WQCV Drain Time =                | 40.0       | hours   |
| Location for 1-hr Rainfall Depths =     | User Input |         |

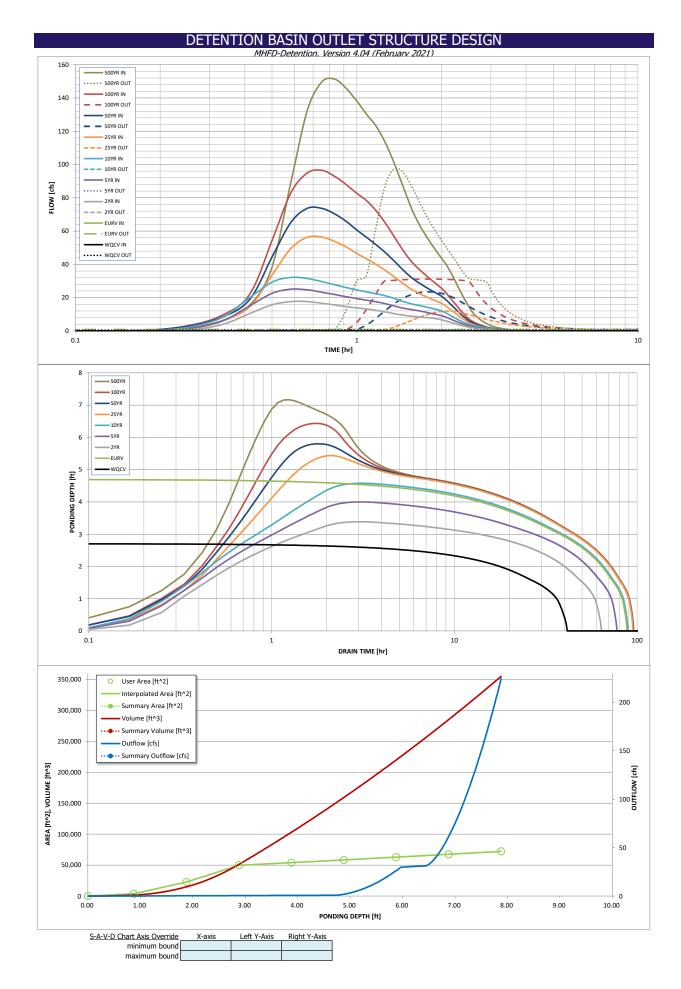
# After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

| are embedded colorado orban nyare      | giupiirioceue |           | Optional User | 0   |
|----------------------------------------|---------------|-----------|---------------|-----|
| Water Quality Capture Volume (WQCV) =  | 0.988         | acre-feet |               | acı |
| Excess Urban Runoff Volume (EURV) =    | 3.420         | acre-feet |               | acı |
| 2-yr Runoff Volume (P1 = 0.86 in.) =   | 1.890         | acre-feet | 0.86          | inc |
| 5-yr Runoff Volume (P1 = 1.14 in.) =   | 2.671         | acre-feet | 1.14          | inc |
| 10-yr Runoff Volume (P1 = 1.41 in.) =  | 3.438         | acre-feet | 1.41          | inc |
| 25-yr Runoff Volume (P1 = 1.85 in.) =  | 5.370         | acre-feet | 1.85          | inc |
| 50-yr Runoff Volume (P1 = 2.23 in.) =  | 6.941         | acre-feet | 2.23          | inc |
| 100-yr Runoff Volume (P1 = 2.66 in.) = | 9.020         | acre-feet | 2.66          | inc |
| 500-yr Runoff Volume (P1 = 3.83 in.) = | 14.217        | acre-feet | 3.83          | inc |
| Approximate 2-yr Detention Volume =    | 1.739         | acre-feet |               |     |
| Approximate 5-yr Detention Volume =    | 2.438         | acre-feet |               |     |
| Approximate 10-yr Detention Volume =   | 3.245         | acre-feet |               |     |
| Approximate 25-yr Detention Volume =   | 4.257         | acre-feet |               |     |
| Approximate 50-yr Detention Volume =   | 4.901         | acre-feet |               |     |
| Approximate 100-yr Detention Volume =  | 5.754         | acre-feet |               |     |
|                                        |               |           |               |     |

#### Define Zones and Basin Geometry


| The Lones and Basin Besined)                      |       |                 |
|---------------------------------------------------|-------|-----------------|
| Zone 1 Volume (WQCV) =                            | 0.988 | acre-feet       |
| Zone 2 Volume (EURV - Zone 1) =                   | 2.432 | acre-feet       |
| Zone 3 Volume (100-year - Zones 1 & 2) =          | 2.334 | acre-feet       |
| Total Detention Basin Volume =                    | 5.754 | acre-feet       |
| Initial Surcharge Volume (ISV) =                  | user  | ft <sup>3</sup> |
| Initial Surcharge Depth (ISD) =                   | user  | ft              |
| Total Available Detention Depth $(H_{total}) =$   | user  | ft              |
| Depth of Trickle Channel (H <sub>TC</sub> ) =     | user  | ft              |
| Slope of Trickle Channel (S <sub>TC</sub> ) =     | user  | ft/ft           |
| Slopes of Main Basin Sides (S <sub>main</sub> ) = | user  | H:V             |
| Basin Length-to-Width Ratio (R <sub>L/W</sub> ) = | user  |                 |
|                                                   |       |                 |
| Initial Surcharge Area (A <sub>ISV</sub> ) =      | user  | ft <sup>2</sup> |
| Surcharge Volume Length $(L_{ISV}) =$             | user  | ft              |
| Surcharge Volume Width ( $W_{ISV}$ ) =            | user  | ft              |
| Depth of Basin Floor (H <sub>FLOOR</sub> ) =      | user  | ft              |
| Length of Basin Floor $(L_{FLOOR}) =$             | user  | ft              |
| Width of Basin Floor (W <sub>FLOOR</sub> ) =      | user  | ft              |
| Area of Basin Floor (A <sub>FLOOR</sub> ) =       | user  | ft <sup>2</sup> |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) =     | user  | ft <sup>3</sup> |
| Depth of Main Basin $(H_{MAIN}) =$                | user  | ft              |
| Length of Main Basin $(L_{MAIN}) =$               | user  | ft              |
| Width of Main Basin ( $W_{MAIN}$ ) =              | user  | ft              |
| Area of Main Basin (A <sub>MAIN</sub> ) =         | user  | ft <sup>2</sup> |
| Volume of Main Basin (V <sub>MAIN</sub> ) =       | user  | ft <sup>3</sup> |
| Calculated Total Pacin Volume (V ) -              |       | acro foot       |

Calculated Total Basin Volume (V<sub>total</sub>) = user


acre-feet

| nd)         Stage - Storage<br>Description         Stage<br>(ft)         Override<br>Stage (ft)         Length<br>(ft)         With<br>(ft)         Area<br>(ft)         Volume<br>(ft)         Volume<br>(ft) |      |        | Depth Increment = | ft<br>Optional |      | <br>Optional |       |          |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|-------------------|----------------|------|--------------|-------|----------|---------|
| ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage <th< th=""><th>nd)</th><th></th><th></th><th>Override</th><th></th><th>Override</th><th></th><th></th><th>Volume</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd)  |        |                   | Override       |      | Override     |       |          | Volume  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       | (ft 3)   | (ac-ft) |
| <form>&lt;   <tr></tr></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                   |                |      |              |       | 1 665    | 0.038   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          | 0.344   |
| Image                                                                                                                                                                                                                                                                                                                                                                                                   |      |        |                   |                |      |              |       |          | 1.176   |
| <form><form>447447555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555</form></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |                   |                |      |              |       |          | 2.368   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              | 1.342 | 159,386  | 3.659   |
| <form><tbod>94801111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111<t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>5.053</th></t<></tbod></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |                   |                |      |              |       |          | 5.053   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          | 6.551   |
| <form><tbod>&gt;&gt;&lt;</tbod></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        | 4880              | 7.88           |      | 72,280       | 1.659 | 355,269  | 8.156   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          |         |
| 14     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                   |                |      |              |       |          |         |
| <form><form><form><form></form></form></form></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        |                   |                | <br> |              |       |          |         |
| 121     none     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1    1    1     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l.41 | inches |                   |                |      |              |       |          |         |
| 164     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1    1    1    1    1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |        |                   |                |      |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                |      |              |       |          |         |
| No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |        |                   |                |      |              |       |          |         |
| NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |        |                   |                |      |              |       |          |         |
| NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |        |                   |                |      |              |       |          |         |
| No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |                   |                |      |              |       | <u> </u> |         |
| IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII <th< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |        |                   |                | <br> |              |       |          |         |
| NotNotNotNotNotNotNotNotNot141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414141414 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |        |                   |                |      |              |       |          |         |
| 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |        |                   |                |      |              |       |          |         |
| NorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNorNor<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.No.<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| NotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNot <t< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |        |                   |                | <br> |              |       |          |         |
| NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |                   |                |      |              |       |          |         |
| NoNoNoNoNoNoNoNoNoNo100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |                   |                |      |              |       |          |         |
| IndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndepIndep<Indep<Indep<IndepIndep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Indep<Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                | <br> |              |       |          |         |
| IndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndIndI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |        |                   |                | <br> |              |       |          |         |
| NotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNot<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                | <br> |              |       |          |         |
| NotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNot<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| NotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNot <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |        |                   |                |      |              |       |          |         |
| A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| NotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNotNot <t< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |        |                   |                | <br> |              |       |          |         |
| IndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndexIndex <th< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |        |                   |                | <br> |              |       |          |         |
| ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |        |                   |                |      |              |       |          |         |
| ImageImageImageImageImageImageImage100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |        |                   |                |      |              |       |          |         |
| ImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImageImage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |        |                   |                |      |              |       |          |         |
| M-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM-MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                |      |              |       |          |         |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
| Image         Image <th< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
| ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·         ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |        |                   |                | <br> |              |       |          |         |
| image         image <t< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                             |      |        |                   |                | <br> |              |       |          |         |
| image         image <t< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                             |      |        |                   |                | <br> |              |       |          |         |
| image         image <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                  |      |        |                   |                |      |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
| i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |        |                   |                | <br> |              |       |          |         |
| i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |        |                   |                | <br> |              |       |          |         |
| 44 $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ <t< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
| 44 $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ <t< td=""><td></td><td></td><td></td><td></td><td><br/></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
| 44 $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ $44$ <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |                   |                |      |              |       |          |         |
| i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i<         i         i<         i<         i< <td></td> <td></td> <td></td> <td></td> <td><br/></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |        |                   |                | <br> |              |       |          |         |
| i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i         i<         i         i<         i<         i <td></td> <td></td> <td></td> <td></td> <td><br/></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |        |                   |                | <br> |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
| NO         NO<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |                   |                | <br> |              |       |          |         |
| NO         NO<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |        |                   |                | <br> |              |       |          |         |
| 100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td></td> <td></td> <td></td> <td></td> <td><br/></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                        |      |        |                   |                | <br> |              |       |          |         |
| 100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100 <td></td> <td></td> <td></td> <td></td> <td><br/></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                        |      |        |                   |                | <br> |              |       |          |         |
| iii         iii         iii         iii         iii         iii         iii           iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii         iii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |        |                   |                | <br> |              |       |          |         |
| iii         iiii         iii         iii         iii         iii         iii         iiii         iiii         iiii         iiiii         iiiiii         iiiiiii         iiiiiiii         iiiiiiiiii         iiiiiiiiii         iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |        |                   |                | <br> |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |        |                   |                | <br> |              |       |          |         |

MHFD-Detention, Version 4.04 (February 2021)



| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pioneer Village ~                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                        | -D-Detention, Vers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sion 4.04 (Februai                                                                                                                     | Y 2021)                                                                                                                                                                                  |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Basin ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| ZONE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Estimated                                                                                                                              | Estimated                                                                                                                                                                                |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| -ZONE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Stage (ft)                                                                                                                             | Volume (ac-ft)                                                                                                                                                                           | Outlet Type                                                                                                                                                                                           |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 1 (WQCV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.71                                                                                                                                   | 0.988                                                                                                                                                                                    | Orifice Plate                                                                                                                                                                                         | 1                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| ZONE 1 AND 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100-YEAR<br>ORIFICE                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 2 (EURV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.71                                                                                                                                   | 2.432                                                                                                                                                                                    | Orifice Plate                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| PERMANENT ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 (100-year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.36                                                                                                                                   | 2.334                                                                                                                                                                                    | Weir&Pipe (Restrict)                                                                                                                                                                                  |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| Example Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Configuration (Re                                                                                                                                              | tention Pond)                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total (all zones)                                                                                                                      | 5.754                                                                                                                                                                                    |                                                                                                                                                                                                       | •                                                                                                                                                                            |                                                                                                                                                                   |                                                                                                                    |
| User Input: Orifice at Underdrain Outlet (typicall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | v used to drain WC                                                                                                                                             | CV in a Filtration B                                                                                                                                                                                                                                                                                                                                                                                                                   | MP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ,                                                                                                                                    |                                                                                                                                                                                          |                                                                                                                                                                                                       | Calculated Parame                                                                                                                                                            | ters for Underdrain                                                                                                                                               |                                                                                                                    |
| Underdrain Orifice Invert Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        | the filtration media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | surface)                                                                                                                               | Underd                                                                                                                                                                                   | rain Orifice Area =                                                                                                                                                                                   |                                                                                                                                                                              | ft <sup>2</sup>                                                                                                                                                   |                                                                                                                    |
| Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                | inches                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Surrace)                                                                                                                               |                                                                                                                                                                                          | Orifice Centroid =                                                                                                                                                                                    |                                                                                                                                                                              | feet                                                                                                                                                              |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                | Inches                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | onderdidin                                                                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| User Input: Orifice Plate with one or more orific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es or Elliptical Slot                                                                                                                                          | Weir (typically used                                                                                                                                                                                                                                                                                                                                                                                                                   | to drain WOCV and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d/or ELID\/ in a ced                                                                                                                   | imentation BMP)                                                                                                                                                                          |                                                                                                                                                                                                       | Calculated Parame                                                                                                                                                            | tors for Diato                                                                                                                                                    |                                                                                                                    |
| Invert of Lowest Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                        | bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                                                          | ce Area per Row =                                                                                                                                                                                     | 3.368E-02                                                                                                                                                                    | ft <sup>2</sup>                                                                                                                                                   |                                                                                                                    |
| Depth at top of Zone using Orifice Plate =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.71                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                        | bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                      |                                                                                                                                                                                          | ptical Half-Width =                                                                                                                                                                                   | N/A                                                                                                                                                                          | feet                                                                                                                                                              |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        | i Dolloin al Slage -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 0 10)                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.80                                                                                                                                                          | inches                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | •                                                                                                                                                                                        | cal Slot Centroid =                                                                                                                                                                                   | N/A                                                                                                                                                                          | feet                                                                                                                                                              |                                                                                                                    |
| Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.85                                                                                                                                                           | sq. inches (use rec                                                                                                                                                                                                                                                                                                                                                                                                                    | tangular openings)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                        | E                                                                                                                                                                                        | lliptical Slot Area =                                                                                                                                                                                 | N/A                                                                                                                                                                          | ft <sup>2</sup>                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| User Input: Stage and Total Area of Each Orific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | 1                                                                                                                                                                                        |                                                                                                                                                                                                       | 1                                                                                                                                                                            | 1                                                                                                                                                                 | 1                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Row 1 (required)                                                                                                                                               | Row 2 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 3 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Row 4 (optional)                                                                                                                       | Row 5 (optional)                                                                                                                                                                         | Row 6 (optional)                                                                                                                                                                                      | Row 7 (optional)                                                                                                                                                             | Row 8 (optional)                                                                                                                                                  | 1                                                                                                                  |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                           | 1.57                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.85                                                                                                                                                           | 4.85                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   | ]                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   | -                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Row 9 (optional)                                                                                                                                               | Row 10 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                      | Row 11 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Row 12 (optional)                                                                                                                      | Row 13 (optional)                                                                                                                                                                        | Row 14 (optional)                                                                                                                                                                                     | Row 15 (optional)                                                                                                                                                            | Row 16 (optional)                                                                                                                                                 |                                                                                                                    |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   | 1                                                                                                                  |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   | 1                                                                                                                  |
| User Input: Vertical Orifice (Circular or Rectange                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ular)                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       | Calculated Parame                                                                                                                                                            | ters for Vertical Ori                                                                                                                                             | fice                                                                                                               |
| +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Selected                                                                                                                                                   | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       | Not Selected                                                                                                                                                                 | Not Selected                                                                                                                                                      | 1                                                                                                                  |
| Invert of Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | ft (relative to basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bottom at Stage -                                                                                                                      | -0ft) Ver                                                                                                                                                                                | tical Orifice Area =                                                                                                                                                                                  | N/A                                                                                                                                                                          | N/A                                                                                                                                                               | ft <sup>2</sup>                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                      |                                                                                                                                                                                          |                                                                                                                                                                                                       | N/A                                                                                                                                                                          |                                                                                                                                                                   | 1                                                                                                                  |
| Depth at top of Zone using Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft (relative to basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | i Dollom al Slage =                                                                                                                    | = 0 IL) Vertica                                                                                                                                                                          | Orifice Centroid =                                                                                                                                                                                    | IN/A                                                                                                                                                                         | N/A                                                                                                                                                               | feet                                                                                                               |
| Vertical Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| User Input: Overflow Weir (Dropbox with Flat o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r Sloped Grate and                                                                                                                                             | Outlet Pipe OR Rec                                                                                                                                                                                                                                                                                                                                                                                                                     | tangular/Trapezoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | al Weir (and No Ou                                                                                                                     | itlet Pipe)                                                                                                                                                                              |                                                                                                                                                                                                       | Calculated Parame                                                                                                                                                            | ters for Overflow W                                                                                                                                               | <u>/eir</u>                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir                                                                                                                                                    | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       | Zone 3 Weir                                                                                                                                                                  | Not Selected                                                                                                                                                      |                                                                                                                    |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.71                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | ft (relative to basin b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ottom at Stage = 0 f                                                                                                                   | t) Height of Grate                                                                                                                                                                       | Upper Edge, H <sub>t</sub> =                                                                                                                                                                          | 5.88                                                                                                                                                                         | N/A                                                                                                                                                               | feet                                                                                                               |
| Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.00                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                      | Overflow W                                                                                                                                                                               | eir Slope Length =                                                                                                                                                                                    | 4.81                                                                                                                                                                         | N/A                                                                                                                                                               | feet                                                                                                               |
| Overflow Weir Grate Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | H:V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Gr                                                                                                                                     | ate Open Area / 10                                                                                                                                                                       |                                                                                                                                                                                                       | 10.00                                                                                                                                                                        | N/A                                                                                                                                                               |                                                                                                                    |
| Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.67                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                        | verflow Grate Open                                                                                                                                                                       |                                                                                                                                                                                                       | 26.80                                                                                                                                                                        | N/A                                                                                                                                                               | ft <sup>2</sup>                                                                                                    |
| Overflow Grate Type =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Type C Grate                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | Overflow Grate Open                                                                                                                                                                      |                                                                                                                                                                                                       | 26.80                                                                                                                                                                        | N/A                                                                                                                                                               | ft <sup>2</sup>                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C C                                                                                                                                    | Weillow Grate Oper                                                                                                                                                                       | TATEd W/ DEDTIS -                                                                                                                                                                                     | 20.00                                                                                                                                                                        | IN/A                                                                                                                                                              | Jrt                                                                                                                |
| Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (C)   0 (C)                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | 6                                                                                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| User Input: Outlet Pipe w/ Flow Restriction Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        | ectangular Orifice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | <u>Ca</u>                                                                                                                                                                                | iculated Parameters                                                                                                                                                                                   | s for Outlet Pipe w/                                                                                                                                                         |                                                                                                                                                                   | ate                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Restrictor                                                                                                                                              | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       | Zone 3 Restrictor                                                                                                                                                            | Not Selected                                                                                                                                                      |                                                                                                                    |
| Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.26                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | ft (distance below ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | asin bottom at Stage                                                                                                                   |                                                                                                                                                                                          | utlet Orifice Area =                                                                                                                                                                                  | 2.68                                                                                                                                                                         | N/A                                                                                                                                                               | ft <sup>2</sup>                                                                                                    |
| Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24.00                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                    | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        | Outlet                                                                                                                                                                                   | Orifice Centroid =                                                                                                                                                                                    | 0.87                                                                                                                                                                         | N/A                                                                                                                                                               | feet                                                                                                               |
| Restrictor Plate Height Above Pipe Invert =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.10                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                        | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Half-Cent                                                                                                                              | ral Angle of Restric                                                                                                                                                                     | tor Plate on Pipe =                                                                                                                                                                                   | 2.20                                                                                                                                                                         | N/A                                                                                                                                                               | radians                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| User Input: Emergency Spillway (Rectangular or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Trapezoidal)                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
| Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.44                                                                                                                                                           | A (valative to basis                                                                                                                                                                                                                                                                                                                                                                                                                   | hattan at Chana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        |                                                                                                                                                                                          |                                                                                                                                                                                                       | Calculated Parame                                                                                                                                                            | ters for Spillway                                                                                                                                                 |                                                                                                                    |
| , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.44                                                                                                                                                           | It (relative to basi                                                                                                                                                                                                                                                                                                                                                                                                                   | bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 0 ft)                                                                                                                                | Spillway D                                                                                                                                                                               | esign Flow Depth=                                                                                                                                                                                     | Calculated Parame                                                                                                                                                            | feet                                                                                                                                                              |                                                                                                                    |
| Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                | feet                                                                                                                                                                                                                                                                                                                                                                                                                                   | i bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0 ft)                                                                                                                                |                                                                                                                                                                                          | esign Flow Depth=<br>op of Freeboard =                                                                                                                                                                |                                                                                                                                                                              |                                                                                                                                                                   |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.00                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                   | i bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0 ft)                                                                                                                                | Stage at T                                                                                                                                                                               | op of Freeboard =                                                                                                                                                                                     | 0.94<br>8.38                                                                                                                                                                 | feet<br>feet                                                                                                                                                      |                                                                                                                    |
| Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.00<br>4.00                                                                                                                                                  | feet<br>H:V                                                                                                                                                                                                                                                                                                                                                                                                                            | i bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0 ft)                                                                                                                                | Stage at 1<br>Basin Area at 1                                                                                                                                                            | op of Freeboard =<br>op of Freeboard =                                                                                                                                                                | 0.94<br>8.38<br>1.66                                                                                                                                                         | feet<br>feet<br>acres                                                                                                                                             |                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 32.00                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                   | i bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0 ft)                                                                                                                                | Stage at 1<br>Basin Area at 1                                                                                                                                                            | op of Freeboard =                                                                                                                                                                                     | 0.94<br>8.38                                                                                                                                                                 | feet<br>feet                                                                                                                                                      |                                                                                                                    |
| Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.00<br>4.00                                                                                                                                                  | feet<br>H:V                                                                                                                                                                                                                                                                                                                                                                                                                            | i bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 0 ft)                                                                                                                                | Stage at 1<br>Basin Area at 1                                                                                                                                                            | op of Freeboard =<br>op of Freeboard =                                                                                                                                                                | 0.94<br>8.38<br>1.66                                                                                                                                                         | feet<br>feet<br>acres                                                                                                                                             |                                                                                                                    |
| Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 32.00<br>4.00<br>1.00                                                                                                                                          | feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | Stage at 1<br>Basin Area at 1                                                                                                                                                            | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =                                                                                                                                           | 0.94<br>8.38<br>1.66<br>8.16                                                                                                                                                 | feet<br>feet<br>acres<br>acre-ft                                                                                                                                  | 4 <i>F).</i>                                                                                                       |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32.00<br>4.00<br>1.00                                                                                                                                          | feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                    | HP hydrographs and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d runoff volumes by                                                                                                                    | Stage at T<br>Basin Area at T<br>Basin Volume at T<br><u>y entering new valu</u>                                                                                                         | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy                                                                                                                    | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (Co                                                                                                                          | feet<br>feet<br>acres<br>acre-ft<br><i>olumns W through 1</i>                                                                                                     |                                                                                                                    |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.00<br>4.00<br>1.00                                                                                                                                          | feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                        | Stage at T<br>Basin Area at T<br>Basin Volume at T                                                                                                                                       | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =                                                                                                                                           | 0.94<br>8.38<br>1.66<br>8.16                                                                                                                                                 | feet<br>feet<br>acres<br>acre-ft                                                                                                                                  | 4 <i>F).</i><br>500 Year<br>3.83                                                                                   |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32.00<br>4.00<br>1.00<br><i>The user can overn</i><br>WQCV                                                                                                     | feet<br>H:V<br>feet<br>ride the default CUI<br>EURV                                                                                                                                                                                                                                                                                                                                                                                    | HP hydrographs and<br>2 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d runoff volumes by<br>5 Year                                                                                                          | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>Ventering new value<br>10 Year                                                                                                     | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year                                                                                                         | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (CC                                                                                                                          | feet<br>feet<br>acres<br>acre-ft<br><i>blumns W through /</i><br>100 Year                                                                                         | 500 Year                                                                                                           |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.00<br>4.00<br>1.00<br>The user can oven<br>WQCV<br>N/A<br>0.988<br>N/A                                                                                      | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A                                                                                                                                                                                                                                                                                                                                                                                     | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>1.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671                                                                                | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new valu<br>10 Year<br>1.41<br>3.438<br>3.438                                                                           | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370                                                                               | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (CC<br>50 Year<br>2.23<br>6.941<br>6.941                                                                                     | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020                                                                                     | 500 Year<br>3.83<br>14.217<br>14.217                                                                               |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                           | 32.00<br>4.00<br>1.00<br><i>The user can overn</i><br>WQCV<br>N/A<br>0.988<br>N/A<br>N/A                                                                       | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                              | HP hydrographs and<br>2 Year<br>0.86<br>1.890                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d runoff volumes by<br>5 Year<br>1.14<br>2.671                                                                                         | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new value<br>10 Year<br>1.41<br>3.438                                                                                   | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370                                                                                        | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (Co<br>50 Year<br>2.23<br>6.941                                                                                              | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br><u>2.66</u><br>9.020                                                                                       | 500 Year<br>3.83<br>14.217                                                                                         |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                        | 32.00<br>4.00<br>1.00<br><i>The user can overn</i><br>WOCV<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A                                                                | feet<br>H:V<br>feet<br><u>EURV</u><br>N/A<br>3.420<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>1.890<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3                                                                         | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new valuu<br>10 Year<br>1.41<br>3.438<br>3.438<br>0.5                                                                   | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370<br>12.2                                                                       | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (Co<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2                                                                             | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br><u>2.66</u><br><u>9.020</u><br><u>9.020</u><br><u>9.020</u>                                                | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3                                                                       |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.00<br>4.00<br>1.00<br>7he user can oven<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                  | feet<br>H:V<br>feet<br><u>EURV</u><br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                         | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>1.890<br>0.1<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01                                                                 | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new value<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01                                                                      | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370<br>1.2.2<br>0.24                                                              | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (Co<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2<br>0.41                                                                     | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br><u>2.66</u><br><u>9.020</u><br><u>9.020</u><br><u>34.2</u><br><u>0.66</u>                                  | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25                                                               |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                          | 32.00<br>4.00<br>1.00<br>7he user can oven<br>WQCV<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                          | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                         | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>0.1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>                                                                     | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new valu<br>10 Year<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1                                                    | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370<br>12.2<br>0.24<br>56.4                                                       | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (CC<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2<br>0.41<br>73.7                                                             | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020<br>34.2<br><u>0.66</u><br>96.5                                                      | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>1.25<br>151.3                                              |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =                                                                                                                                                                                                                                                                                                                        | 32.00<br>4.00<br>1.00<br>WQCV<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>0.4                                                                 | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>0.8                                                                                                                                                                                                                                                                                                                                           | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>0.1<br>0.00<br>17.6<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01<br>25.1<br>0.7                                                  | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new value<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1<br>0.8                                                       | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370<br>12.2<br>0.24<br>56.4<br>11.9                                               | 0.94<br>8.38<br>1.66<br>8.16<br>6.91<br>2.23<br>6.941<br>21.2<br>0.41<br>73.7<br>2.3.4                                                                                       | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020<br>34.2<br><u>0.66</u><br>96.5<br>31.2                                              | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>1.25<br>151.3<br>97.2                                      |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Unflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =                                                                                                                                                                                                                                         | 32.00<br>4.00<br>1.00<br>7 <i>The user can overr</i><br>WQCV<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                  | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>0.8<br>N/A                                                                                                                                                                                                                                                                                                                                           | <i>HP hydrographs and</i><br>2 Year<br>0.86<br>1.890<br>1.890<br>0.1<br>0.00<br>17.6<br>0.6<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d runoff volumes b)<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01<br>25.1<br>0.7<br>2.3                                           | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>0 Year<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1<br>0.8<br>1.6                                                              | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370<br>12.2<br>0.24<br>56.4<br>11.9<br>1.0                                        | 0.94<br>8.38<br>1.66<br>8.16<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2<br>0.41<br>73.7<br>23.4<br>1.1                                                                     | feet<br>feet<br>acres<br>acre-ft<br>100 Year<br>2.66<br>9.020<br>9.020<br>34.2<br>0.66<br>96.5<br>31.2<br>0.9                                                     | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>151.3<br>97.2<br>1.5                                       |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Surflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =                                                                                                                                                                                                                                                                                    | 32.00<br>4.00<br>1.00<br>7he user can oven<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Plate                             | feet<br>H:V<br>feet<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>O.8<br>N/A<br>Overflow Weir 1                                                                                                                                                                                                                                                                                                                           | AP hydrographs and           2 Year           0.86           1.890           0.1           0.00           17.6           0.6           N/A           Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01<br>25.1<br>0.7<br>2.3<br>Plate                                  | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new valu<br>10 Year<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1<br>0.8<br>1.6<br>Plate                             | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370<br>12.2<br>0.24<br>56.4<br>11.9<br>1.0<br>Overflow Weir 1                     | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (CC<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2<br>0.41<br>73.7<br>23.4<br>1.1<br>Overflow Weir 1                           | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020<br>34.2<br><u>0.66</u><br>96.5<br>31.2<br>0.9<br>Spillway                           | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>151.3<br>97.2<br>1.5<br>Spillway                           |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =                                                                                                                                                                                                                                                   | 32.00<br>4.00<br>1.00<br>7he user can oven<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                               | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Overflow Weir 1<br>N/A                                                                                                                                                                                                                                                                                                                        | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>0.1<br>0.00<br>17.6<br>0.6<br>N/A<br>Plate<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01<br>25.1<br>0.7<br>2.3<br>Plate<br>N/A                           | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new valu<br>10 Year<br>1.41<br>3.438<br>3.438<br>0.5<br>0.5<br>0.01<br>32.1<br>0.8<br>1.6<br>Plate<br>N/A               | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>12.2<br>0.24<br>56.4<br>11.9<br>1.0<br>Overflow Weir 1<br>0.4                       | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (CC<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2<br>0.41<br>73.7<br>23.4<br>1.1<br>Overflow Weir 1<br>0.8                    | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020<br>9.020<br>34.2<br><u>0.66</u><br>96.5<br>31.2<br>0.9<br>5pillway<br>1.1           | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>151.3<br>97.2<br>1.5<br>Spillway<br>1.2                    |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Outflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =                                                                                                                       | 32.00<br>4.00<br>1.00<br><i>The user can overn</i><br>WQCV<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Plate<br>N/A<br>N/A<br>N/A      | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Overflow Weir 1<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                 | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>0.1<br>0.00<br>17.6<br>0.6<br>N/A<br>Plate<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01<br>25.1<br>0.7<br>2.3<br>Plate                                  | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new valu<br>10 Year<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1<br>0.8<br>1.6<br>Plate                             | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>1.22<br>0.24<br>56.4<br>11.9<br>1.0<br>Overflow Weir 1<br>0.4<br>N/A                | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (CC<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2<br>0.41<br>73.7<br>23.4<br>1.1<br>Overflow Weir 1                           | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020<br>34.2<br><u>0.66</u><br>96.5<br>31.2<br>0.9<br>Spillway<br>1.1<br>N/A             | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>151.3<br>97.2<br>1.5<br>Spillway<br>1.2<br>N/A             |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =                                                                                                                                                                                                                                                   | 32.00<br>4.00<br>1.00<br>7he user can oven<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                               | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Overflow Weir 1<br>N/A                                                                                                                                                                                                                                                                                                                        | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>0.1<br>0.00<br>17.6<br>0.6<br>N/A<br>Plate<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>                                                                     | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>9 <i>entering new valu</i><br>10 Year<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1<br>0.8<br>1.6<br>Plate<br>N/A<br>N/A        | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>12.2<br>0.24<br>56.4<br>11.9<br>1.0<br>Overflow Weir 1<br>0.4                       | 0.94<br>8.38<br>1.66<br>8.16<br>6.91<br>2.23<br>6.941<br>21.2<br>0.41<br>73.7<br>23.4<br>1.1<br>0verflow Weir 1<br>0.8<br>N/A                                                | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020<br>9.020<br>34.2<br><u>0.66</u><br>96.5<br>31.2<br>0.9<br>5pillway<br>1.1           | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>151.3<br>97.2<br>1.5<br>Spillway<br>1.2                    |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =                                                                        | 32.00<br>4.00<br>1.00<br>7he user can oven<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                               | feet<br>H:V<br>feet<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                              | HP hydrographs and<br>2 Year<br>0.86<br>1.890<br>0.1<br>0.00<br>17.6<br>0.6<br>N/A<br>Plate<br>N/A<br>N/A<br>S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01<br>25.1<br>0.7<br>2.3<br>Plate<br>N/A<br>N/A<br>70              | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>V entering new value<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1<br>0.8<br>1.6<br>Plate<br>N/A<br>N/A<br>80                   | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>5.370<br>12.2<br>0.24<br>56.4<br>11.9<br>1.0<br>Overflow Weir 1<br>0.4<br>N/A<br>83 | 0.94<br>8.38<br>1.66<br>8.16<br><b>drographs table (Co</b><br>50 Year<br>2.23<br>6.941<br>2.22<br>0.41<br>73.7<br>23.4<br>1.1<br>Overflow Weir 1<br>0.8<br>N/A<br>80         | feet<br>feet<br>acres<br>acre-ft<br>100 Year<br>2.66<br>9.020<br>9.020<br>34.2<br>0.66<br>96.5<br>31.2<br>0.9<br>Spillway<br>1.1<br>N/A<br>77                     | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>1.51.3<br>97.2<br>1.5<br>Spillway<br>1.2<br>N/A<br>72      |
| Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow Q (cfs) =<br>Ratio Peak Outflow D redevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 99% of Inflow Volume (hours) =<br>Time to Drain 99% of Inflow Volume (hours) = | 32.00<br>4.00<br>1.00<br>7he user can oven<br>WQCV<br>N/A<br>0.988<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Plate<br>N/A<br>N/A<br>N/A<br>40 | feet<br>H:V<br>feet<br>EURV<br>N/A<br>3.420<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Overflow Weir 1<br>N/A<br>N/A<br>N/A<br>20<br>N/A<br>Overflow Weir 1<br>N/A<br>N/A<br>N/A<br>S<br>N/A<br>N/A<br>S<br>N/A<br>S<br>N/A<br>S<br>N/A<br>S<br>N/A<br>S<br>N/A<br>S<br>N/A<br>N/A<br>S<br>N/A<br>N/A<br>S<br>N/A<br>N/A<br>S<br>N/A<br>N/A<br>S<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Operation         Operation <t< td=""><td>d runoff volumes by<br/>5 Year<br/>1.14<br/>2.671<br/>2.671<br/>0.3<br/>0.01<br/>25.1<br/>0.7<br/>2.3<br/>Plate<br/>N/A<br/>N/A<br/>N/A<br/>70<br/>74</td><td>Stage at 1<br/>Basin Area at 1<br/>Basin Volume at 1<br/>I Ventering new value<br/>10 Year<br/>1.41<br/>3.438<br/>3.438<br/>0.5<br/>0.01<br/>32.1<br/>0.8<br/>1.6<br/>Plate<br/>N/A<br/>N/A<br/>80<br/>85</td><td>op of Freeboard =<br/>op of Freeboard =<br/>op of Freeboard =<br/>es in the Inflow Hy<br/>25 Year<br/>1.85<br/>5.370<br/>12.2<br/>0.24<br/>56.4<br/>11.9<br/>1.0<br/>Overflow Weir 1<br/>0.4<br/>N/A<br/>83<br/>90</td><td>0.94<br/>8.38<br/>1.66<br/>8.16<br/>drographs table (CC<br/>50 Year<br/>2.23<br/>6.941<br/>6.941<br/>21.2<br/>0.41<br/>73.7<br/>23.4<br/>1.1<br/>Overflow Weir 1<br/>0.8<br/>N/A<br/>80<br/>89</td><td>feet<br/>feet<br/>acres<br/>acre-ft<br/><u>100 Year</u><br/>2.66<br/>9.020<br/>9.020<br/>34.2<br/><u>0.66</u><br/>96.5<br/>31.2<br/>0.9<br/>Spillway<br/>1.1<br/>N/A<br/>77<br/>88</td><td>500 Year<br/>3.83<br/>14.217<br/>14.217<br/>64.3<br/>1.25<br/>151.3<br/>97.2<br/>1.5<br/>Spillway<br/>1.2<br/>N/A<br/>72<br/>85</td></t<> | d runoff volumes by<br>5 Year<br>1.14<br>2.671<br>2.671<br>0.3<br>0.01<br>25.1<br>0.7<br>2.3<br>Plate<br>N/A<br>N/A<br>N/A<br>70<br>74 | Stage at 1<br>Basin Area at 1<br>Basin Volume at 1<br>I Ventering new value<br>10 Year<br>1.41<br>3.438<br>3.438<br>0.5<br>0.01<br>32.1<br>0.8<br>1.6<br>Plate<br>N/A<br>N/A<br>80<br>85 | op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hy<br>25 Year<br>1.85<br>5.370<br>12.2<br>0.24<br>56.4<br>11.9<br>1.0<br>Overflow Weir 1<br>0.4<br>N/A<br>83<br>90    | 0.94<br>8.38<br>1.66<br>8.16<br>drographs table (CC<br>50 Year<br>2.23<br>6.941<br>6.941<br>21.2<br>0.41<br>73.7<br>23.4<br>1.1<br>Overflow Weir 1<br>0.8<br>N/A<br>80<br>89 | feet<br>feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.66<br>9.020<br>9.020<br>34.2<br><u>0.66</u><br>96.5<br>31.2<br>0.9<br>Spillway<br>1.1<br>N/A<br>77<br>88 | 500 Year<br>3.83<br>14.217<br>14.217<br>64.3<br>1.25<br>151.3<br>97.2<br>1.5<br>Spillway<br>1.2<br>N/A<br>72<br>85 |



Outflow Hydrograph Workbook Filename:

| Inflow Hydrograph |  |
|-------------------|--|
|-------------------|--|

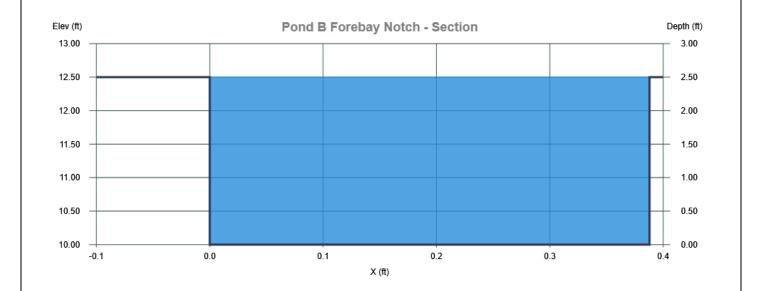
| [           | SOURCE             | CUHP       | CUHP       | CUHP           | CUHP           | CUHP           | CUHP           | CUHP           | CUHP           | CUHP             |
|-------------|--------------------|------------|------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|
| me Interval | TIME               | WQCV [cfs] | EURV [cfs] | 2 Year [cfs]   | 5 Year [cfs]   | 10 Year [cfs]  | 25 Year [cfs]  | 50 Year [cfs]  | 100 Year [cfs] | 500 Year [cfs    |
| 5.00 min    | 0:00:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
|             | 0:05:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| -           | 0:10:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.16           | 0.15           | 1.23             |
|             | 0:15:00            | 0.00       | 0.00       | 0.53           | 1.43           | 2.16           | 1.85           | 2.80           | 3.03           | 5.99             |
|             | 0:20:00            | 0.00       | 0.00       | 3.91           | 6.17           | 8.19           | 6.28           | 8.33           | 9.51           | 15.53            |
|             | 0:25:00            | 0.00       | 0.00       | 10.46          | 15.13          | 20.01          | 14.56          | 18.97          | 22.06          | 38.26            |
| -           | 0:30:00            | 0.00       | 0.00       | 15.70          | 22.56          | 29.30          | 33.58          | 44.44          | 54.28          | 89.28            |
| -           | 0:35:00            | 0.00       | 0.00       | 17.63          | 25.06          | 32.14          | 49.50          | 65.18          | 82.94          | 132.23           |
| ŀ           | 0:40:00            | 0.00       | 0.00       | 17.61          | 24.67          | 31.51          | 56.25          | 73.59          | 94.87          | 149.50           |
| -           | 0:50:00            | 0.00       | 0.00       | 16.67<br>15.58 | 23.26<br>21.89 | 29.66<br>27.78 | 56.42<br>53.87 | 73.67<br>70.36 | 96.49<br>92.96 | 151.32<br>145.83 |
| -           | 0:55:00            | 0.00       | 0.00       | 14.61          | 20.59          | 26.05          | 50.43          | 65.84          | 87.95          | 138.14           |
| l l         | 1:00:00            | 0.00       | 0.00       | 13.82          | 19.42          | 24.62          | 46.56          | 60.65          | 82.66          | 130.13           |
|             | 1:05:00            | 0.00       | 0.00       | 13.21          | 18.47          | 23.48          | 43.28          | 56.27          | 78.27          | 123.54           |
|             | 1:10:00            | 0.00       | 0.00       | 12.45          | 17.58          | 22.41          | 40.07          | 52.02          | 72.60          | 114.71           |
| -           | 1:15:00            | 0.00       | 0.00       | 11.56          | 16.55          | 21.30          | 36.88          | 47.82          | 65.94          | 104.26           |
| -           | 1:20:00            | 0.00       | 0.00       | 10.66          | 15.36          | 19.97          | 33.55          | 43.38          | 58.87          | 92.96            |
| -           | 1:25:00            | 0.00       | 0.00       | 9.84           | 14.22          | 18.43          | 30.24          | 38.96          | 51.90          | 81.70            |
| ŀ           | 1:30:00            | 0.00       | 0.00       | 9.22           | 13.34          | 17.11          | 27.09          | 34.77          | 45.66          | 71.75            |
| -           | 1:40:00            | 0.00       | 0.00       | 8.78<br>8.43   | 12.73<br>12.05 | 16.10<br>15.24 | 24.52<br>22.53 | 31.40<br>28.78 | 40.78<br>37.02 | 64.04<br>58.01   |
| ŀ           | 1:45:00            | 0.00       | 0.00       | 8.12           | 11.30          | 13.24          | 22.35          | 26.55          | 33.81          | 52.81            |
| 1           | 1:50:00            | 0.00       | 0.00       | 7.81           | 10.58          | 13.74          | 19.35          | 24.55          | 30.91          | 48.11            |
|             | 1:55:00            | 0.00       | 0.00       | 7.31           | 9.89           | 12.97          | 17.95          | 22.70          | 28.24          | 43.76            |
|             | 2:00:00            | 0.00       | 0.00       | 6.70           | 9.20           | 12.06          | 16.62          | 20.93          | 25.70          | 39.64            |
| -           | 2:05:00            | 0.00       | 0.00       | 5.91           | 8.16           | 10.66          | 14.73          | 18.49          | 22.56          | 34.65            |
| -           | 2:10:00            | 0.00       | 0.00       | 5.04           | 6.96           | 9.05           | 12.54          | 15.69          | 19.13          | 29.27            |
| -           | 2:15:00<br>2:20:00 | 0.00       | 0.00       | 4.21           | 5.79           | 7.50           | 10.39          | 12.94          | 15.78          | 24.05            |
| ŀ           | 2:25:00            | 0.00       | 0.00       | 3.44<br>2.78   | 4.72<br>3.81   | 6.11<br>4.95   | 8.39<br>6.61   | 10.41<br>8.14  | 12.65<br>9.81  | 19.18<br>14.78   |
| -           | 2:30:00            | 0.00       | 0.00       | 2.27           | 3.11           | 4.07           | 5.07           | 6.19           | 7.35           | 11.13            |
| -           | 2:35:00            | 0.00       | 0.00       | 1.88           | 2.58           | 3.41           | 4.01           | 4.89           | 5.69           | 8.63             |
|             | 2:40:00            | 0.00       | 0.00       | 1.57           | 2.17           | 2.86           | 3.23           | 3.93           | 4.48           | 6.78             |
|             | 2:45:00            | 0.00       | 0.00       | 1.31           | 1.81           | 2.39           | 2.62           | 3.18           | 3.52           | 5.30             |
|             | 2:50:00            | 0.00       | 0.00       | 1.09           | 1.50           | 1.98           | 2.11           | 2.55           | 2.75           | 4.12             |
| -           | 2:55:00            | 0.00       | 0.00       | 0.90           | 1.24           | 1.63           | 1.71           | 2.06           | 2.15           | 3.19             |
| -           | 3:00:00            | 0.00       | 0.00       | 0.75           | 1.01           | 1.33           | 1.38           | 1.66           | 1.67           | 2.46             |
| -           | 3:05:00<br>3:10:00 | 0.00       | 0.00       | 0.62           | 0.83           | 1.09           | 1.13           | 1.35           | 1.33           | 1.95             |
| -           | 3:15:00            | 0.00       | 0.00       | 0.51           | 0.68           | 0.89           | 0.92           | 1.10<br>0.88   | 1.08<br>0.87   | 1.58<br>1.27     |
| -           | 3:20:00            | 0.00       | 0.00       | 0.33           | 0.43           | 0.56           | 0.58           | 0.69           | 0.70           | 1.01             |
| ľ           | 3:25:00            | 0.00       | 0.00       | 0.25           | 0.33           | 0.43           | 0.45           | 0.54           | 0.54           | 0.78             |
|             | 3:30:00            | 0.00       | 0.00       | 0.19           | 0.24           | 0.32           | 0.34           | 0.40           | 0.41           | 0.58             |
|             | 3:35:00            | 0.00       | 0.00       | 0.13           | 0.17           | 0.23           | 0.24           | 0.29           | 0.29           | 0.41             |
| -           | 3:40:00            | 0.00       | 0.00       | 0.08           | 0.12           | 0.15           | 0.16           | 0.19           | 0.19           | 0.27             |
| -           | 3:45:00            | 0.00       | 0.00       | 0.05           | 0.07           | 0.09           | 0.10           | 0.11           | 0.11           | 0.16             |
| ŀ           | 3:50:00            | 0.00       | 0.00       | 0.02           | 0.04           | 0.05           | 0.05           | 0.06           | 0.06           | 0.08             |
| ŀ           | 3:55:00<br>4:00:00 | 0.00       | 0.00       | 0.01           | 0.02           | 0.02           | 0.02           | 0.02           | 0.02           | 0.02             |
| -           | 4:05:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| -           | 4:10:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
|             | 4:15:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| -           | 4:20:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
|             | 4:25:00<br>4:30:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
|             | 4:35:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| F           | 4:40:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| ŀ           | 4:45:00<br>4:50:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| ŀ           | 4:55:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| F           | 5:00:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
|             | 5:05:00<br>5:10:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| ŀ           | 5:15:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
|             | 5:20:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| -           | 5:25:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| ŀ           | 5:30:00<br>5:35:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| -           | 5:40:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| ļ           | 5:45:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| -           | 5:50:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |
| ŀ           | 5:55:00<br>6:00:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           | 0.00             |

MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| Volume<br>[ac-ft] | V | Total<br>Outflow<br>[cfs] |                                                                    |
|-------------------|---|---------------------------|--------------------------------------------------------------------|
|                   |   | F                         | For best results, include the                                      |
|                   |   |                           | stages of all grade slope                                          |
|                   |   |                           | changes (e.g. ISV and Floor)<br>from the S-A-V table on            |
|                   |   | f                         | rom the S-A-V table on                                             |
|                   | - |                           | Sheet 'Basin'.                                                     |
|                   | - | +l,                       | Nee include the inverte of all                                     |
|                   |   |                           | Also include the inverts of all<br>outlets (e.g. vertical orifice, |
|                   | - |                           | overflow grate, and spillway,                                      |
|                   | _ |                           | where applicable).                                                 |
|                   | _ |                           |                                                                    |
|                   | _ |                           |                                                                    |
|                   | _ |                           |                                                                    |
|                   | _ |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   | _ |                           |                                                                    |
|                   | _ |                           |                                                                    |
|                   | _ |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   | _ |                           |                                                                    |
|                   | 1 | 1                         |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   | - |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   | +                         |                                                                    |
|                   | + | +                         |                                                                    |
|                   | - | +                         |                                                                    |
|                   | + | +                         |                                                                    |
|                   | _ |                           |                                                                    |
|                   |   | +                         |                                                                    |
|                   | - | +                         |                                                                    |
|                   | - | +                         |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   | - |                           |                                                                    |
|                   |   |                           |                                                                    |
| 1                 |   | 1                         |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   |   |                           |                                                                    |
|                   | - | +                         |                                                                    |
|                   | - | +                         |                                                                    |
|                   |   | +                         |                                                                    |
| 1                 |   | +                         |                                                                    |
|                   |   |                           |                                                                    |

## Pond B Forebay Notch


04-01-2021

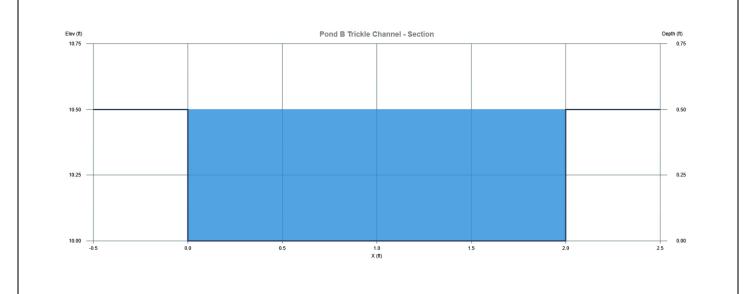
## Channel 1

Project Name: New Project

| RECTANGULAR      |            | DISCHARGE |            |
|------------------|------------|-----------|------------|
| Bottom Width     | = 0.39 ft  | Method    | = Known Q  |
| Total Depth      | = 2.50 ft  | Known Q   | = 1.93 cfs |
| Invert Elevation | = 10.00 ft |           |            |
| Channel Slope    | = 0.300 %  |           |            |
| Manning's n      | = 0.013    |           |            |

| Flow  | Depth | Area   | Velocity | WP   | n-value | Crit Depth | HGL   | EGL   | Max Shear | Top Width |
|-------|-------|--------|----------|------|---------|------------|-------|-------|-----------|-----------|
| (cfs) | (ft)  | (sqft) | (ft/s)   | (ft) |         | (ft)       | (ft)  | (ft)  | (lb/sqft) | (ft)      |
| 1.93  | 2.50  | 0.97   | 1.99     | 5.39 | 0.013   | 0.92       | 12.50 | 12.56 | 0.47      | 0.39      |




## Pond B Trickle Channel

04-09-2021

## Channel 2

| RECTANGULAR      |            | DISCHARGE  |              |
|------------------|------------|------------|--------------|
| Bottom Width     | = 2.00 ft  | Method     | = Q vs Depth |
| Total Depth      | = 0.50 ft  | Q Min      | = 0.08 cfs   |
| Invert Elevation | = 10.00 ft | Q Max      | = 3.01 cfs   |
| Channel Slope    | = 0.300 %  | Increments | = 10         |
| Manning's n      | = 0.013    |            |              |

| Flow  | Depth | Area   | Velocity | WP   | n-value | Crit Depth | HGL   | EGL   | Max Shear | Top Width |
|-------|-------|--------|----------|------|---------|------------|-------|-------|-----------|-----------|
| (cfs) | (ft)  | (sqft) | (ft/s)   | (ft) |         | (ft)       | (ft)  | (ft)  | (lb/sqft) | (ft)      |
| 3.01  | 0.50  | 1.00   | 3.01     | 3.00 | 0.013   | 0.42       | 10.50 | 10.64 | 0.09      | 2.00      |



Depth Increment = 1.00 ft

| ZONE                                                    | 1 AND 2       | ORIFICE         | R            |              | Depth Increment = | 1.00  | ft                   |        |       |                    | Ontional                |        |         |
|---------------------------------------------------------|---------------|-----------------|--------------|--------------|-------------------|-------|----------------------|--------|-------|--------------------|-------------------------|--------|---------|
| PERMANENT ORIFI                                         |               | on (Retentio    | on Pond)     |              | Stage - Storage   | Stage | Optional<br>Override | Length | Width | Area               | Optional<br>Override    | Area   | Volume  |
| Example Lone                                            | oomgalaa      |                 | ,, o         |              | Description       | (ft)  | Stage (ft)           | (ft)   | (ft)  | (ft <sup>2</sup> ) | Area (ft <sup>2</sup> ) | (acre) | (ft 3)  |
| Watershed Information                                   |               |                 |              |              | Top of Micropool  |       | 0.00                 |        |       |                    | 0                       | 0.000  |         |
| Selected BMP Type =                                     | EDB           | 1               |              |              | 4863              |       | 0.79                 |        |       |                    | 2,680                   | 0.062  | 1,058   |
| Watershed Area =                                        | 144.88        | acres           |              |              | 4864              |       | 1.79                 |        |       |                    | 37,698                  | 0.865  | 21,247  |
| Watershed Length =                                      | 5,740         | -               |              |              |                   |       | 2.79                 |        |       |                    | 91,521                  | 2.101  | 85,856  |
| Watershed Length =<br>Watershed Length to Centroid =    | 2,455         | ft<br>ft        |              |              | 4865<br>4866      |       | 3.79                 |        |       |                    | 91,521<br>98,660        | 2.101  | 180,947 |
| Watershed Length to Centrold =<br>Watershed Slope =     | 0.008         | ft/ft           |              |              | 4867              |       | 4.79                 |        |       |                    | 102,931                 | 2.363  | 281,742 |
|                                                         |               | -               |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Watershed Imperviousness =                              | 49.00%        | percent         |              |              | 4868              |       | 5.79                 |        |       |                    | 107,997                 | 2.479  | 387,206 |
| Percentage Hydrologic Soil Group A =                    | 100.0%        | percent         |              |              | 4869              |       | 6.79                 |        |       |                    | 113,712                 | 2.610  | 498,061 |
| Percentage Hydrologic Soil Group B =                    | 0.0%          | percent         |              |              | 4869.71           |       | 7.50                 |        |       |                    | 118,652                 | 2.724  | 580,550 |
| Percentage Hydrologic Soil Groups C/D =                 | 0.0%          | percent         |              |              | 4870              |       | 7.79                 |        |       |                    | 121,268                 | 2.784  | 615,339 |
| Target WQCV Drain Time =                                | 40.0          | hours           |              |              | 4871              |       | 8.79                 |        |       |                    | 124,198                 | 2.851  | 738,072 |
| Location for 1-hr Rainfall Depths =                     | User Input    |                 |              |              | 4871.2            |       | 8.99                 |        |       |                    | 125,693                 | 2.886  | 763,061 |
| After providing required inputs above in                |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
| depths, click 'Run CUHP' to generate run                |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
| the embedded Colorado Urban Hydro                       | ograph Proced | ure.            | Optional Use | er Overrides |                   |       |                      |        |       |                    |                         |        |         |
| Water Quality Capture Volume (WQCV) =                   | 2.457         | acre-feet       |              | acre-feet    |                   |       |                      |        |       |                    |                         |        |         |
| Excess Urban Runoff Volume (EURV) =                     | 8.139         | acre-feet       |              | acre-feet    |                   |       |                      |        |       |                    |                         |        |         |
| 2-yr Runoff Volume (P1 = 0.86 in.) =                    | 4.248         | acre-feet       | 0.86         | inches       |                   |       |                      |        |       |                    |                         |        |         |
| 5-yr Runoff Volume (P1 = 1.14 in.) =                    | 5.786         | acre-feet       | 1.14         | inches       |                   |       |                      |        |       |                    |                         |        |         |
| 10-yr Runoff Volume (P1 = 1.41 in.) =                   | 7.539         | acre-feet       | 1.41         | inches       |                   |       |                      |        |       |                    |                         |        |         |
| 25-yr Runoff Volume (P1 = 1.85 in.) =                   | 10.932        | acre-feet       | 1.85         | inches       |                   |       |                      |        |       |                    |                         |        |         |
| 50-yr Runoff Volume (P1 = 2.23 in.) =                   | 14.760        | acre-feet       | 2.23         | inches       |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               | -               |              | -            |                   |       |                      |        |       |                    |                         |        |         |
| 100-yr Runoff Volume (P1 = 2.66 in.) =                  | 19.737        | acre-feet       | 2.66         | inches       |                   |       |                      |        |       |                    |                         |        |         |
| 500-yr Runoff Volume (P1 = 3.83 in.) =                  | 33.551        | acre-feet       | 3.83         | inches       |                   |       |                      |        |       |                    |                         |        |         |
| Approximate 2-yr Detention Volume =                     | 3.779         | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Approximate 5-yr Detention Volume =                     | 5.235         | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Approximate 10-yr Detention Volume =                    | 6.779         | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Approximate 25-yr Detention Volume =                    | 9.533         | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Approximate 50-yr Detention Volume =                    | 11.412        | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Approximate 100-yr Detention Volume =                   | 13.730        | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| •                                                       |               | -               |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Define Zones and Basin Geometry                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         | 2.457         | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Zone 1 Volume (WQCV) =                                  | -             |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Zone 2 Volume (EURV - Zone 1) =                         | 5.682         | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Zone 3 Volume (100-year - Zones 1 & 2) =                | 5.591         | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Total Detention Basin Volume =                          | 13.730        | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Initial Surcharge Volume (ISV) =                        | user          | ft <sup>3</sup> |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Initial Surcharge Depth (ISD) =                         | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Total Available Detention Depth (H <sub>total</sub> ) = | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Depth of Trickle Channel (H <sub>TC</sub> ) =           | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Slope of Trickle Channel (STC) =                        | user          | ft/ft           |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Slopes of Main Basin Sides (S <sub>main</sub> ) =       | user          | H:V             |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               | 1               |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Basin Length-to-Width Ratio $(R_{L/W}) =$               | user          |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               | ٦.              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Initial Surcharge Area (A <sub>ISV</sub> ) =            | user          | ft <sup>2</sup> |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Surcharge Volume Length $(L_{ISV}) =$                   | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Surcharge Volume Width $(W_{ISV}) =$                    | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Depth of Basin Floor (H <sub>FLOOR</sub> ) =            | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Length of Basin Floor $(L_{FLOOR}) =$                   | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Width of Basin Floor (W <sub>FLOOR</sub> ) =            | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Area of Basin Floor (A <sub>FLOOR</sub> ) =             | user          | ft <sup>2</sup> |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) =           | user          | ft <sup>3</sup> |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Depth of Main Basin (H <sub>MAIN</sub> ) =              | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               | -               |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Length of Main Basin (L <sub>MAIN</sub> ) =             | user          | ft<br>A         |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Width of Main Basin (W <sub>MAIN</sub> ) =              | user          | ft              |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Area of Main Basin (A <sub>MAIN</sub> ) =               | user          | ft <sup>2</sup> |              |              |                   |       |                      |        |       |                    |                         |        |         |
| Volume of Main Basin (V <sub>MAIN</sub> ) =             | user          | ft <sup>3</sup> |              |              |                   |       |                      |        |       |                    |                         |        | L       |
| Calculated Total Basin Volume ( $V_{total}$ ) =         | user          | acre-feet       |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         | -      |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         | -      |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        | -       |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |
|                                                         |               |                 |              |              |                   |       |                      |        |       |                    |                         |        |         |

Volume (ac-ft)

0.024

0.488

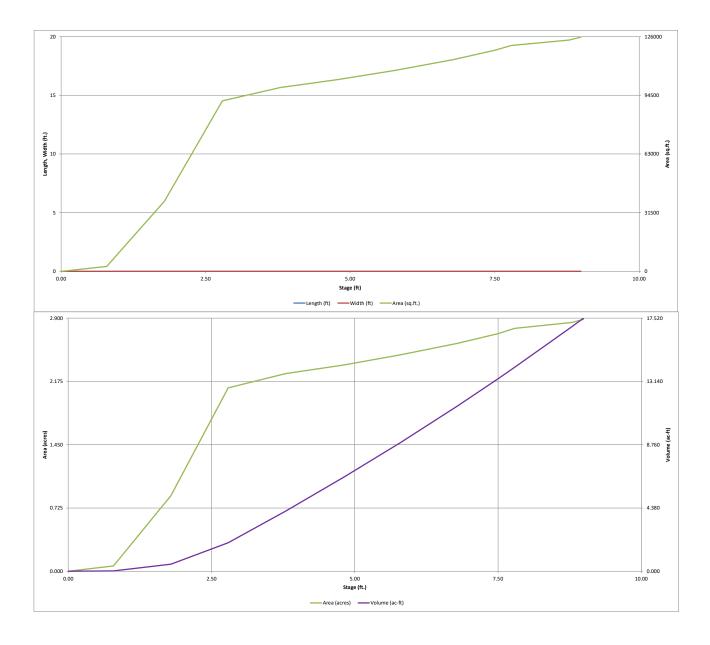
1.971

4.154

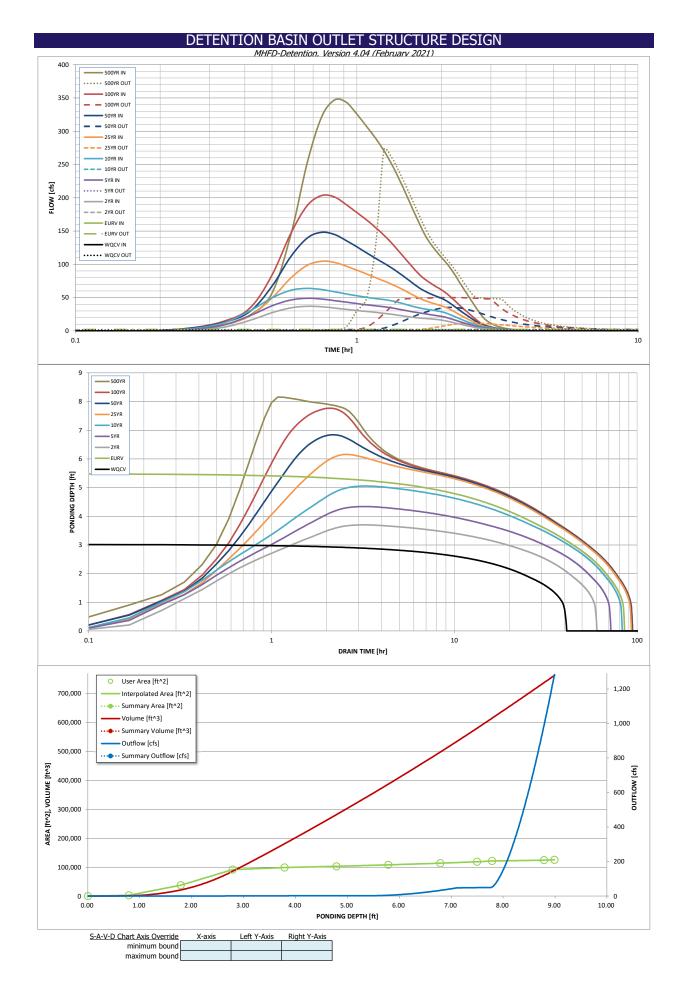
6.468

8.889

11.434


13.328

14.126


16.944

17.517

MHFD-Detention, Version 4.04 (February 2021)



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MHI                                                                                                                                                                                                                                                                                                                                         | -D-Detention, vers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion 4.04 (Februar                                                                                                                                                                             | y 2021)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pioneer Village                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Basin ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Pond C (PA's 17 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd 21)                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ZONE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Estimated                                                                                                                                                                                     | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 100-YR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stage (ft)                                                                                                                                                                                    | Volume (ac-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Outlet Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             | Zone 1 (WQCV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.02                                                                                                                                                                                          | 2.457                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| i land                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-YEAR<br>ORIFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                             | Zone 2 (EURV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.49                                                                                                                                                                                          | 5.682                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PERMANENT ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             | Zone 3 (100-year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.65                                                                                                                                                                                          | 5.591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weir&Pipe (Restrict)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| POOL Example Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Configuration (Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tention Pond)                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total (all zones)                                                                                                                                                                             | 13.730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| User Input: Orifice at Underdrain Outlet (typical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | y used to drain WC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CV in a Filtration Bl                                                                                                                                                                                                                                                                                                                       | MP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculated Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eters for Underdrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Underdrain Orifice Invert Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             | the filtration media                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | surface)                                                                                                                                                                                      | Underd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | rain Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inches                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               | Underdrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| User Input: Orifice Plate with one or more orific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es or Elliptical Slot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weir (typically used                                                                                                                                                                                                                                                                                                                        | l to drain WQCV and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | l/or EURV in a sed                                                                                                                                                                            | mentation BMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calculated Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ters for Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Invert of Lowest Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft (relative to basir                                                                                                                                                                                                                                                                                                                       | bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 ft)                                                                                                                                                                                         | WQ Orifi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ce Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.882E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Depth at top of Zone using Orifice Plate =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft (relative to basir                                                                                                                                                                                                                                                                                                                       | bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 ft)                                                                                                                                                                                         | Elli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ptical Half-Width =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | inches                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               | Ellipti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cal Slot Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sq. inches (use rec                                                                                                                                                                                                                                                                                                                         | tangular openings)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                               | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lliptical Slot Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| User Input: Stage and Total Area of Each Orific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e Row (numbered f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rom lowest to highe                                                                                                                                                                                                                                                                                                                         | est)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Row 1 (required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Row 2 (optional)                                                                                                                                                                                                                                                                                                                            | Row 3 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Row 4 (optional)                                                                                                                                                                              | Row 5 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Row 6 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Row 7 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Row 8 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.83                                                                                                                                                                                                                                                                                                                                        | 3.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.35                                                                                                                                                                                                                                                                                                                                       | 11.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Row 9 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Row 10 (optional)                                                                                                                                                                                                                                                                                                                           | Row 11 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Row 12 (optional)                                                                                                                                                                             | Row 13 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Row 14 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Row 15 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Row 16 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| User Input: Vertical Orifice (Circular or Rectang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ular)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calculated Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eters for Vertical Orif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | fice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Invert of Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                         | ft (relative to basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bottom at Stage =                                                                                                                                                                             | = 0 ft) Ver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tical Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Depth at top of Zone using Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                         | ft (relative to basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | bottom at Stage =                                                                                                                                                                             | = 0 ft) Vertical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Vertical Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                         | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| User Input: Overflow Weir (Dropbox with Flat o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r Sloped Grate and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Outlet Pipe OR Rec                                                                                                                                                                                                                                                                                                                          | tangular/Trapezoid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | al Weir (and No Ou                                                                                                                                                                            | tlet Pipe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calculated Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eters for Overflow W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /eir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Selected                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                         | ft (relative to basin b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ottom at Stage = 0 f                                                                                                                                                                          | t) Height of Grate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Upper Edge, H <sub>t</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                         | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               | Overflow W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | eir Slope Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Overflow Weir Grate Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                         | H:V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Gr                                                                                                                                                                                            | ate Open Area / 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-yr Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Overflow Grate Type =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                             | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0\                                                                                                                                                                                            | erflow Grate Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Area w/o Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Overnow Grate Type –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Type C Grate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                         | reet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.80<br>26.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                         | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               | erflow Grate Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                               | erflow Grate Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               | verflow Grate Open<br>Overflow Grate Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                               | verflow Grate Open<br>Overflow Grate Oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%<br>e (Circular Orifice, R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A<br>N/A<br>estrictor Plate, or R                                                                                                                                                                                                                                                                                                         | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | c                                                                                                                                                                                             | verflow Grate Open<br>Sverflow Grate Open<br><u>Ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.80<br>s for Outlet Pipe w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%<br>e (Circular Orifice, R<br>Zone 3 Restrictor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                  | %<br>ectangular Orifice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | c                                                                                                                                                                                             | verflow Grate Open<br>Overflow Grate Open<br><u>Ca</u><br>= 0 ft) Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.80<br>s for Outlet Pipe w/<br>Zone 3 Restrictor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate<br>Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0%<br>e (Circular Orifice, R<br>Zone 3 Restrictor<br>0.25<br>30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                  | %<br>tectangular Orifice)<br>ft (distance below ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C<br>sin bottom at Stage                                                                                                                                                                      | verflow Grate Open<br>Overflow Grate Open<br><u>Ca</u><br>= 0 ft) Ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Area w/ Debris =<br>Iculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.80<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0%<br>e (Circular Orifice, R<br>Zone 3 Restrictor<br>0.25<br>30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                  | %<br>(ectangular Orifice)<br>ft (distance below ba<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C<br>sin bottom at Stage                                                                                                                                                                      | verflow Grate Open<br>Overflow Grate Open<br><u>Ca</u><br>= 0 ft) Ou<br>Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Area w/ Debris =<br>Iculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.80<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>3.93<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0%<br>e (Circular Orifice, R<br>Zone 3 Restrictor<br>0.25<br>30.00<br>22.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                  | %<br>(ectangular Orifice)<br>ft (distance below ba<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C<br>sin bottom at Stage                                                                                                                                                                      | verflow Grate Open<br>Overflow Grate Open<br><u>Ca</u><br>= 0 ft) Ou<br>Outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Area w/ Debris =<br>Iculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.80<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>3.93<br>1.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0%<br>2 (Circular Orifice, R<br>Zone 3 Restrictor<br>0.25<br>30.00<br>22.40<br>Trapezoidal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                           | %<br>(ectangular Orifice)<br>ft (distance below ba<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C<br>sin bottom at Stage<br>Half-Cent                                                                                                                                                         | verflow Grate Open<br>Iverflow Grate Open<br><u>Ca</u><br>= 0 ft) Ot<br>Outlet<br>ral Angle of Restrict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Area w/ Debris =<br>Iculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.80<br><u>5 for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>3.93<br>1.03<br>2.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0%<br>2 (Circular Orifice, R<br>Zone 3 Restrictor<br>0.25<br>30.00<br>22.40<br>Trapezoidal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                           | %<br>( <u>tectangular Orifice)</u><br>ft (distance below ba<br>jinches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C<br>sin bottom at Stage<br>Half-Cent                                                                                                                                                         | verflow Grate Open<br>Iverflow Grate Open<br>( <u>Ca</u><br>= 0 ft) Or<br>Outlet<br>ral Angle of Restrict<br>Spillway Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =<br>tor Plate on Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.80<br>5 for Outlet Pipe w/<br>Zone 3 Restrictor<br>3.93<br>1.03<br>2.09<br>Calculated Parame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0%<br><u>2 (Circular Orifice, R</u><br><u>2 one 3 Restrictor</u><br>0.25<br><u>30.00</u><br>22.40<br><u>7 rapezoidal</u><br><u>7.77</u><br><u>300.00</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin                                                                                                                                                                                                                                                  | %<br>( <u>tectangular Orifice)</u><br>ft (distance below ba<br>jinches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C<br>sin bottom at Stage<br>Half-Cent                                                                                                                                                         | verflow Grate Open<br>overflow Grate Open<br><u>Ca</u><br>= 0 ft) Or<br>Outlet<br>ral Angle of Restrict<br>Spillway Dr<br>Stage at T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | h Area w/ Debris =<br><u>lculated Parameters</u><br>utlet Orifice Area =<br>: Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.80<br><u>s for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A<br>/ Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>eters for Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%<br><u>2 (Circular Orifice, R</u><br><u>2 one 3 Restrictor</u><br>0.25<br><u>30.00</u><br>22.40<br><u>7 rapezoidal</u><br><u>7.77</u><br><u>300.00</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin<br>feet                                                                                                                                                                                                                                          | %<br>( <u>tectangular Orifice)</u><br>ft (distance below ba<br>jinches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C<br>sin bottom at Stage<br>Half-Cent                                                                                                                                                         | verflow Grate Open<br>overflow Grate Open<br>( <u>Ca</u><br>= 0 ft) Or<br>Outlet<br>ral Angle of Restrict<br>Spillway Dr<br>Stage at T<br>Basin Area at T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h Area w/ Debris =<br><u>lculated Parameter</u> :<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth=<br>op of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.80<br><u>5 for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>N/A<br>eters for Spillway<br>feet<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%<br><u>2 (Circular Orifice, R</u><br><u>2 one 3 Restrictor</u><br>0.25<br><u>30.00</u><br>22.40<br><u>Trapezoidal</u> )<br><u>7.77</u><br><u>300.00</u><br><u>4.00</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V                                                                                                                                                                                                                                   | %<br>( <u>tectangular Orifice)</u><br>ft (distance below ba<br>jinches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C<br>sin bottom at Stage<br>Half-Cent                                                                                                                                                         | verflow Grate Open<br>overflow Grate Open<br>( <u>Ca</u><br>= 0 ft) Or<br>Outlet<br>ral Angle of Restrict<br>Spillway Dr<br>Stage at T<br>Basin Area at T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | h Area w/ Debris =<br><u>lculated Parameter</u> :<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth =<br>Top of Freeboard =<br>Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 26.80<br><u>5 for Outlet Pipe w/</u><br><u>Zone 3 Restrictor</u><br><u>3.93</u><br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br><u>9.14</u><br>2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>eters for Spillway<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0%<br>2 (Circular Orifice, R<br>2 one 3 Restrictor<br>0.25<br>30.00<br>22.40<br>Trapezoidal)<br>7.77<br>300.00<br>4.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V<br>feet                                                                                                                                                                                                                           | %<br>( <u>tectangular Orifice)</u><br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c<br>sin bottom at Stage<br>Half-Cent<br>0 ft)                                                                                                                                                | verflow Grate Open<br>Iverflow Grate Open<br>(Ca<br>= 0 ft) Or<br>Outlet<br>ral Angle of Restrict<br>Spillway D<br>Stage at T<br>Basin Area at T<br>Basin Volume at T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | h Area w/ Debris =<br><u>lculated Parameters</u><br>utlet Orifice Area =<br>: Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth =<br>:op of Freeboard =<br>:op of Freeboard =<br>:op of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 26.80<br>5 for Outlet Pipe w/<br>Zone 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0% 2 (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 22.40 Trapezoidal) 7.77 300.00 4.00 1.00 The user can over                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V                                                                                                                                                                                                             | % (ectangular Orifice) (ft (distance below ba<br>inches inches bottom at Stage = (ft hydrographs and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)                                                                                                                                                | verflow Grate Open<br>verflow Grate Open<br>( <u>Ca</u><br>= 0 ft) Or<br>Outlet<br>ral Angle of Restrict<br>Spillway Dr<br>Stage at T<br>Basin Area at T<br>Basin Volume at T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h Area w/ Debris =<br><u>lculated Parameters</u><br>utlet Orifice Area =<br>: Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth =<br>'op of Freeboard =<br>'op of Freeboard =<br>'op of Freeboard =<br><u>iop of Freeboard =</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.80<br><u>s for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br>drographs table (Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>eters for Spillway<br>feet<br>feet<br>acres<br>acre-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0% <u>2 (Circular Orifice, R</u> Zone 3 Restrictor 0.25 30.00 22.40 <u>Trapezoidal) 7.77 300.00 4.00 1.00 The user can oven WQCV</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV                                                                                                                                                                                                    | % (ectangular Orifice) (ft (distance below ba<br>inches inches (hottom at Stage = (HP hydrographs and 2 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>( <i>runoff volumes b</i>)</u><br>5 Year                                                                                                 | rerflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br><u>Ca</u><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>bor Plate on Pipe =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>iop of Freeboard =<br>iop of Freeboard =<br>25 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><u>trographs table (Ccc</u><br>50 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>feet<br>feet<br>feet<br>acres<br>acre-ft<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>4F).</u><br>500 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0%           Zone 3 Restrictor           0.25           30.00           22.40           Trapezoidal)           7.77           300.00           4.00           1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V<br>feet<br>ride the default CU/I<br>EURV<br>N/A                                                                                                                                                                                            | % (cectangular Orifice) (ft (distance below ba<br>inches inches ) bottom at Stage = (HP hydrographs and<br>2 Year 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>1 runoff volumes by</u><br>5 Year<br>1.14                                                                                                     | rerflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br><u>Ca</u><br>= 0 ft) Or<br>Outlet<br>ral Angle of Restrict<br>Spillway Dr<br>Stage at T<br>Basin Area at T<br>Basin Area at T<br>Basin Volume at T<br><u>Centering new valu</u><br><u>10 Year</u><br><u>1.41</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h Area w/ Debris =<br>lculated Parameter:<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hyy<br>25 Year<br>1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.80<br><u>5 for Outlet Pipe w/</u><br>Zone 3 Restrictor<br><u>3.93</u><br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><u>drographs table (CCC</u><br><u>50 Year</u><br>2.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>0lumns W through /<br>100 Year<br>2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>4/F).<br>500 Year<br>3.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0% <u>2 (Circular Orifice, R</u> Zone 3 Restrictor 0.25 30.00 22.40 <u>Trapezoidal) 7.77 300.00 4.00 1.00 The user can oven WQCV</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV                                                                                                                                                                                                    | % (ectangular Orifice) (ft (distance below ba<br>inches inches (hottom at Stage = (HP hydrographs and 2 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>( <i>runoff volumes b</i>)</u><br>5 Year                                                                                                 | rerflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br><u>Ca</u><br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>bor Plate on Pipe =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>iop of Freeboard =<br>iop of Freeboard =<br>25 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><u>trographs table (Ccc</u><br>50 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>feet<br>feet<br>feet<br>acres<br>acre-ft<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>4F).</u><br>500 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Ruoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0%<br>Zone 3 Restrictor<br>0.25<br>30.00<br>22.40<br>Trapezoidal)<br>7.77<br>300.00<br>4.00<br>1.00<br>The user can overn<br>WOCV<br>N/A<br>2.457<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>N/A<br>8.139<br>N/A<br>N/A                                                                                                                                                                        | % (cectangular Orifice) (ft (distance below ba<br>inches inches (notes (notes) (cector) | Sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>1 runoff volumes by</u><br>5 Year<br>1.14<br>5.786                                                                                            | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>= 0 ft) Ou<br>Outlet<br>ral Angle of Restrict<br>Spillway D<br>Stage at T<br>Basin Area at T<br>Basin Volume at T<br>i Centering new Valu<br>10 Year<br>1.41<br>7.539                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth=<br>: Op of Freeboard =<br>: Op of Fr                                                                                                                                                                                                                                                                                                                                             | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><u>drographs table (Co</u><br>50 Year<br>2.23<br>14.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>00 Year<br>2.66<br>19.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.83<br>33.551                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>LInflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0%<br>Zone 3 Restrictor<br>0.25<br>30.00<br>22.40<br>Trapezoidal)<br>7.77<br>300.00<br>4.00<br>1.00<br>The user can oven<br>WQCV<br>N/A<br>2.457<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>ride the default CU/<br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A                                                                                                                                                               | % tectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 0.86 4.248 4.248 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>7 runoff volumes by</u><br><u>5 Year<br/>1.14<br/>5.786<br/>5.786<br/>0.4</u>                                                            | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Area w/ Debris =<br>lculated Parameter:<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth=<br>iop of Freeboard =<br>iop of Freeboard =<br>iop of Freeboard =<br>es in the Inflow Hyy<br>25 Year<br>1.85<br>10.932<br>5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26.80<br>2000 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br>drographs table (CC<br>50 Year<br>2.23<br>14.760<br>14.760<br>14.760<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>0/umns W through A<br>100 Year<br>2.66<br>19.737<br>19.737                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.83<br>33.551<br>33.551<br>138.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                                                                                                                                                                                                                                                      | 0% (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 22.40 Trapezoidal) 7.77 300.00 4.00 1.00 The user can overn WQCV N/A 2.457 N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>CURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                           | % tectangular Orifice) ft (distance below ba inches inches bottom at Stage = HP hydrographs and 2 Year 0.86 4.248 4.248 0.0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>7 Year<br/>1.14</u><br>5.786<br>5.786<br>0.4<br>0.00                                                                                     | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca<br>(Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth=<br>: Op of Freeboard =<br>: Op of Fr                                                                                                                                                                                                                                                                                                                                             | 26.80<br>2004 2004 2004 2004 2004 2004 2004 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>00Umns W through A<br>100 Year<br>2.66<br>19.737<br>19.737<br>55.0<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.83<br>33.551<br>33.551<br>138.2<br>0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                  | 0% (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 22.40 Trapezoidal) 7.77 300.00 4.00 1.00 7he user can oven WQCV N/A 2.457 N/A N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                   | % tectangular Orifice) ft (distance below ba inches inches h bottom at Stage = HP hydrographs anc 2 Year 0.86 4.248 0.0 0.00 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>7 vnoff volumes bj</u><br><u>5 Year<br/>1.14<br/>5.786<br/>0.4<br/>0.4<br/>0.00<br/>48.9</u>                                             | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(Ca<br>(Ca<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca) | h Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>bor pof Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>ion of Freeboard =<br>1.85<br>10.932<br>5.8<br>0.04<br>104.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><i>trographs table (Co</i><br>50 Year<br>2.23<br>14.760<br>14.760<br>26.5<br>0.18<br>148.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>4(7)</u><br><u>500 Year</u><br><u>3.83</u><br><u>33.551</u><br><u>33.551</u><br><u>138.2</u><br><u>0.95</u><br><u>346.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Renoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Unflow Q (cfs) =<br>Peak Outflow Q (cfs) =                                                                                                                                                                                                                                                                                                                                                   | 0%<br>Zone 3 Restrictor<br>0.25<br>30.00<br>22.40<br>Trapezoidal)<br>7.77<br>300.00<br>4.00<br>1.00<br>The user can oven<br>WOCV<br>N/A<br>2.457<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V<br>feet<br>ride the default CU/I<br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>2.1                                                                                                                           | % <pre> % % % % % % % % % % % % % % % % % % %</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br>5 Year<br>1.14<br>5.786<br>5.786<br>0.4<br>0.4<br>0.0<br>48.9<br>1.7                                                                        | rerflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h Area w/ Debris =<br>lculated Parameter:<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>tor Plate on Pipe =<br>esign Flow Depth =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>iop of Freeboard =<br>1.85<br>10.932<br>5.8<br>0.04<br>104.6<br>11.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br>drographs table (CC<br>50 Year<br>2.23<br>14.760<br>14.760<br>14.760<br>26.5<br>0.18<br>148.1<br>35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>0/umns W through A<br>100 Year<br>2.66<br>19.737<br>19.737<br>55.0<br>0.38<br>203.4<br>50.1                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>500 Year</u><br><u>3.83</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.651</u><br><u>33.651</u><br><u>33.651</u><br><u>33.651</u><br><u>33.651</u><br><u>33.651</u><br><u>33.651</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u><br><u>33.751</u> |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                  | 0% (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 22.40 Trapezoidal) 7.77 300.00 4.00 1.00 7he user can oven WQCV N/A 2.457 N/A N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                   | % tectangular Orifice) ft (distance below ba inches inches h bottom at Stage = HP hydrographs anc 2 Year 0.86 4.248 0.0 0.00 37.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br><u>7 vnoff volumes bj</u><br><u>5 Year<br/>1.14<br/>5.786<br/>0.4<br/>0.4<br/>0.00<br/>48.9</u>                                             | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(Ca<br>(Ca<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca)<br>(Ca) | h Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>bor pof Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>ion of Freeboard =<br>1.85<br>10.932<br>5.8<br>0.04<br>104.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><i>trographs table (Co</i><br>50 Year<br>2.23<br>14.760<br>14.760<br>26.5<br>0.18<br>148.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>4(7)</u><br><u>500 Year</u><br><u>3.83</u><br><u>33.551</u><br><u>33.551</u><br><u>138.2</u><br><u>0.95</u><br><u>346.7</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =                                                                                                                                                                                                                                                                                    | 0%<br>2 (Circular Orifice, R<br>2 one 3 Restrictor<br>0.25<br>3 0.00<br>22.40<br>Trapezoidal)<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.00<br>7.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>1.00<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>1.00<br>7.77<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7.77<br>7.77<br>1.00<br>7.77<br>3 00.00<br>1.00<br>7.77<br>7.77<br>7.77<br>3 00.00<br>1.00<br>7.77<br>7.77<br>1.00<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7.77<br>7 | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V<br>feet<br><i>ide the default CU/I</i><br>feet<br><i>ide the default CU/I</i><br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Overflow Weir 1<br>N/A                                            | % tectangular Orifice) ft (distance below ba inches inches to bottom at Stage = the hydrographs and 2 Year 0.86 4.248 4.248 0.0 0.00 37.0 1.3 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C<br>sin bottom at Stage<br>Half-Cent<br>0 ft)<br>1.14<br>5.786<br>5.786<br>0.4<br>0.4<br>0.00<br>48.9<br>1.7<br>4.5<br>Plate<br>N/A                                                          | rerflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h Area w/ Debris =<br>lculated Parameter:<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>bor Plate on Pipe =<br>bor of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>iop of Freeboard =<br>1.85<br>1.932<br>5.8<br>0.04<br>104.6<br>11.8<br>2.0<br>Overflow Weir 1<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.80<br>2 for Outlet Pipe w/<br>Zone 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><i>drographs table (CC</i><br>50 Year<br>2.23<br>14.760<br>14.760<br>14.760<br>26.5<br>0.18<br>148.1<br>35.4<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>0/umns W through A<br>100 Year<br>2.66<br>19.737<br>19.737<br>19.737<br>55.0<br>0.38<br>203.4<br>50.1<br>0.9                                                                                                                                                                                                                                                                                                                                                                                                                | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br><u>500 Year</u><br><u>3.83</u><br><u>33.551</u><br><u>33.551</u><br><u>138.2</u><br><u>0.95</u><br><u>346.7</u><br><u>272.0</u><br><u>2.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Rudoff Volume (acre-ft) =<br>CUHP Redevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs)are =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =                                                                                                                                                      | 0%<br>(Circular Orifice, R<br>Zone 3 Restrictor<br>0.25<br>30.00<br>22.40<br>Trapezoidal)<br>7.77<br>300.00<br>4.00<br>1.00<br>The user can oven<br>WQCV<br>N/A<br>2.457<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>ride the default CU/<br>EURV<br>N/A<br>8.139<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                     | % tectangular Orifice) ft (distance below ba inches inches bottom at Stage = the hydrographs and 2 Year 0.86 4.248 4.248 4.248 4.248 0.0 0.0 37.0 1.3 N/A Plate N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C sin bottom at Stage<br>Half-Cent<br>0 ft)<br>7 runoff volumes by<br>5 Year<br>1.14<br>5.786<br>5.786<br>5.786<br>5.786<br>0.4<br>0.0<br>0.0<br>48.9<br>1.7<br>4.5<br>Plate<br>N/A<br>N/A    | rerflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h Area w/ Debris =<br>lculated Parameter:<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>tor Plate on Pipe =<br>tor Plate on Pipe =<br>esign Flow Depth =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>es in the Inflow Hyy<br>25 Year<br>1.85<br>10.932<br>10.932<br>5.8<br>0.04<br>0.04<br>104.6<br>11.8<br>2.0<br>Overflow Weir 1<br>0.4<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br>drographs table (CC<br>50 Year<br>2.23<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.81<br>35.4<br>1.3<br>Overflow Wei 1<br>1.2<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>0lumns W through A<br>100 Year<br>2.66<br>19.737<br>19.737<br>19.737<br>55.0<br>0.38<br>203.4<br>50.1<br>0.9<br>Spillway<br>1.8<br>N/A                                                                                                                                                                                                                                                                                                                                                                                      | ft <sup>2</sup><br>ate<br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.83<br>33.551<br>33.551<br>33.551<br>33.551<br>33.551<br>33.551<br>33.62<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Redevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 1 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =                                                                                  | 0% (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 22.40 Trapezoidal) 7.77 300.00 4.00 1.00 7he user can oven WQCV N/A 2.457 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V<br>feet<br>EURV<br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                       | % (cectangular Orifice) (ft (distance below ba inches (inches ) bottom at Stage = (HP hydrographs and 2 Year 0.86 4.248 4.248 0.0 0.00 37.0 1.3 N/A Plate N/A Plate N/A S56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sin bottom at Stage<br>Half-Cent<br>0 ft)<br>1 runoff volumes by<br>5 Year<br>1.14<br>5.786<br>5.786<br>0.4<br>0.4<br>0.00<br>48.9<br>0.4<br>0.00<br>48.9<br>1.7<br>4.5<br>Plate<br>N/A<br>66 | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(2)<br>(3)<br>(4)<br>(4)<br>(4)<br>(5)<br>(4)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5)<br>(5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>: Orifice Centroid =<br>tor Plate on Pipe =<br>esign Flow Depth =<br>iop of Freeboard =<br>iop of Freeboard =<br>iop of Freeboard =<br>es in the Inflow Hyy<br>25 Year<br>1.85<br>10.932<br>5.8<br>0.04<br>104.6<br>11.8<br>2.0<br>Overflow Weir 1<br>0.4<br>N/A<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.80<br>2000 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><i>drographs table (Colored States)</i><br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>14.760<br>15.74<br>15.74<br>15.74<br>15.74<br>15.75<br>15.74<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15.75<br>15. | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ters for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br>00 Year<br>2.66<br>19.737<br>19.737<br>19.737<br>55.0<br>0.38<br>203.4<br>50.1<br>0.9<br>Spillway<br>1.8<br>N/A<br>78                                                                                                                                                                                                                                                                                                                                                                                                       | ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.83<br>33.551<br>33.551<br>33.551<br>138.2<br>0.95<br>346.7<br>272.0<br>2.0<br>Spillway<br>1.8<br>N/A<br>72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>UHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q (cfs) =<br>Ratio Peak Outflow for the Q (cfs) =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =<br>Time to Drain 97% of Inflow Volume (hours) = | 0% (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 22.40 Trapezoidal) 7.77 300.00 4.00 1.00 The user can overn WOCV N/A 2.457 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                              | % <pre>% ft (distance below ba inches inches inches h bottom at Stage = </pre> HP hydrographs and 2 Year 0.86 4.248 0.0  0.00 37.0 1.3 N/A Plate N/A N/A N/A S6 56 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sin bottom at Stage<br>Half-Cent<br>0 ft)<br>1.14<br>5.786<br>0.4<br>0.4<br>0.00<br>48.9<br>1.7<br>4.5<br>Plate<br>N/A<br>N/A<br>N/A<br>N/A<br>66<br>70                                       | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>bor Plate on Pipe =<br>bor of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>cop of Freeboard =<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>10.932<br>5.8<br>0.04<br>10.932<br>10.932<br>5.8<br>0.04<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.9 | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><i>trographs table (Co</i><br>50 Year<br>2.23<br>14.760<br>26.5<br>0.18<br>148.1<br>35.4<br>1.3<br>Overflow Weir 1<br>1.2<br>N/A<br>81<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A           N/A           N/A           Not Selected           N/A           deters for Spillway           feet           feet           acres           acre-ft           000 Year           2.66           19.737           55.0           0.38           203.4           50.1           0.9           Spillway           1.8           N/A           78           88 | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>500 Year</u><br><u>3.83</u><br><u>33.551</u><br><u>33.551</u><br><u>138.2</u><br><u>0.95</u><br><u>346.7</u><br><u>272.0</u><br><u>2.0</u><br><u>5pillway</u><br><u>1.8</u><br>N/A<br><u>72</u><br><u>85</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =<br>Time to Drain 99% of Inflow Volume (hours) =<br>Maximum Ponding Depth (ft) =                                                                                                                                                        | 0%<br>2 (Circular Orifice, R<br>2 one 3 Restrictor<br>0.25<br>3 0.00<br>22.40<br>Trapezoidal)<br>7.77<br>3 00.00<br>4.00<br>1.00<br>7 he user can oven<br>WOCV<br>N/A<br>2.457<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>1.1<br>N/A<br>N/A<br>1.1<br>N/A<br>1.1<br>N/A<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2<br>1.2                                                                                                                                                                                                                                                                                                                                         | N/A<br>N/A<br>N/A<br>estrictor Plate, or R<br>N/A<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V<br>feet<br><i>ride the default CU/I</i><br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Overflow Weir 1<br>N/A<br>N/A<br>N/A<br>N/A<br>S<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | % <pre> % % % % % % % % % % % % % % % % % % %</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sin bottom at Stage<br>Half-Cent<br>0 ft)<br>1.14<br>5.786<br>5.786<br>0.4<br>0.4<br>0.0<br>1.7<br>4.5<br>Plate<br>N/A<br>N/A<br>66<br>70<br>4.34                                             | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h Area w/ Debris =<br>lculated Parameter:<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>tor Plate on Pipe =<br>tor Plate on Pipe =<br>tor of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>tor pof Freeboard =<br>1.85<br>10.932<br>5.8<br>0.04<br>104.6<br>11.8<br>2.0<br>Overflow Weir 1<br>0.4<br>N/A<br>83<br>89<br>6.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br>Calculated Parame<br>0.37<br>9.14<br>2.89<br>17.52<br>drographs table (CC<br>50 Year<br>2.23<br>14.760<br>14.760<br>14.760<br>26.5<br>0.18<br>148.1<br>35.4<br>1.3<br>Overflow Weir 1<br>1.2<br>N/A<br>81<br>89<br>6.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>500 Year</u><br><u>3.83</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.551</u><br><u>33.651</u><br><u>346.7</u><br><u>272.0</u><br><u>2.0</u><br><u>59illway</u><br><u>1.8</u><br><u>N/A</u><br><u>72</u><br><u>85</u><br><u>8.16</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Debris Clogging % =<br><u>User Input: Outlet Pipe w/ Flow Restriction Plate</u><br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br><u>User Input: Emergency Spillway (Rectangular or</u><br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>Routed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>UHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q (cfs) =<br>Ratio Peak Outflow for the Q (cfs) =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =<br>Time to Drain 97% of Inflow Volume (hours) = | 0% (Circular Orifice, R Zone 3 Restrictor 0.25 30.00 22.40 Trapezoidal) 7.77 300.00 4.00 1.00 The user can overn WOCV N/A 2.457 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>N/A<br>estrictor Plate, or R<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basir<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>N/A<br>8.139<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                              | % <pre>% ft (distance below ba inches inches inches h bottom at Stage = </pre> HP hydrographs and 2 Year 0.86 4.248 0.0  0.00 37.0 1.3 N/A Plate N/A N/A N/A S6 56 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sin bottom at Stage<br>Half-Cent<br>0 ft)<br>1.14<br>5.786<br>0.4<br>0.4<br>0.00<br>48.9<br>1.7<br>4.5<br>Plate<br>N/A<br>N/A<br>N/A<br>N/A<br>66<br>70                                       | erflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>verflow Grate Open<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h Area w/ Debris =<br>lculated Parameters<br>utlet Orifice Area =<br>Orifice Centroid =<br>tor Plate on Pipe =<br>bor Plate on Pipe =<br>bor of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>op of Freeboard =<br>cop of Freeboard =<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>5.8<br>0.04<br>10.932<br>10.932<br>5.8<br>0.04<br>10.932<br>10.932<br>5.8<br>0.04<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.932<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.94<br>10.9 | 26.80<br>20ne 3 Restrictor<br>3.93<br>1.03<br>2.09<br><u>Calculated Parame</u><br>0.37<br>9.14<br>2.89<br>17.52<br><i>trographs table (Co</i><br>50 Year<br>2.23<br>14.760<br>26.5<br>0.18<br>148.1<br>35.4<br>1.3<br>Overflow Weir 1<br>1.2<br>N/A<br>81<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A           N/A           N/A           Not Selected           N/A           deters for Spillway           feet           feet           acres           acre-ft           000 Year           2.66           19.737           55.0           0.38           203.4           50.1           0.9           Spillway           1.8           N/A           78           88 | ft <sup>2</sup><br><u>ate</u><br>ft <sup>2</sup><br>feet<br>radians<br><u>500 Year</u><br><u>3.83</u><br><u>33.551</u><br><u>33.551</u><br><u>138.2</u><br><u>0.95</u><br><u>346.7</u><br><u>272.0</u><br><u>2.0</u><br><u>5pillway</u><br><u>1.8</u><br>N/A<br><u>72</u><br><u>85</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

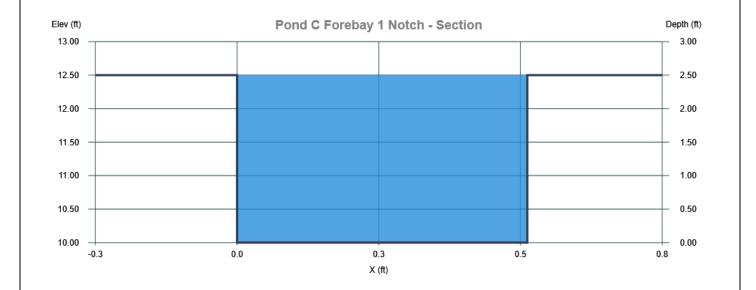
|               |                    |            |            |                |                |                |                | l in a separate pr |                  |                  |
|---------------|--------------------|------------|------------|----------------|----------------|----------------|----------------|--------------------|------------------|------------------|
|               | SOURCE             | CUHP       | CUHP       | CUHP           | CUHP           | CUHP           | CUHP           | CUHP               | CUHP             | CUHP             |
| Time Interval | TIME               | WQCV [cfs] | EURV [cfs] | 2 Year [cfs]   | 5 Year [cfs]   | 10 Year [cfs]  | 25 Year [cfs]  | 50 Year [cfs]      | 100 Year [cfs]   | 500 Year [cfs]   |
| 5.00 min      | 0:00:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 0:05:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 0:10:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.20               | 0.18             | 1.53             |
|               | 0:15:00            | 0.00       | 0.00       | 0.65           | 1.76           | 2.63           | 2.26           | 3.56               | 3.86             | 8.35             |
|               | 0:20:00            | 0.00       | 0.00       | 5.20           | 8.62           | 11.53          | 9.03           | 12.31              | 14.00            | 23.58            |
|               | 0:25:00            | 0.00       | 0.00       | 15.79          | 22.74          | 29.92          | 22.44          | 28.95              | 34.05            | 56.65            |
|               | 0:30:00            | 0.00       | 0.00       | 27.44          | 37.70          | 49.67          | 49.39          | 67.25              | 83.96            | 144.60           |
|               | 0:35:00            | 0.00       | 0.00       | 34.59<br>37.02 | 46.44<br>48.92 | 60.98<br>63.83 | 79.57<br>98.51 | 111.75<br>139.45   | 146.69<br>188.12 | 252.30<br>321.34 |
|               | 0:45:00            | 0.00       | 0.00       | 36.35          | 47.86          | 62.20          | 104.64         | 148.09             | 203.39           | 346.75           |
|               | 0:50:00            | 0.00       | 0.00       | 34.36          | 45.51          | 58.77          | 102.95         | 144.86             | 201.18           | 343.61           |
|               | 0:55:00            | 0.00       | 0.00       | 32.40          | 43.26          | 55.59          | 97.36          | 135.82             | 189.81           | 325.86           |
|               | 1:00:00            | 0.00       | 0.00       | 30.64          | 41.09          | 52.77          | 91.31          | 126.40             | 177.88           | 307.14           |
|               | 1:05:00            | 0.00       | 0.00       | 29.19          | 39.19          | 50.37          | 85.45          | 117.33             | 166.82           | 289.51           |
|               | 1:10:00            | 0.00       | 0.00       | 27.91          | 37.73          | 48.61          | 79.94          | 109.00             | 155.34           | 270.53           |
|               | 1:15:00            | 0.00       | 0.00       | 26.47          | 36.27          | 47.04          | 74.97          | 101.61             | 143.73           | 250.00           |
|               | 1:20:00            | 0.00       | 0.00       | 24.92          | 34.51          | 45.14          | 70.04          | 94.38              | 131.59           | 227.85           |
|               | 1:25:00            | 0.00       | 0.00       | 23.33          | 32.51          | 42.57          | 64.83          | 86.85              | 118.97           | 204.84           |
| ŀ             | 1:30:00<br>1:35:00 | 0.00       | 0.00       | 21.76          | 30.47          | 39.61          | 59.43          | 79.17              | 106.73           | 182.64           |
|               | 1:40:00            | 0.00       | 0.00       | 20.38<br>19.35 | 28.65<br>27.09 | 36.79<br>34.57 | 54.12<br>49.23 | 71.64<br>64.68     | 95.34<br>84.99   | 162.03<br>143.60 |
|               | 1:45:00            | 0.00       | 0.00       | 19.35          | 27.09          | 34.57          | 49.23          | 59.52              | 77.38            | 143.60           |
| ·             | 1:50:00            | 0.00       | 0.00       | 18.03          | 23.07          | 31.61          | 42.53          | 55.52              | 71.51            | 119.83           |
|               | 1:55:00            | 0.00       | 0.00       | 17.27          | 23.05          | 30.28          | 40.07          | 52.13              | 66.40            | 110.47           |
|               | 2:00:00            | 0.00       | 0.00       | 16.23          | 21.80          | 28.79          | 37.81          | 48.99              | 61.74            | 101.92           |
|               | 2:05:00            | 0.00       | 0.00       | 14.86          | 20.15          | 26.61          | 34.99          | 45.17              | 56.44            | 92.59            |
|               | 2:10:00            | 0.00       | 0.00       | 13.24          | 18.05          | 23.81          | 31.40          | 40.42              | 50.27            | 82.08            |
|               | 2:15:00            | 0.00       | 0.00       | 11.59          | 15.83          | 20.85          | 27.57          | 35.39              | 43.92            | 71.45            |
|               | 2:20:00            | 0.00       | 0.00       | 10.05          | 13.69          | 18.01          | 23.86          | 30.50              | 37.84            | 61.33            |
|               | 2:25:00            | 0.00       | 0.00       | 8.61           | 11.71          | 15.40          | 20.38          | 25.89              | 32.04            | 51.64            |
|               | 2:30:00<br>2:35:00 | 0.00       | 0.00       | 7.27           | 9.89           | 13.01          | 17.15          | 21.59              | 26.57            | 42.51            |
| ·             | 2:40:00            | 0.00       | 0.00       | 6.03<br>4.89   | 8.19<br>6.68   | 10.80<br>8.85  | 14.11<br>11.34 | 17.57<br>13.89     | 21.38<br>16.57   | 33.82<br>25.79   |
|               | 2:45:00            | 0.00       | 0.00       | 3.98           | 5.48           | 7.26           | 8.92           | 10.67              | 12.33            | 19.03            |
|               | 2:50:00            | 0.00       | 0.00       | 3.30           | 4.58           | 6.09           | 7.04           | 8.37               | 9.43             | 14.59            |
|               | 2:55:00            | 0.00       | 0.00       | 2.77           | 3.87           | 5.14           | 5.69           | 6.74               | 7.44             | 11.39            |
|               | 3:00:00            | 0.00       | 0.00       | 2.33           | 3.25           | 4.32           | 4.66           | 5.51               | 5.91             | 8.91             |
|               | 3:05:00            | 0.00       | 0.00       | 1.97           | 2.72           | 3.63           | 3.82           | 4.50               | 4.71             | 6.97             |
|               | 3:10:00            | 0.00       | 0.00       | 1.66           | 2.28           | 3.04           | 3.15           | 3.70               | 3.77             | 5.47             |
|               | 3:15:00            | 0.00       | 0.00       | 1.39           | 1.90           | 2.55           | 2.61           | 3.07               | 3.04             | 4.33             |
|               | 3:20:00            | 0.00       | 0.00       | 1.16           | 1.58           | 2.12           | 2.15           | 2.52               | 2.45             | 3.44             |
|               | 3:25:00            | 0.00       | 0.00       | 0.96           | 1.29           | 1.73           | 1.76           | 2.06               | 2.00             | 2.80             |
|               | 3:30:00<br>3:35:00 | 0.00       | 0.00       | 0.78           | 1.04           | 1.40           | 1.42           | 1.66               | 1.62             | 2.26             |
| ·             | 3:40:00            | 0.00       | 0.00       | 0.63           | 0.82           | 1.11           | 1.13           | 1.32               | 1.30             | 1.80             |
|               | 3:45:00            | 0.00       | 0.00       | 0.48           | 0.64           | 0.87           | 0.89           | 1.02<br>0.77       | 1.01<br>0.76     | 1.39             |
| ·             | 3:50:00            | 0.00       | 0.00       | 0.30           | 0.48           | 0.48           | 0.49           | 0.56               | 0.55             | 0.74             |
|               | 3:55:00            | 0.00       | 0.00       | 0.17           | 0.24           | 0.33           | 0.34           | 0.38               | 0.37             | 0.48             |
| ľ             | 4:00:00            | 0.00       | 0.00       | 0.10           | 0.15           | 0.21           | 0.22           | 0.24               | 0.22             | 0.29             |
|               | 4:05:00            | 0.00       | 0.00       | 0.05           | 0.09           | 0.12           | 0.12           | 0.13               | 0.11             | 0.14             |
| ŀ             | 4:10:00            | 0.00       | 0.00       | 0.02           | 0.04           | 0.05           | 0.05           | 0.05               | 0.04             | 0.04             |
| ŀ             | 4:15:00<br>4:20:00 | 0.00       | 0.00       | 0.01           | 0.01           | 0.01           | 0.01           | 0.01               | 0.00             | 0.00             |
|               | 4:25:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 4:30:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
| ·             | 4:35:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
| ŀ             | 4:40:00<br>4:45:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 4:50:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 4:55:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
| ľ             | 5:00:00<br>5:05:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 5:10:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 5:15:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
| ŀ             | 5:20:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 5:25:00<br>5:30:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 5:35:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               | 5:40:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
| ŀ             | 5:45:00<br>5:50:00 | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |
|               |                    |            |            |                |                |                |                |                    |                  |                  |
|               | 5:55:00            | 0.00       | 0.00       | 0.00           | 0.00           | 0.00           | 0.00           | 0.00               | 0.00             | 0.00             |

MHFD-Detention, Version 4.04 (February 2021) Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| Stage - Storage<br>Description | Stage<br>[ft] | Area<br>[ft <sup>2</sup> ] | Area<br>[acres] | Volume<br>[ft <sup>3</sup> ] | Volume<br>[ac-ft] | Total<br>Outflow<br>[cfs] |                                                        |
|--------------------------------|---------------|----------------------------|-----------------|------------------------------|-------------------|---------------------------|--------------------------------------------------------|
|                                |               |                            |                 |                              |                   |                           | For best results, include the                          |
|                                |               |                            |                 |                              |                   |                           | stages of all grade slope                              |
|                                |               |                            |                 |                              |                   |                           | changes (e.g. ISV and Floor<br>from the S-A-V table on |
|                                | 1             |                            |                 |                              |                   |                           | from the S-A-V table on                                |
|                                | -             |                            |                 |                              |                   |                           | Sheet 'Basin'.                                         |
|                                |               |                            |                 |                              |                   |                           | Also include the inverts of a                          |
|                                |               |                            |                 |                              |                   |                           | outlets (e.g. vertical orifice,                        |
|                                |               |                            |                 |                              |                   |                           | overflow grate, and spillway                           |
|                                |               |                            |                 |                              |                   |                           | overflow grate, and spillway where applicable).        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           | _                                                      |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            | 1               |                              |                   |                           | 1                                                      |
|                                |               |                            | 1               |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | _                                                      |
|                                | _             |                            | L               |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           | -                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            | 1               |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | ]                                                      |
|                                |               |                            |                 |                              |                   |                           | ]                                                      |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 |                              |                   |                           | 4                                                      |
|                                |               |                            |                 | 1                            |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | 1                                                      |
|                                |               |                            | 1               |                              |                   |                           | 1                                                      |
|                                |               |                            |                 |                              |                   |                           | ]                                                      |
|                                |               |                            |                 |                              |                   |                           | ]                                                      |
|                                |               |                            |                 |                              |                   |                           |                                                        |
|                                |               |                            |                 |                              |                   |                           |                                                        |

## Pond C Forebay 1 Notch


04-01-2021

## Channel 1

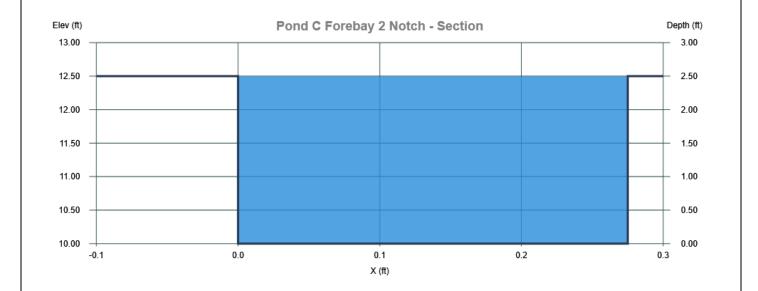
Project Name: New Project

| RECTANGULAR      |            | DISCHARGE |            |
|------------------|------------|-----------|------------|
| Bottom Width     | = 0.51 ft  | Method    | = Known Q  |
| Total Depth      | = 2.50 ft  | Known Q   | = 3.01 cfs |
| Invert Elevation | = 10.00 ft |           |            |
| Channel Slope    | = 0.300 %  |           |            |
| Manning's n      | = 0.013    |           |            |

| Flow  | Depth | Area   | Velocity | WP   | n-value | Crit Depth | HGL   | EGL   | Max Shear | Top Width |
|-------|-------|--------|----------|------|---------|------------|-------|-------|-----------|-----------|
| (cfs) | (ft)  | (sqft) | (ft/s)   | (ft) |         | (ft)       | (ft)  | (ft)  | (lb/sqft) | (ft)      |
| 3.01  | 2.49  | 1.27   | 2.36     | 5.49 | 0.013   | 1.03       | 12.49 | 12.58 | 0.47      | 0.51      |



## Pond C Forebay 2 Notch


04-01-2021

## Channel 1

Project Name: New Project

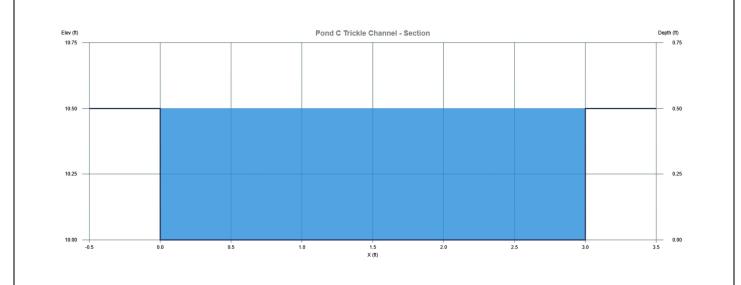
| RECTANGULAR      |            | DISCHARGE |            |
|------------------|------------|-----------|------------|
| Bottom Width     | = 0.28 ft  | Method    | = Known Q  |
| Total Depth      | = 2.50 ft  | Known Q   | = 1.10 cfs |
| Invert Elevation | = 10.00 ft |           |            |
| Channel Slope    | = 0.300 %  |           |            |
| Manning's n      | = 0.013    |           |            |
|                  |            |           |            |

| Flow  | Depth | Area   | Velocity | WP   | n-value | Crit Depth | HGL   | EGL   | Max Shear | Top Width |
|-------|-------|--------|----------|------|---------|------------|-------|-------|-----------|-----------|
| (cfs) | (ft)  | (sqft) | (ft/s)   | (ft) |         | (ft)       | (ft)  | (ft)  | (lb/sqft) | (ft)      |
| 1.10  | 2.49  | 0.68   | 1.61     | 5.25 | 0.013   | 0.80       | 12.49 | 12.53 | 0.47      | 0.28      |



Studio Express by Hydrology Studio v 1.0.0.9

### Pond C Trickle Channel


04-09-2021

### Channel 3

| RECTANGULAR      |            | DISCHARGE  |              |
|------------------|------------|------------|--------------|
| Bottom Width     | = 3.00 ft  | Method     | = Q vs Depth |
| Total Depth      | = 0.50 ft  | Q Min      | = 0.12 cfs   |
| Invert Elevation | = 10.00 ft | Q Max      | = 4.88 cfs   |
| Channel Slope    | = 0.300 %  | Increments | = 10         |
| Manning's n      | = 0.013    |            |              |

### CALCULATION SAMPLE

| Flow  | Depth | Area   | Velocity | WP   | n-value | Crit Depth | HGL   | EGL   | Max Shear | Top Width |
|-------|-------|--------|----------|------|---------|------------|-------|-------|-----------|-----------|
| (cfs) | (ft)  | (sqft) | (ft/s)   | (ft) |         | (ft)       | (ft)  | (ft)  | (lb/sqft) | (ft)      |
| 4.88  | 0.50  | 1.50   | 3.25     | 4.00 | 0.013   | 0.44       | 10.50 | 10.66 | 0.09      | 3.00      |





### NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or **floodways** have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) Report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS Report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD 88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study Report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study Report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to Section 2.4 "Flood Protection Measures" of the Flood Insurance Study Report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD 83, GRS 1980 spheroid. Differences in datum, spheroid, projection or UTM zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

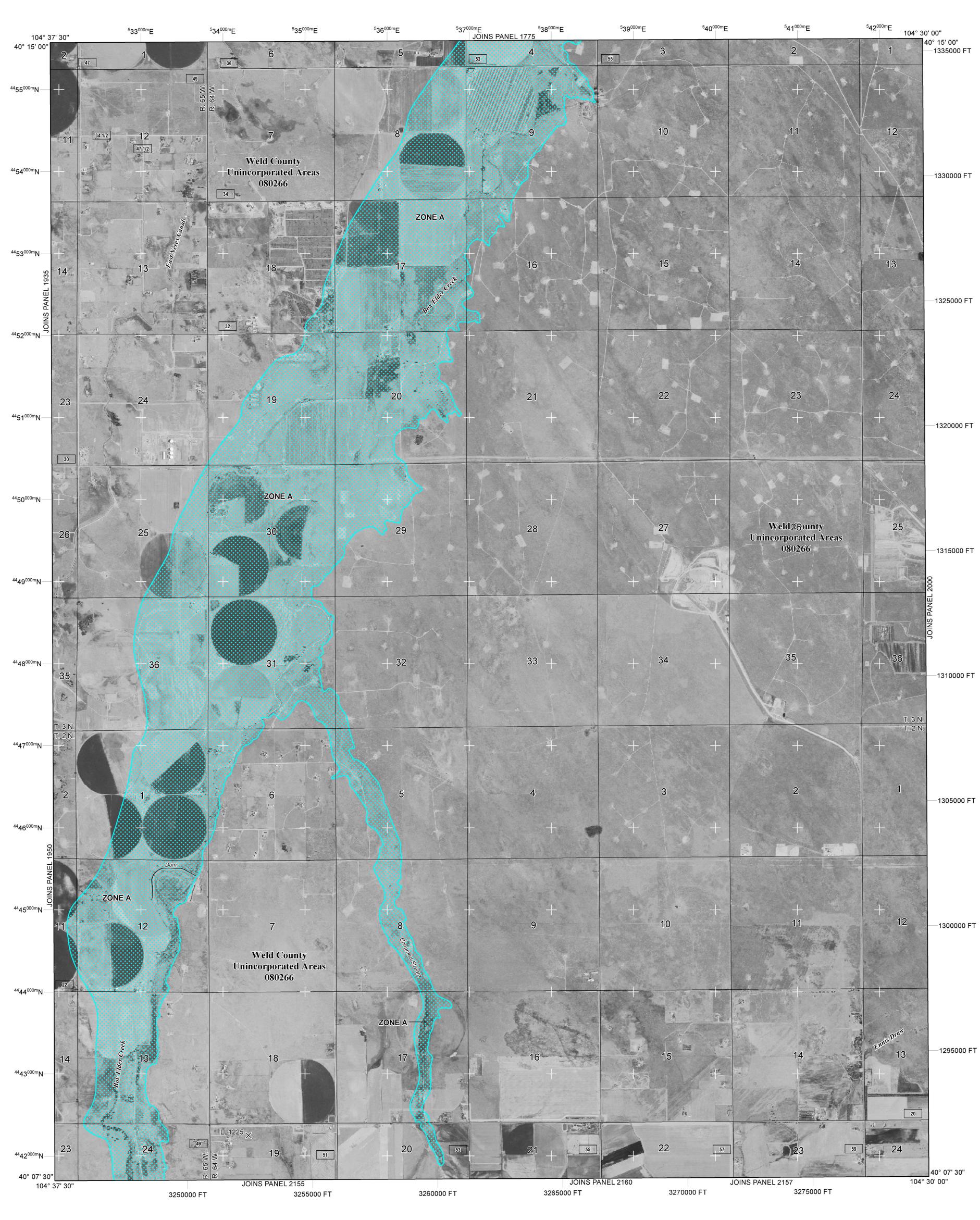
Flood elevations on this map are referenced to the North American Vertical Datum of 1988. These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website at http://www.ngs.noaa.gov or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, Maryland 20910-3282 (301) 713-3242

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713- 3242, or visit its website at http://www.ngs.noaa.gov.

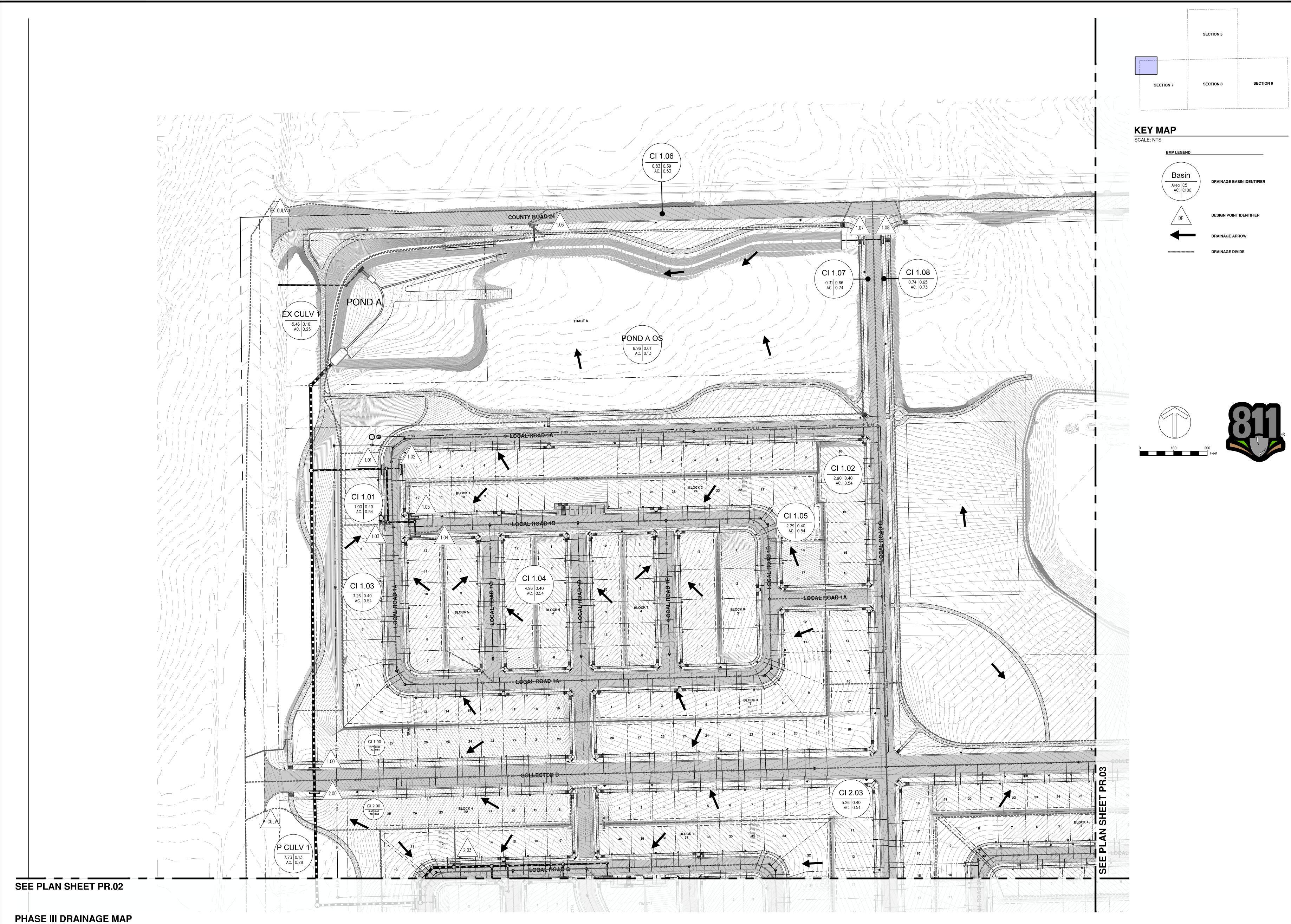
Base map information shown on this FIRM was derived from NAIP Orthophotography produced with a one meter ground resolution from photography dated 2013.

The **profile baselines** depicted on this map represent the hydraulic modeling baselines that match the flood profiles in the FIS report. As a result of improved topographic data, the profile baseline, in some cases, may deviate significantly from the channel centerline or appear outside the SFHA.

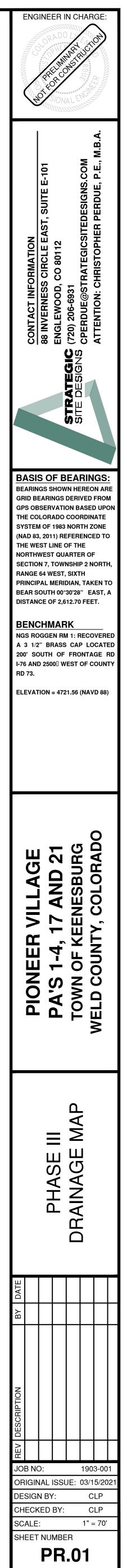

This map reflects more detailed and up-to-date stream channel configurations than those shown on the previous FIRM for this jurisdiction. The floodplains and podways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables for multiple streams in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map.

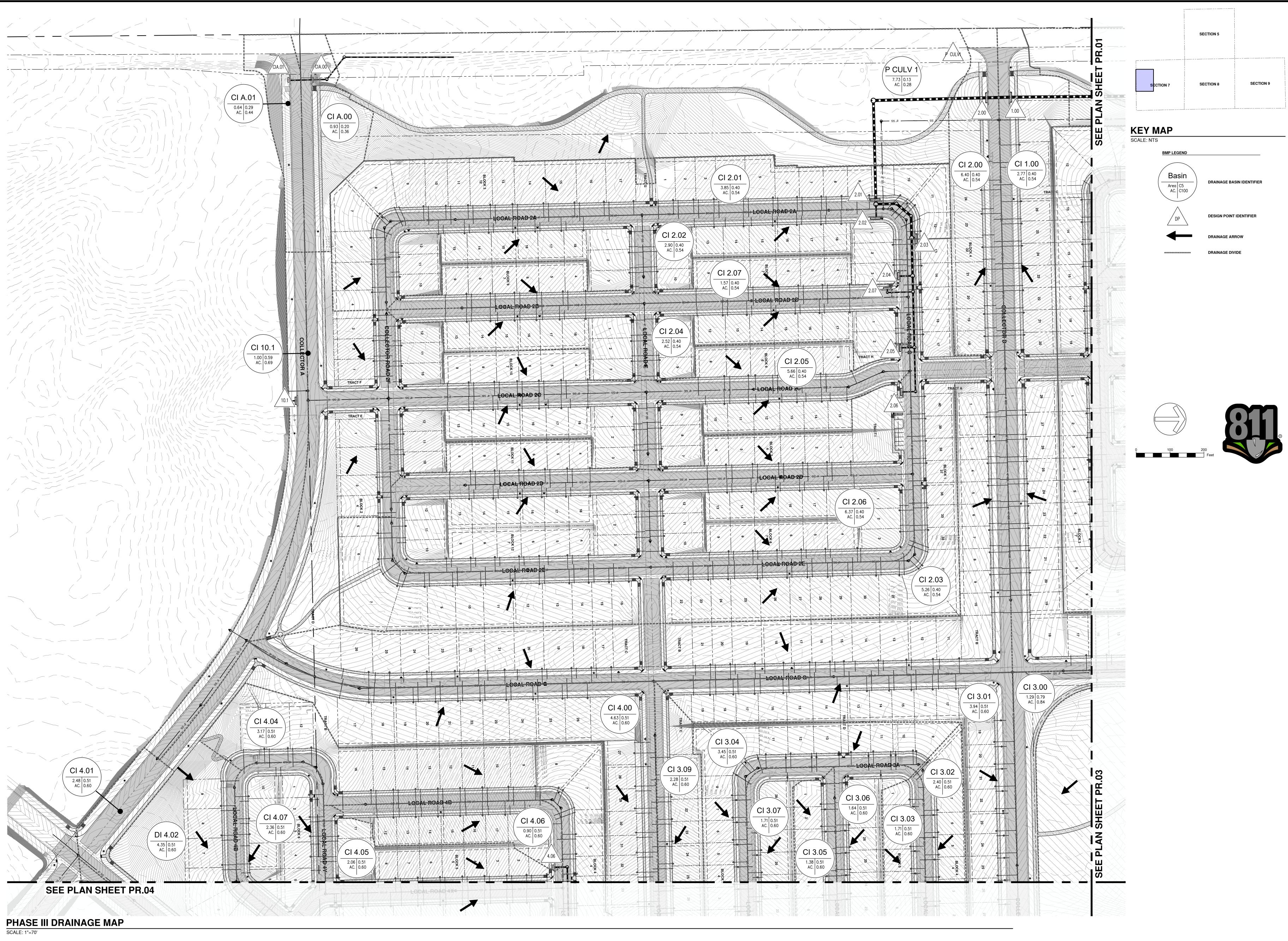
Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

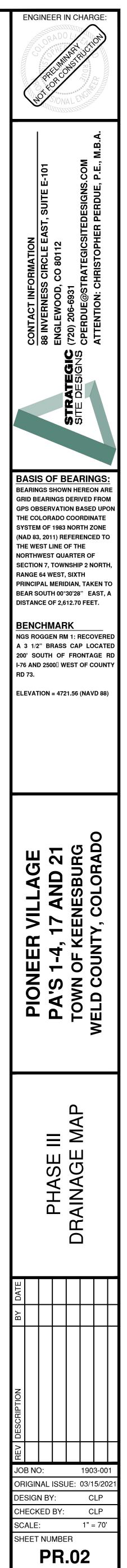
Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

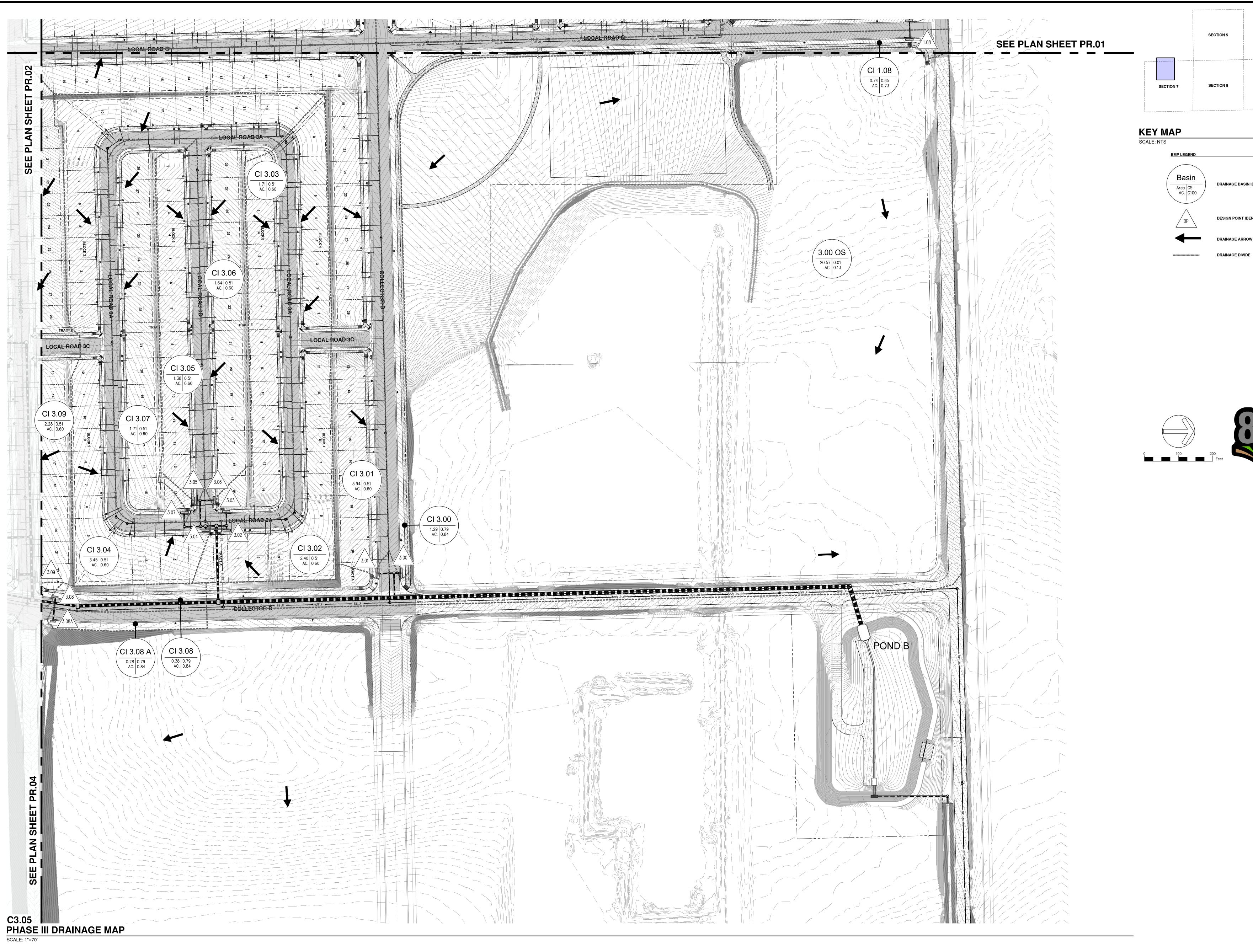

For information on available products associated with this FIRM visit the Map Service Center (MSC) website at http://msc.fema.gov. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. Many of these products can be ordered or obtained directly from the MSC website.

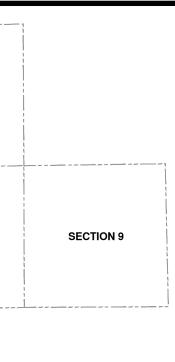
If you have questions about this map, how to order products, or the National Flood Insurance Program in general, please call the FEMA Map Information eXchange (FMIX) at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.





| a 1% chance c                      |                                                                                       | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| the area cubic                     | INUNDATI                                                                              | FLOOD HAZARD AREAS (SFHAs) SUBJECT TO<br>ION BY THE 1% ANNUAL CHANCE FLOOD<br>(100-year flood), also known as the base flood, is the flood that<br>ed or exceeded in any given year. The Special Flood Hazard Area i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| include Zones<br>elevation of the  | ct to flooding b<br>A, AE, AH, AO,                                                    | by the 1% annual chance flood. Areas of Special Flood Hazard<br>, AR, A99, V, and VE. The Base Flood Elevation is the water-surfac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| ZONE A                             |                                                                                       | Flood Elevations determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| ZONE AE<br>ZONE AH                 | Flood dep                                                                             | od Elevations determined.<br>pths of 1 to 3 feet (usually areas of ponding); Base Flood Elevatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns               |
| ZONE AO                            |                                                                                       | pths of 1 to 3 feet (usually sheet flow on sloping terrain); average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| ZONE AR                            | Special F<br>flood by                                                                 | letermined. For areas of alluvial fan flooding, velocities also determ<br>Flood Hazard Areas formerly protected from the 1% annual chance<br>a flood control system that was subsequently decertified. Zone<br>ates that the former flood control system is being restored to provi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| ZONE A99                           | protectio<br>Area to b                                                                | on from the 1% annual chance or greater flood.<br>be protected from 1% annual chance flood by a Federal flood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| ZONE V                             |                                                                                       | on system under construction; no Base Flood Elevations determined<br>flood zone with velocity hazard (wave action); no Base Flood Eleva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| ZONE VE                            |                                                                                       | flood zone with velocity hazard (wave action); Base Flood Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns               |
|                                    |                                                                                       | AY AREAS IN ZONE AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
|                                    |                                                                                       | of a stream plus any adjacent floodplain areas that must be kept fi<br>6 annual chance flood can be carried without substantial increases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |
| ZONE X                             |                                                                                       | OOD AREAS<br>% annual chance flood; areas of 1% annual chance flood with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|                                    | average dept                                                                          | oths of less than 1 foot or with drainage areas less than 1 square eas protected by levees from 1% annual chance flood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| ZONE X<br>ZONE D                   |                                                                                       | nined to be outside the 0.2% annual chance floodplain.<br>ich flood hazards are undetermined, but possible.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| $\square$                          | COASTAL                                                                               | BARRIER RESOURCES SYSTEM (CBRS) AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                                    | OTHERWI                                                                               | ISE PROTECTED AREAS (OPAs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| CBRS areas an                      | d OPAs are noi                                                                        | rmally located within or adjacent to Special Flood Hazard Areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
|                                    |                                                                                       | 1% Annual Chance Floodplain Boundary<br>0.2% Annual Chance Floodplain Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                    |                                                                                       | Floodway boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                                    |                                                                                       | Zone D boundary<br>CBRS and OPA boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| 00000000                           |                                                                                       | Boundary dividing Special Flood Hazard Area Zones and boundar<br>dividing Special Flood Hazard Areas of different Base Flood Eleva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| ~~ 540.                            | ••••                                                                                  | flood depths, or flood velocities.<br>Base Flood Elevation line and value; elevation in feet*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15               |
| (EL 987)                           | )                                                                                     | Base Flood Elevation value where uniform within zone; elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n in             |
| *Referenced to                     | the North Am                                                                          | feet*<br>nerican Vertical Datum of 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| A                                  |                                                                                       | Cross section line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| 23                                 |                                                                                       | Transect line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| 45° 02' 08", 9                     | 93° 02' 12"                                                                           | Geographic coordinates referenced to the North American Datun<br>1983 (NAD 83) Western Hemisphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n of             |
| 3100000                            | FT                                                                                    | 5000-foot ticks: Colorado State Plane Central Zone<br>(FIPS Zone 0502), Lambert Conformal Conic projection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| <sup>49</sup> 89 <sup>000m</sup> ℕ | 1                                                                                     | 1000-meter Universal Transverse Mercator grid values, zone 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                |
| DX5510<br>• M1.5                   | ×                                                                                     | Bench mark (see explanation in Notes to Users section of this FI<br>panel)<br>River Mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .RM              |
|                                    | EFFEC                                                                                 | FLOOD INSURANCE RATE MAP<br>January 20, 2016<br>CTIVE DATE(S) OF REVISION(S) TO THIS PANEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| Map History<br>To determin         | nity map revisi<br>v table located<br>ne if flood insura                              | January 20, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Map History<br>To determin         | nity map revisi<br>v table located<br>ne if flood insura                              | January 20, 2016<br>CTIVE DATE(S) OF REVISION(S) TO THIS PANEL<br>ion history prior to countywide mapping, refer to the Community<br>in the Flood Insurance Study report for this jurisdiction.<br>rance is available in this community, contact your insurance agent<br>Insurance Program at 1-800-638-6620.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |
| Map History<br>To determin         | nity map revisi<br>v table located<br>ne if flood insura                              | January 20, 2016<br>CTIVE DATE(S) OF REVISION(S) TO THIS PANEL<br>ion history prior to countywide mapping, refer to the Community<br>in the Flood Insurance Study report for this jurisdiction.<br>rance is available in this community, contact your insurance agent<br>Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 2000'<br>0 4000<br>FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
| Map History<br>To determin         | nity map revisio<br>/ table located<br>le if flood insura<br>lational Flood I         | January 20, 2016<br>CTIVE DATE(S) OF REVISION(S) TO THIS PANEL<br>ion history prior to countywide mapping, refer to the Community<br>in the Flood Insurance Study report for this jurisdiction.<br>rance is available in this community, contact your insurance agent<br>Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 2000'<br>0 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Map History<br>To determin         | nity map revisio<br>/ table located<br>le if flood insura<br>lational Flood I<br>1000 | January 20, 2016<br>CTIVE DATE(S) OF REVISION(S) TO THIS PANEL<br>ion history prior to countywide mapping, refer to the Community<br>in the Flood Insurance Study report for this jurisdiction.<br>rance is available in this community, contact your insurance agent<br>Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 2000'<br>0 4000<br>FEET<br>METERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| Map History<br>To determin         | nity map revisio<br>/ table located<br>le if flood insura<br>lational Flood I<br>1000 | In history prior to countywide mapping, refer to the Community<br>in the Flood Insurance Study report for this jurisdiction.<br>Tance is available in this community, contact your insurance agent<br>Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 2000'<br>0 4000<br>FEET<br>METERS<br>0 600 1200<br>METERS<br>0 600 100<br>METERS<br>0 700<br>0 | JT)<br>FFIX<br>E |



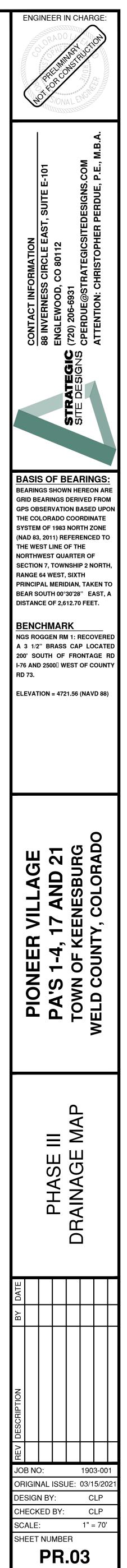



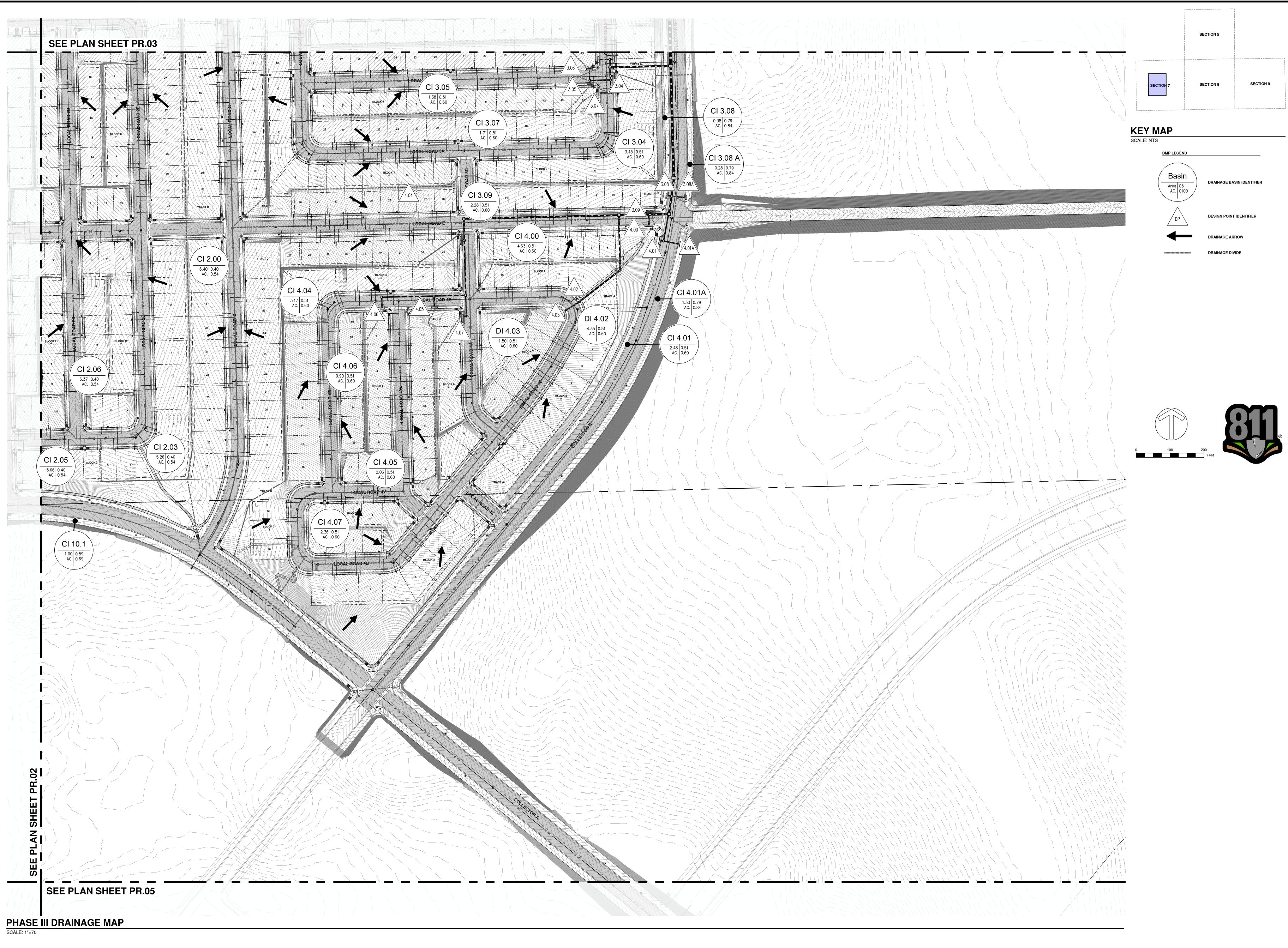


SCALE: 1"=70'

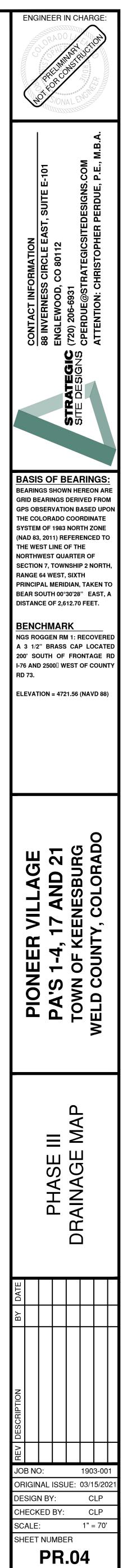


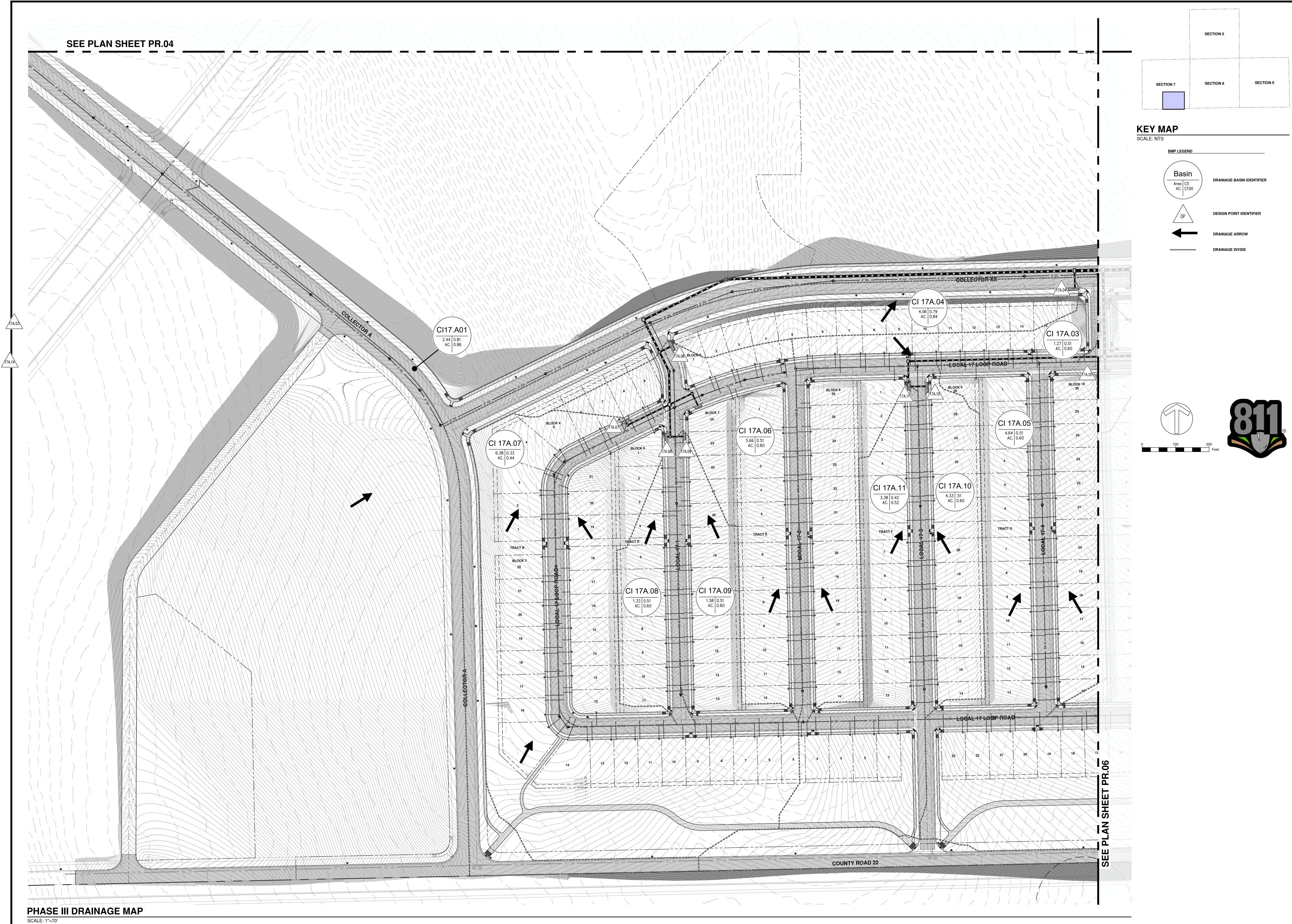


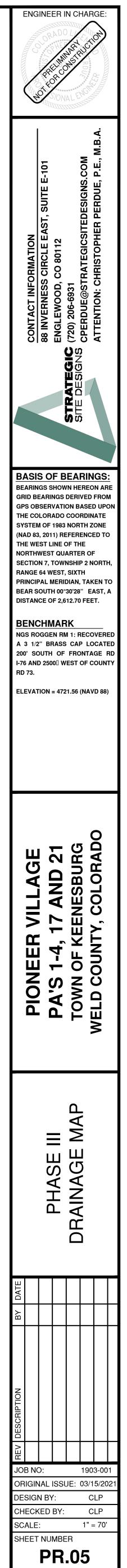


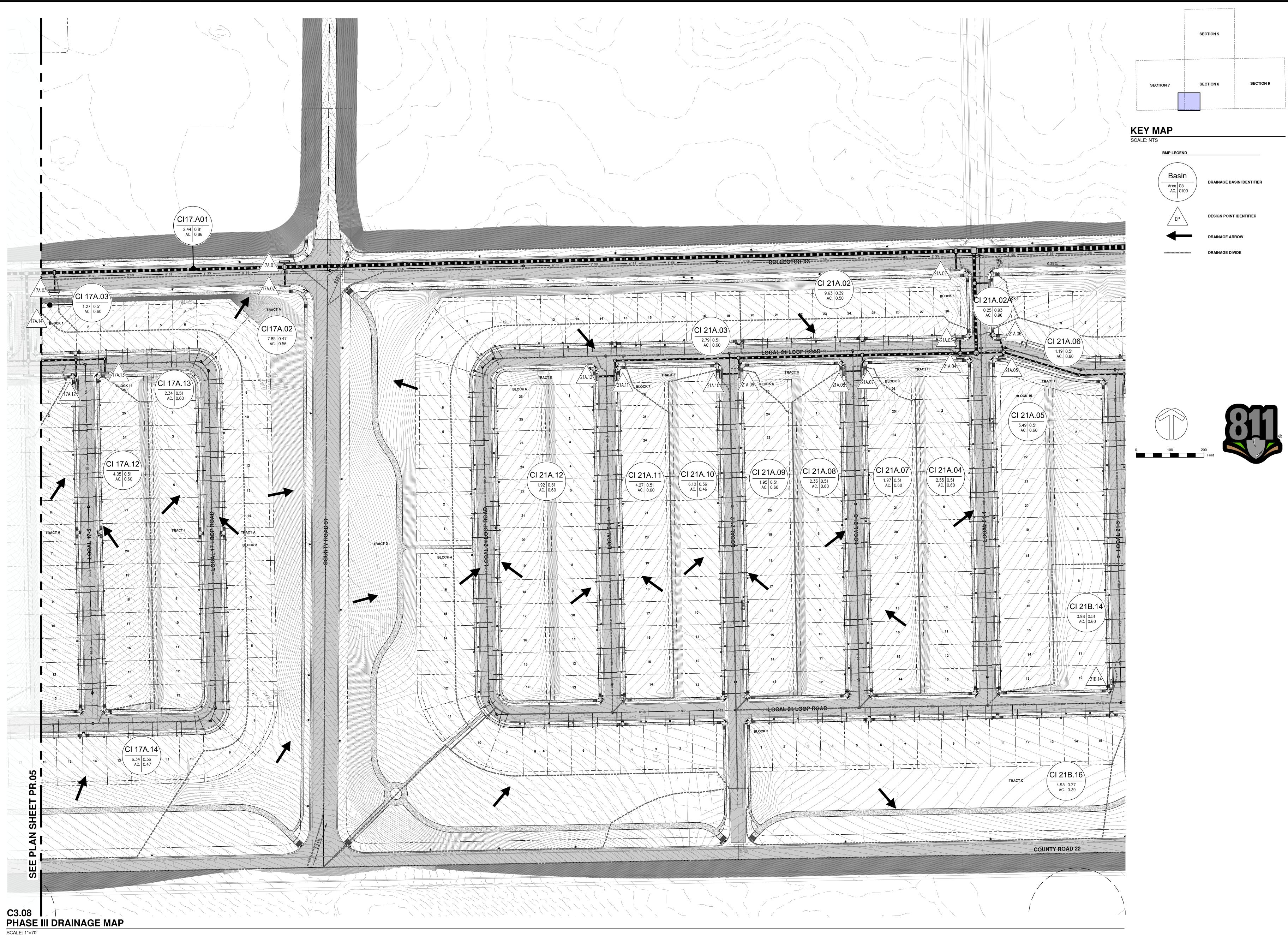


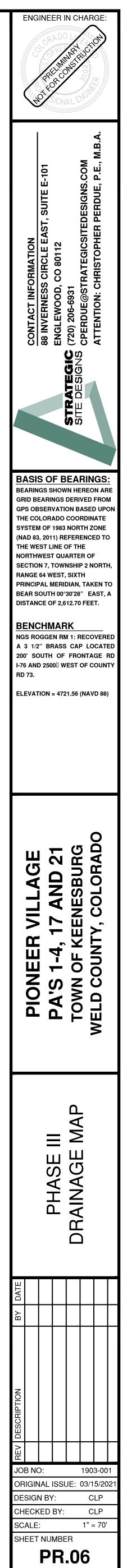



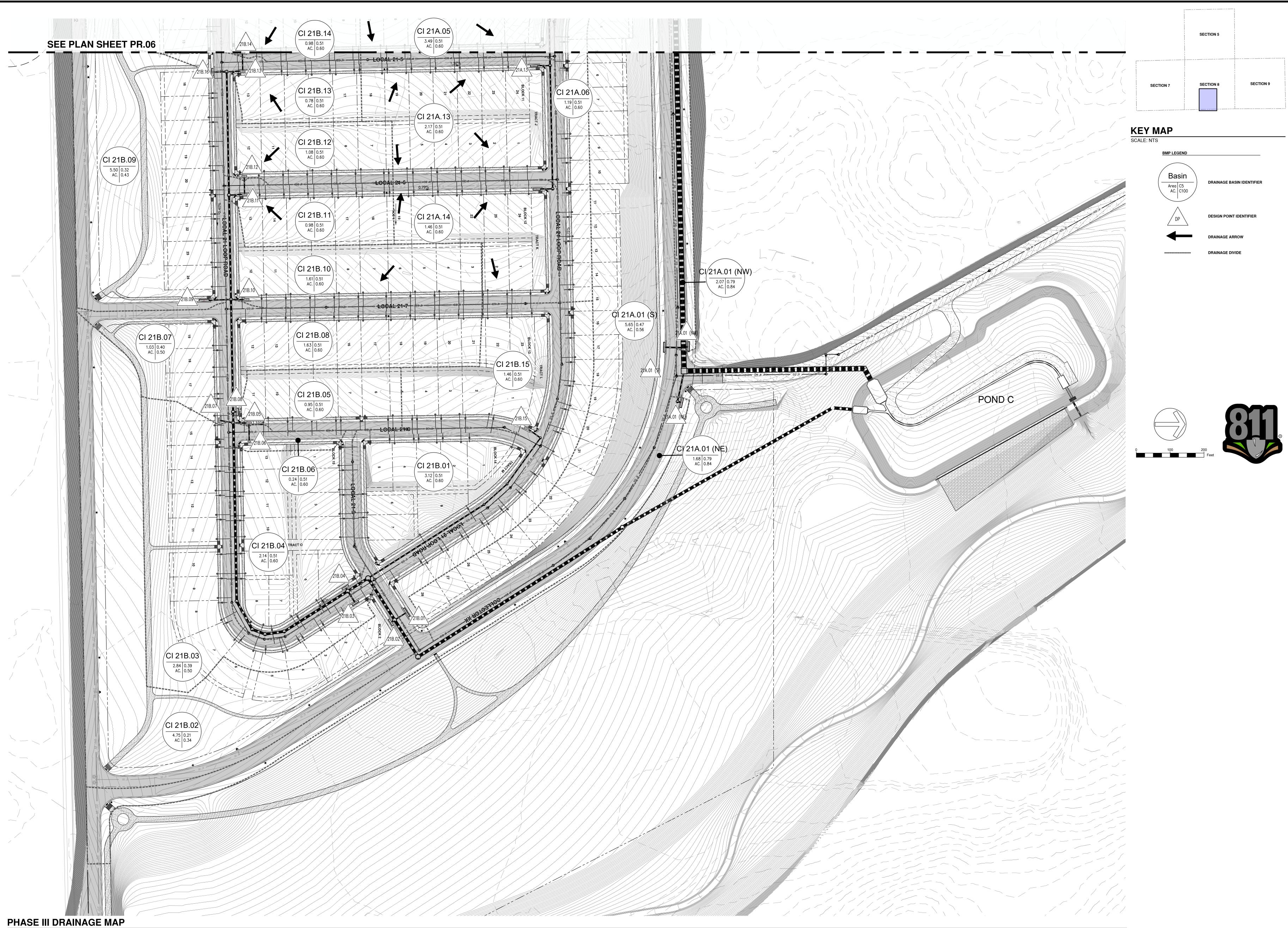


DRAINAGE BASIN IDENTIFIER

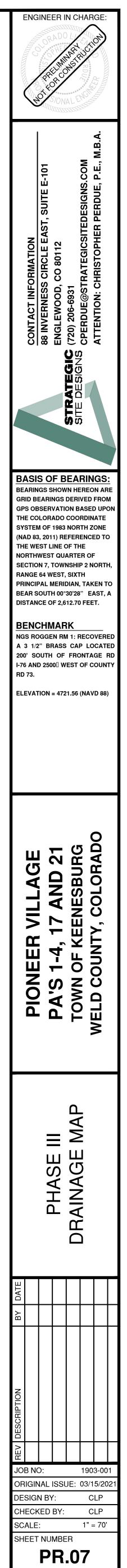

DESIGN POINT IDENTIFIER


















United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Weld County, Colorado, Southern Part

**Pioneer Village Section 7** 



# Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# Contents

| Preface                                    | 2  |
|--------------------------------------------|----|
| How Soil Surveys Are Made                  |    |
| Soil Map                                   |    |
| Soil Map                                   | 9  |
| Legend                                     | 10 |
| Map Unit Legend                            | 11 |
| Map Unit Descriptions                      | 11 |
| Weld County, Colorado, Southern Part       |    |
| 44—Olney loamy sand, 1 to 3 percent slopes |    |
| 49—Osgood sand, 0 to 3 percent slopes      | 14 |
| 70—Valent sand, 3 to 9 percent slopes      | 15 |
| 72—Vona loamy sand, 0 to 3 percent slopes  | 17 |
| References                                 |    |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



|       | MAP LEGEND                                                                                                                                                                              |                                                                                                  |                                                                                                                                                                              | MAP INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       | nterest (AOI)<br>Area of Interest (AOI)                                                                                                                                                 | 61                                                                                               | Spoil Area<br>Stony Spot                                                                                                                                                     | The soil surveys that comprise your AOI were mapped at 1:24,000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Soils | Area of Interest (AOI) Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Lines Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp | ا<br>ک<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا<br>ا | Very Stony Spot<br>Wet Spot<br>Other<br>Special Line Features<br>res<br>Streams and Canals<br>ion<br>Rails<br>Interstate Highways<br>US Routes<br>Major Roads<br>Local Roads | 1:24,000.<br>Warning: Soil Map may not be valid at this scale.<br>Enlargement of maps beyond the scale of mapping can cause<br>misunderstanding of the detail of mapping and accuracy of soil<br>line placement. The maps do not show the small areas of<br>contrasting soils that could have been shown at a more detailed<br>scale.<br>Please rely on the bar scale on each map sheet for map<br>measurements.<br>Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)<br>Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts<br>distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more<br>accurate calculations of distance or area are required. |  |  |
|       | Mine or Quarry<br>Miscellaneous Water<br>Perennial Water<br>Rock Outcrop<br>Saline Spot<br>Sandy Spot<br>Severely Eroded Spot<br>Sinkhole<br>Slide or Slip<br>Sodic Spot                |                                                                                                  |                                                                                                                                                                              | <ul> <li>This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.</li> <li>Soil Survey Area: Weld County, Colorado, Southern Part Survey Area Data: Version 19, Jun 5, 2020</li> <li>Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.</li> <li>Date(s) aerial images were photographed: Jul 19, 2018—Aug 10, 2018</li> <li>The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.</li> </ul>                                                                                                                                                                                                                           |  |  |

| Map Unit Symbol             | Map Unit Name                           | Acres in AOI | Percent of AOI |
|-----------------------------|-----------------------------------------|--------------|----------------|
| 44                          | Olney loamy sand, 1 to 3 percent slopes | 1.4          | 0.2%           |
| 49                          | Osgood sand, 0 to 3 percent slopes      | 88.0         | 14.4%          |
| 70                          | Valent sand, 3 to 9 percent slopes      | 467.2        | 76.7%          |
| 72                          | Vona loamy sand, 0 to 3 percent slopes  | 52.6         | 8.6%           |
| Totals for Area of Interest |                                         | 609.1        | 100.0%         |

## Map Unit Legend

## Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

### Weld County, Colorado, Southern Part

### 44—Olney loamy sand, 1 to 3 percent slopes

#### **Map Unit Setting**

National map unit symbol: 362r Elevation: 4,600 to 5,200 feet Mean annual precipitation: 11 to 15 inches Mean annual air temperature: 46 to 54 degrees F Frost-free period: 125 to 175 days Farmland classification: Farmland of statewide importance

#### **Map Unit Composition**

Olney and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Olney**

#### Setting

Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed deposit outwash

#### **Typical profile**

H1 - 0 to 10 inches: loamy sand H2 - 10 to 20 inches: sandy clay loam H3 - 20 to 25 inches: sandy clay loam H4 - 25 to 60 inches: fine sandy loam

#### **Properties and qualities**

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 6.5 inches)

#### Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: B Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

#### **Minor Components**

#### Vona

Percent of map unit: 8 percent

Hydric soil rating: No

#### Zigweid

Percent of map unit: 7 percent Hydric soil rating: No

#### 49—Osgood sand, 0 to 3 percent slopes

#### Map Unit Setting

National map unit symbol: 362x Elevation: 4,680 to 4,900 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 46 to 55 degrees F Frost-free period: 140 to 150 days Farmland classification: Farmland of statewide importance

#### Map Unit Composition

Osgood and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Osgood**

#### Setting

Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian sands

#### **Typical profile**

*H1 - 0 to 22 inches:* sand *H2 - 22 to 34 inches:* sandy loam *H3 - 34 to 60 inches:* sand

#### **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 4.8 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A *Ecological site:* R067BY015CO - Deep Sand *Hydric soil rating:* No

#### **Minor Components**

#### Valent

*Percent of map unit:* 10 percent *Hydric soil rating:* No

#### Dailey

Percent of map unit: 5 percent Hydric soil rating: No

### 70-Valent sand, 3 to 9 percent slopes

#### Map Unit Setting

National map unit symbol: 2tczf Elevation: 3,050 to 5,150 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 180 days Farmland classification: Not prime farmland

#### Map Unit Composition

Valent and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Valent**

#### Setting

Landform: Hills, dunes Landform position (two-dimensional): Backslope, shoulder, footslope, summit Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Noncalcareous eolian sands

#### **Typical profile**

A - 0 to 5 inches: sand AC - 5 to 12 inches: sand C1 - 12 to 30 inches: sand C2 - 30 to 80 inches: sand

#### **Properties and qualities**

Slope: 3 to 9 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 39.96 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 1 percent Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm) Available water capacity: Very low (about 2.4 inches)

#### Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R067BY015CO - Deep Sand, R072XY109KS - Rolling Sands Hydric soil rating: No

#### **Minor Components**

#### Dailey

Percent of map unit: 10 percent Landform: Interdunes Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY015CO - Deep Sand, R072XA021KS - Sands (North) (PE 16-20)

Hydric soil rating: No

#### Vona

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Footslope, backslope, shoulder Landform position (three-dimensional): Side slope, head slope, nose slope, base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains, R072XA022KS - Sandy (North) Draft (April 2010) (PE 16-20) Hydric soil rating: No

#### Haxtun

Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY024CO - Sandy Plains, R072XY111KS - Sandy Plains Hydric soil rating: No

### 72—Vona loamy sand, 0 to 3 percent slopes

#### Map Unit Setting

National map unit symbol: 363r Elevation: 4,600 to 5,200 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 160 days Farmland classification: Farmland of local importance

#### Map Unit Composition

Vona and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

#### **Description of Vona**

#### Setting

Landform: Plains, terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits

#### **Typical profile**

H1 - 0 to 6 inches: loamy sand H2 - 6 to 28 inches: fine sandy loam H3 - 28 to 60 inches: sandy loam

#### **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Available water capacity: Moderate (about 6.5 inches)

#### Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

### **Minor Components**

#### Remmit

*Percent of map unit:* 10 percent *Hydric soil rating:* No

#### Valent

Percent of map unit: 5 percent Hydric soil rating: No

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf



United States Department of Agriculture

Natural Resources Conservation

Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

# Custom Soil Resource Report for Weld County, Colorado, Southern Part

**Pioneer Village Section 8** 



# Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2\_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

# Contents

| Preface<br>How Soil Surveys Are Made            |    |
|-------------------------------------------------|----|
| Soil Map                                        |    |
| Soil Map                                        | 9  |
| Legend                                          | 10 |
| Map Unit Legend                                 | 11 |
| Map Unit Descriptions                           | 11 |
| Weld County, Colorado, Southern Part            |    |
| 35—Loup-Boel loamy sands, 0 to 3 percent slopes | 13 |
| 44—Olney loamy sand, 1 to 3 percent slopes      | 14 |
| 49—Osgood sand, 0 to 3 percent slopes           | 15 |
| 70—Valent sand, 3 to 9 percent slopes           | 17 |
| 72—Vona loamy sand, 0 to 3 percent slopes       | 18 |
| 85—Water                                        | 19 |
| References                                      | 21 |

# **How Soil Surveys Are Made**

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

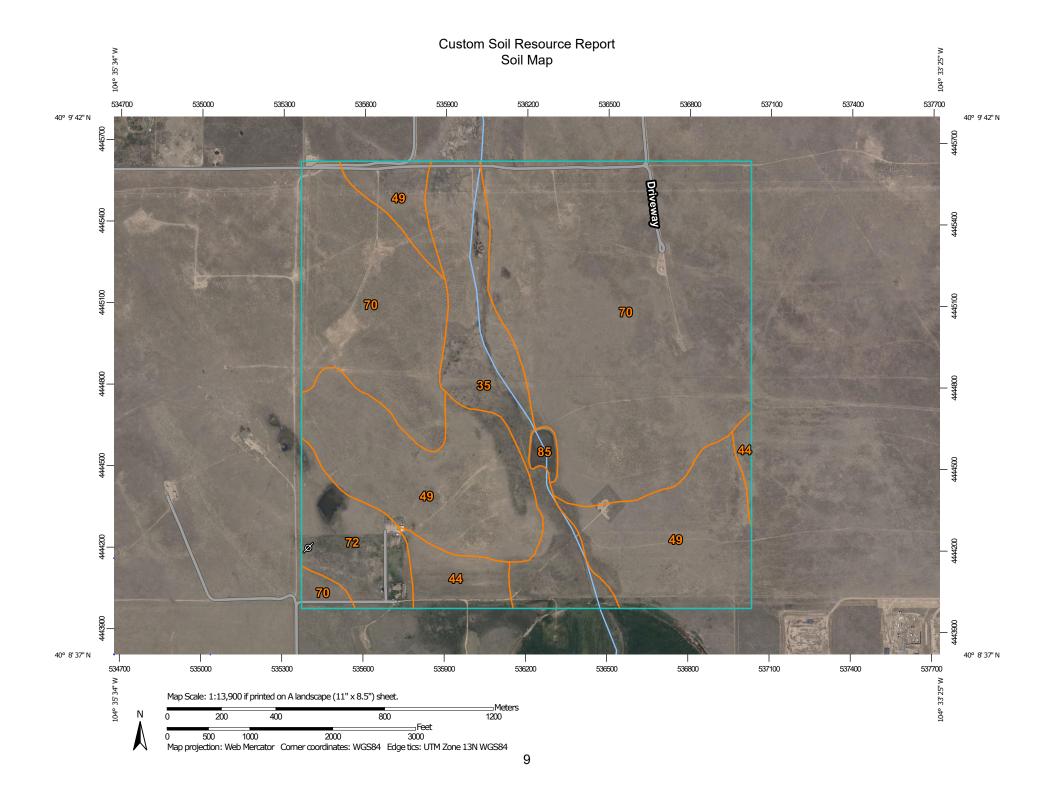
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

# Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.



| MAP LEGEND         |                                                                 |                    | )                                               | MAP INFORMATION                                                                                                                                                                                                                                                                                                          |  |
|--------------------|-----------------------------------------------------------------|--------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Area of Int        | erest (AOI)<br>Area of Interest (AOI)                           | 8                  | Spoil Area<br>Stony Spot                        | The soil surveys that comprise your AOI were mapped at 1:24,000.                                                                                                                                                                                                                                                         |  |
| Soils              | Soil Map Unit Polygons<br>Soil Map Unit Lines                   | 00<br>V            | Very Stony Spot<br>Wet Spot                     | Please rely on the bar scale on each map sheet for map measurements.                                                                                                                                                                                                                                                     |  |
| •                  | Soil Map Unit Points Point Features                             | △<br><br>Water Fea | Other<br>Special Line Features                  | Source of Map: Natural Resources Conservation Service<br>Web Soil Survey URL:<br>Coordinate System: Web Mercator (EPSG:3857)                                                                                                                                                                                             |  |
| ©<br>⊠<br>×        | Blowout<br>Borrow Pit<br>Clay Spot                              | ~                  | Streams and Canals Transportation               | Maps from the Web Soil Survey are based on the Web Mercator<br>projection, which preserves direction and shape but distorts<br>distance and area. A projection that preserves area, such as the<br>Albers equal-area conic projection, should be used if more<br>accurate calculations of distance or area are required. |  |
| ◇<br>※             | Closed Depression<br>Gravel Pit<br>Gravelly Spot                | <b>* *</b>         | Interstate Highways<br>US Routes<br>Major Roads | This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.                                                                                                                                                                                                                      |  |
| ©<br>۸.            | Landfill<br>Lava Flow<br>Marsh or swamp                         | Backgrou           | Local Roads<br>Ind<br>Aerial Photography        | Soil Survey Area: Weld County, Colorado, Southern Part<br>Survey Area Data: Version 19, Jun 5, 2020<br>Soil map units are labeled (as space allows) for map scales                                                                                                                                                       |  |
| *<br>0<br>0        | Mine or Quarry<br>Miscellaneous Water<br>Perennial Water        |                    |                                                 | 1:50,000 or larger.<br>Date(s) aerial images were photographed: Jul 19, 2018—Aug<br>10, 2018                                                                                                                                                                                                                             |  |
| ×<br>+<br>∷        | Rock Outcrop<br>Saline Spot<br>Sandy Spot                       |                    |                                                 | The orthophoto or other base map on which the soil lines were<br>compiled and digitized probably differs from the background<br>imagery displayed on these maps. As a result, some minor<br>shifting of map unit boundaries may be evident.                                                                              |  |
| <b>⊕</b><br>♦<br>∮ | Severely Eroded Spot<br>Sinkhole<br>Slide or Slip<br>Sodic Spot |                    |                                                 |                                                                                                                                                                                                                                                                                                                          |  |
| עצ                 |                                                                 |                    |                                                 |                                                                                                                                                                                                                                                                                                                          |  |

| Map Unit Symbol             | Map Unit Name                                | Acres in AOI | Percent of AOI |
|-----------------------------|----------------------------------------------|--------------|----------------|
| 35                          | Loup-Boel loamy sands, 0 to 3 percent slopes | 78.9         | 11.6%          |
| 44                          | Olney loamy sand, 1 to 3 percent slopes      | 22.8         | 3.4%           |
| 49                          | Osgood sand, 0 to 3 percent slopes           | 176.6        | 26.0%          |
| 70                          | Valent sand, 3 to 9 percent slopes           | 359.5        | 53.0%          |
| 72                          | Vona loamy sand, 0 to 3 percent slopes       | 37.0         | 5.5%           |
| 85                          | Water                                        | 3.9          | 0.6%           |
| Totals for Area of Interest |                                              | 678.7        | 100.0%         |

## **Map Unit Legend**

## **Map Unit Descriptions**

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it

was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

## Weld County, Colorado, Southern Part

## 35—Loup-Boel loamy sands, 0 to 3 percent slopes

## Map Unit Setting

National map unit symbol: 362f Elevation: 4,550 to 4,750 feet Mean annual precipitation: 11 to 15 inches Mean annual air temperature: 46 to 52 degrees F Frost-free period: 130 to 180 days Farmland classification: Not prime farmland

## **Map Unit Composition**

Loup and similar soils: 55 percent Boel and similar soils: 35 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Loup**

## Setting

Landform: Swales, drainageways, streams Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium

## **Typical profile**

H1 - 0 to 16 inches: loamy sand H2 - 16 to 40 inches: loamy sand H3 - 40 to 60 inches: sandy loam

## **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water capacity: Low (about 5.2 inches)

## Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: A/D Ecological site: R067BY029CO - Sandy Meadow Hydric soil rating: Yes

## **Description of Boel**

## Setting

Landform: Swales, drainageways, streams Down-slope shape: Linear Across-slope shape: Linear Parent material: Stratified sandy alluvium

#### **Typical profile**

*H1 - 0 to 14 inches:* loamy sand *H2 - 14 to 60 inches:* loamy sand

## **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Available water capacity: Low (about 4.2 inches)

## Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 6w Hydrologic Soil Group: A Ecological site: R067BY029CO - Sandy Meadow Hydric soil rating: No

## **Minor Components**

## Osgood

Percent of map unit: 5 percent Hydric soil rating: No

#### Valent

Percent of map unit: 5 percent Hydric soil rating: No

## 44—Olney loamy sand, 1 to 3 percent slopes

## **Map Unit Setting**

National map unit symbol: 362r Elevation: 4,600 to 5,200 feet Mean annual precipitation: 11 to 15 inches Mean annual air temperature: 46 to 54 degrees F Frost-free period: 125 to 175 days Farmland classification: Farmland of statewide importance

#### Map Unit Composition

Olney and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Olney**

## Setting

Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Mixed deposit outwash

## **Typical profile**

H1 - 0 to 10 inches: loamy sand
H2 - 10 to 20 inches: sandy clay loam
H3 - 20 to 25 inches: sandy clay loam
H4 - 25 to 60 inches: fine sandy loam

## Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Moderate (about 6.5 inches)

## Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4c Hydrologic Soil Group: B Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

## Minor Components

## Vona

Percent of map unit: 8 percent Hydric soil rating: No

## Zigweid

Percent of map unit: 7 percent Hydric soil rating: No

## 49—Osgood sand, 0 to 3 percent slopes

## Map Unit Setting

National map unit symbol: 362x Elevation: 4,680 to 4,900 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 46 to 55 degrees F Frost-free period: 140 to 150 days Farmland classification: Farmland of statewide importance

## Map Unit Composition

*Osgood and similar soils:* 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.* 

## **Description of Osgood**

## Setting

Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Parent material: Eolian sands

## **Typical profile**

*H1 - 0 to 22 inches:* sand *H2 - 22 to 34 inches:* sandy loam *H3 - 34 to 60 inches:* sand

## **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water capacity: Low (about 4.8 inches)

## Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R067BY015CO - Deep Sand Hydric soil rating: No

## **Minor Components**

## Valent

*Percent of map unit:* 10 percent *Hydric soil rating:* No

## Dailey

Percent of map unit: 5 percent Hydric soil rating: No

## 70-Valent sand, 3 to 9 percent slopes

## Map Unit Setting

National map unit symbol: 2tczf Elevation: 3,050 to 5,150 feet Mean annual precipitation: 12 to 18 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 180 days Farmland classification: Not prime farmland

## Map Unit Composition

Valent and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Valent**

## Setting

Landform: Hills, dunes Landform position (two-dimensional): Backslope, shoulder, footslope, summit Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Noncalcareous eolian sands

## Typical profile

A - 0 to 5 inches: sand AC - 5 to 12 inches: sand C1 - 12 to 30 inches: sand C2 - 30 to 80 inches: sand

## **Properties and qualities**

Slope: 3 to 9 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 39.96 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water capacity: Very low (about 2.4 inches)

## Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R067BY015CO - Deep Sand, R072XY109KS - Rolling Sands Hydric soil rating: No

## **Minor Components**

## Dailey

Percent of map unit: 10 percent Landform: Interdunes Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY015CO - Deep Sand, R072XA021KS - Sands (North) (PE 16-20) Hydric soil rating: No

## Vona

Percent of map unit: 5 percent Landform: Hills Landform position (two-dimensional): Footslope, backslope, shoulder Landform position (three-dimensional): Side slope, head slope, nose slope, base slope Down-slope shape: Linear Across-slope shape: Linear Ecological site: R067BY024CO - Sandy Plains, R072XA022KS - Sandy (North) Draft (April 2010) (PE 16-20) Hydric soil rating: No

## Haxtun

Percent of map unit: 5 percent Landform: Interdunes Landform position (two-dimensional): Footslope, toeslope Landform position (three-dimensional): Base slope Down-slope shape: Linear Across-slope shape: Concave Ecological site: R067BY024CO - Sandy Plains, R072XY111KS - Sandy Plains Hydric soil rating: No

## 72—Vona loamy sand, 0 to 3 percent slopes

## Map Unit Setting

National map unit symbol: 363r Elevation: 4,600 to 5,200 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 48 to 55 degrees F Frost-free period: 130 to 160 days Farmland classification: Farmland of local importance

## **Map Unit Composition**

*Vona and similar soils:* 85 percent *Minor components:* 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

## **Description of Vona**

## Setting

Landform: Plains, terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits

## **Typical profile**

H1 - 0 to 6 inches: loamy sand H2 - 6 to 28 inches: fine sandy loam H3 - 28 to 60 inches: sandy loam

## **Properties and qualities**

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Available water capacity: Moderate (about 6.5 inches)

## Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Ecological site: R067BY024CO - Sandy Plains Hydric soil rating: No

## **Minor Components**

#### Remmit

*Percent of map unit:* 10 percent *Hydric soil rating:* No

## Valent

Percent of map unit: 5 percent Hydric soil rating: No

## 85—Water

Map Unit Composition Water: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

## **Minor Components**

## Aquolls

Percent of map unit: 5 percent Landform: Marshes Hydric soil rating: Yes

# References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2\_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2\_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2\_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2\_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE\_DOCUMENTS/nrcs142p2\_052290.pdf